forked from yihshe/ms-convSTAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
312 lines (232 loc) · 12.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import sys
import pandas as pd
sys.path.append("src")
sys.path.append("src/models")
import torch.optim
from tqdm import tqdm
from loguru import logger
import numpy as np
from sklearn.metrics import confusion_matrix as sklearn_cm
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
def test(model, model_gt, dataloader, level=3):
model.eval()
logprobabilities = list()
targets_list = list()
gt_instance_list = list()
logprobabilities_refined = list()
#get the corresponding target gt of given level
for iteration, data in tqdm(enumerate(dataloader)):
# Next line is for debugging
if iteration==10:
break
if level==1:
inputs, _, targets, _, gt_instance = data
elif level ==2:
inputs, _, _, targets, gt_instance = data
else:
inputs, targets, _, _, gt_instance = data
del data
if torch.cuda.is_available():
inputs = inputs.cuda()
y = targets.numpy()
#y_i = gt_instance.cpu().detach().numpy()
y_i = gt_instance.detach().numpy()
z3, z1, z2 = model.forward(inputs)
if model_gt is not None:
#z3_refined = model_gt([z1.detach(), z2.detach(), z3.detach()])
z3_refined = model_gt([z1, z2, z3])
else:
z3_refined = z3
if type(z3_refined) == tuple:
z3_refined = z3_refined[0]
z1 = z1.detach().cpu().numpy()
z2 = z2.detach().cpu().numpy()
z3 = z3.detach().cpu().numpy()
z3_refined = z3_refined.detach().cpu().numpy()
targets_list.append(y)
gt_instance_list.append(y_i)
if level==1:
logprobabilities.append(z1)
elif level ==2:
logprobabilities.append(z2)
else:
logprobabilities.append(z3)
# NOTE the refined prediction is always based on level 3
logprobabilities_refined.append(z3_refined)
del z1, z2, z3, z3_refined
return np.vstack(logprobabilities), np.concatenate(targets_list), np.vstack(gt_instance_list), np.vstack(logprobabilities_refined)
def confusion_matrix_to_accuraccies(confusion_matrix):
confusion_matrix = confusion_matrix.astype(float)
# sum(0) <- predicted sum(1) ground truth
total = np.sum(confusion_matrix)
n_classes, _ = confusion_matrix.shape
overall_accuracy = np.sum(np.diag(confusion_matrix)) / total
# calculate Cohen Kappa (https://en.wikipedia.org/wiki/Cohen%27s_kappa)
N = total
p0 = np.sum(np.diag(confusion_matrix)) / N
pc = np.sum(np.sum(confusion_matrix, axis=0) * np.sum(confusion_matrix, axis=1)) / N ** 2
kappa = (p0 - pc) / (1 - pc)
recall = np.diag(confusion_matrix) / (np.sum(confusion_matrix, axis=1) + 1e-12)
precision = np.diag(confusion_matrix) / (np.sum(confusion_matrix, axis=0) + 1e-12)
f1 = (2 * precision * recall) / ((precision + recall) + 1e-12)
# Per class accuracy
cl_acc = np.diag(confusion_matrix) / (confusion_matrix.sum(1) + 1e-12)
return overall_accuracy, kappa, precision, recall, f1, cl_acc
def build_confusion_matrix(targets, predictions):
labels = np.unique(targets)
labels = labels.tolist()
#nclasses = len(labels)
cm = sklearn_cm(targets, predictions, labels=labels)
# precision = precision_score(targets, predictions, labels=labels, average='macro')
# recall = recall_score(targets, predictions, labels=labels, average='macro')
# f1 = f1_score(targets, predictions, labels=labels, average='macro')
# kappa = cohen_kappa_score(targets, predictions, labels=labels)
#print('precision, recall, f1, kappa: ', precision, recall, f1, kappa)
return cm
def print_report(overall_accuracy, kappa, precision, recall, f1, cl_acc):
report="""
overall accuracy: \t{:.3f}
kappa \t\t{:.3f}
precision \t\t{:.3f}
recall \t\t{:.3f}
f1 \t\t\t{:.3f}
""".format(overall_accuracy, kappa, precision.mean(), recall.mean(), f1.mean())
print(report)
#print('Per-class acc:', cl_acc)
return cl_acc
def print_report_info(overall_accuracy, kappa, precision, recall, f1, cl_acc):
report="""
overall accuracy: \t{:.3f}
kappa \t\t{:.3f}
precision \t\t{:.3f}
recall \t\t{:.3f}
f1 \t\t\t{:.3f}
""".format(overall_accuracy, kappa, precision.mean(), recall.mean(), f1.mean())
logger.info(report)
return cl_acc
def evaluate_fieldwise(model, model_gt, dataset, batchsize=1, workers=1, viz=False, prediction_dir = None, experiment_id = 0, fold_num=5, level=3,
ignore_undefined_classes=False):
if prediction_dir != None:
prediction_dir = f"{prediction_dir}_{experiment_id}"
if not os.path.exists(prediction_dir):
os.makedirs(prediction_dir)
model.eval()
if model_gt is not None:
model_gt.eval()
dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batchsize, num_workers=workers, shuffle=False)
logprobabilites, targets, gt_instance, logprobabilites_refined = test(model, model_gt, dataloader, level)
# TODO TODO save the two probabilities for average mapping. prob map with max(logprob, 1). np.mean(5 prob distributions), np.sum.
predictions = logprobabilites.argmax(1)
predictions_refined = logprobabilites_refined.argmax(1)
# one dimensional array after being flattened
predictions = predictions.flatten()
targets = targets.flatten()
gt_instance = gt_instance.flatten()
predictions_refined = predictions_refined.flatten()
# Ignore unknown class class_id=0
if viz:
valid_crop_samples = targets != 9999999999
elif level == 2 and ignore_undefined_classes:
valid_crop_samples = (targets != 0) * (targets != 7) * (targets != 9) * (targets != 12)
elif level == 2:
# used for level 2. the meaning of 7,9,12: actually the same categories (maize).
targets[(targets == 7)] = 12
targets[(targets == 9)] = 12
predictions[(predictions == 7)] = 12
predictions[(predictions == 9)] = 12
valid_crop_samples = (targets != 0) * (targets != 7) * (targets != 9)
else:
# this is the valid crop samples we are going to use (also for level 3)
valid_crop_samples = targets != 0
# note that GT might not be available when doing inference
targets_wo_unknown = targets[valid_crop_samples]
predictions_wo_unknown = predictions[valid_crop_samples]
gt_instance_wo_unknown = gt_instance[valid_crop_samples]
predictions_refined_wo_unknown = predictions_refined[valid_crop_samples]
labels = np.unique(targets_wo_unknown)
print('Num class: ', str(labels.shape[0]))
# evaluation of pixel-wise prediction. for level 3, we use the refined predictions
if level == 3:
confusion_matrix = build_confusion_matrix(targets_wo_unknown, predictions_refined_wo_unknown)
confusion_matrix2 = build_confusion_matrix(targets_wo_unknown, predictions_wo_unknown)
else:
confusion_matrix = build_confusion_matrix(targets_wo_unknown, predictions_wo_unknown)
print('Evaluation is done pixel level!')
print('CM without label refinement:')
print_report(*confusion_matrix_to_accuraccies(confusion_matrix2))
print('CM with label refinement:')
print_report(*confusion_matrix_to_accuraccies(confusion_matrix))
logger.info('CM without label refinement:')
print_report_info(*confusion_matrix_to_accuraccies(confusion_matrix2))
logger.info('CM with label refinement:')
print_report_info(*confusion_matrix_to_accuraccies(confusion_matrix))
logger.info('Evaluation is done pixel level!')
# pred can be level 1, 2, 3
prediction_wo_fieldwise = np.zeros_like(targets_wo_unknown)
# pred_refined can only be level 3
prediction_wo_fieldwise_refined = np.zeros_like(targets_wo_unknown)
# target_field, prediction_field (for given level), prediction_level_field_refined (level 3) and target_field_instance_id can be saved as a csv and then be joint with the shapefile for visualizations
num_field = np.unique(gt_instance_wo_unknown).shape[0]
target_field = np.ones(num_field) * 8888
prediction_field = np.ones(num_field) * 9999
prediction_field_refined = np.ones(num_field)*9999
target_field_instance_id = np.zeros(num_field)
print('Field-wise evaluation started')
count = 0
for i in np.unique(gt_instance_wo_unknown).tolist():
if i == 1000:
print(i)
field_indexes = gt_instance_wo_unknown == i
pred = predictions_wo_unknown[field_indexes]
pred = np.bincount(pred)
pred = np.argmax(pred)
prediction_wo_fieldwise[field_indexes] = pred
prediction_field[count] = pred # for visual. pred depends on given level (for level3 it is not refined)
# the following lines are for refined predictions at level 3
pred = predictions_refined_wo_unknown[field_indexes]
pred = np.bincount(pred)
pred = np.argmax(pred)
prediction_wo_fieldwise_refined[field_indexes] = pred
prediction_field_refined[count] = pred # for visual. level 3 refined pred. Final Result.
target = targets_wo_unknown[field_indexes]
target = np.bincount(target)
target = np.argmax(target)
target_field[count] = target # for visual
target_field_instance_id[count] = i # for visual
count += 1
# evaluation of field-wise prediction
if level == 3:
confusion_matrix = build_confusion_matrix(targets_wo_unknown, prediction_wo_fieldwise_refined)
else:
confusion_matrix = build_confusion_matrix(targets_wo_unknown, prediction_wo_fieldwise)
print_report(*confusion_matrix_to_accuraccies(confusion_matrix))
print_report_info(*confusion_matrix_to_accuraccies(confusion_matrix))
print('Evaluation is done field level!')
# the fieldwise-refined excluding unknow classes prediction is the final prediction we are going to evaluate.
pix_accuracy = np.sum(prediction_wo_fieldwise_refined==targets_wo_unknown) / prediction_wo_fieldwise_refined.shape[0] #refined prediction is only applied to level3
print('Quantitative evaluation is done!')
save_path = os.path.join(prediction_dir, f"predictions_level_{level}")
if viz: #used in test we want to save the csv and some other data for visualization purpose
if level == 3:
# for visualization, use prediction_per_field_refined and field_instance_id.
# np.savez(save_path, level=level, logprobabilites = logprobabilites, logprobabilites_refined = logprobabilites_refined, gt = targets, gt_instance = gt_instance, cm=confusion_matrix,
# prediction_per_field = prediction_field, prediction_per_field_refined = prediction_field_refined, gt_per_field = target_field, field_instance_id = target_field_instance_id)
# for visual. note that prediction_field_reined is always level 3
# you can further aggregate the predictions after running 5 rounds of training and evaluations
performance_field = target_field == prediction_field_refined
#performance_field = performance_field.astype(int)
vis_data = {
'target_field_instance_id': target_field_instance_id,
'target_field': target_field,
'prediction_field_refined': prediction_field_refined,
'performance_field': performance_field
}
df = pd.DataFrame(vis_data, dtype='int32')
df.to_csv(os.path.join(prediction_dir, f"visual_pred_level_{level}.csv"), index=False)
print('CSVs are saved: ', os.path.join(prediction_dir, f"visual_pred_level_{level}.csv"))
else:
np.savez(save_path, level=level, logprobabilites = logprobabilites, targets = targets, gt_instance = gt_instance, cm=confusion_matrix,
prediction_per_field = prediction_field, gt_per_field = target_field, field_instance_id = target_field_instance_id)
return pix_accuracy