forked from silq-lang/silq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
samplefrom.d
96 lines (96 loc) · 3.12 KB
/
samplefrom.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
enum Token{
none,
exp,
log,
sin,
cos,
abs,
floor,
ceil,
array,
inferPrecondition,
infer,
errorPr,
samplePrecondition,
sample,
expectation,
flip,
uniformIntPrecondition, // TODO: remove
uniformInt,
categoricalPrecondition,
categorical,
binomial,
gauss,
uniform,
laplace,
// chiSquared, // TODO
rayleigh,
pareto,
gamma,
exponential,
}
private Token computeToken(string s){
switch(s) with(Token){
case "(y;x)=>δ(0)[-y+e^x]":
return exp;
case "(y;x)=>δ(0)[-y+log(x)]":
return log;
case "(y;x)=>δ(0)[-y+sin(x)]":
return sin;
case "(y;x)=>δ(0)[-y+cos(x)]":
return cos;
case "(y;x)=>δ(0)[-y+|x|]":
return abs;
case "(y;x)=>δ(0)[-y+⌊x⌋]":
return floor;
case "(y;x)=>δ(0)[-y+⌈x⌉]":
return ceil;
case "(r;length,init)=>δ([i↦ init] (length))[r]":
return array;
case "(r;f)=>δ(∫dy f()[y])[r]":
return inferPrecondition;
case "(r;f)=>δ(Λx.f()[x]/∫dy f()[y])[r]":
return infer;
case "(r;d)=>δ(∫dx d[x]·(case(x){ val(y) ⇒ 0;⊥ ⇒ 1 }))[r]":
return errorPr;
case "(x;p)=>(1-p)·δ(0)[1-x]+p·δ(0)[x]":
return samplePrecondition;
case "(r;d,b)=>∫dx d[x]·(case(x){ val(y) ⇒ δ(y)[r];⊥ ⇒ 0 })/(1-b)", "(x;d)=>d[x]":
return sample;
case "(r;d,b)=>δ(0)[-r+∫dx d[x]·(case(x){ val(y) ⇒ y;⊥ ⇒ 0 })/(1-b)]", "(r;d)=>δ(0)[-r+∫dx d[x]·x]":
return expectation;
case "(x;p)=>(1-p)·δ(0)[x]+p·δ(0)[1-x]":
return flip;
case "(r;a,b)=>δ(0)[-r+∑_i[a≤i]·[i≤b]]": // uniformInt precondition (TODO: remove)
return uniformIntPrecondition;
case "(x;a,b)=>(∑_i[a≤i]·[i≤b]·δ(0)[i-x])·⅟(∑_i[a≤i]·[i≤b])":
return uniformInt;
case "(r;p)=>δ(0)[-r+[∑_i[0≤i]·[i<p.length]·[p@[i]<0]=0]·[∑_i[0≤i]·[i<p.length]·p@[i]=1]]":
return categoricalPrecondition;
case "(x;p)=>∑_i[0≤i]·[i<p.length]·p@[i]·δ(0)[i-x]":
return categorical;
case "(x;n,p)=>∑_ξ₁(-p+1)^(-ξ₁+n)·(∫dξ₂[-ξ₂≤0]·ξ₂^n·⅟e^ξ₂)·[-n+ξ₁≤0]·[-ξ₁≤0]·p^ξ₁·δ(0)[-ξ₁+x]·⅟(∫dξ₂[-ξ₂≤0]·ξ₂^(-ξ₁+n)·⅟e^ξ₂)·⅟(∫dξ₂[-ξ₂≤0]·ξ₂^ξ₁·⅟e^ξ₂)":
return binomial;
case "(x;μ,ν)=>[ν=0]·δ(0)[-μ+x]+[ν≠0]·e^((-1/2·x²+-1/2·μ²+x·μ)·⅟ν)·⅟√2̅·⅟√ν̅·⅟√π̅":
return gauss;
case "(x;a,b)=>[a≠b]·[a≤x]·[x≤b]·⅟(b-a)+[a=b]·δ(0)[a-x]":
return uniform;
case "(x;μ,b)=>(1/2·[-x+μ≤0]·e^((-x+μ)·⅟b)+1/2·[-μ+x≠0]·[-μ+x≤0]·e^((-μ+x)·⅟b))·[b≠0]·⅟b+[b=0]·δ(0)[-μ+x]":
return laplace;
case "(x;ν)=>[-x≤0]·[ν≠0]·x·⅟e^(1/2·x²·⅟ν)·⅟ν+[ν=0]·δ(0)[x]":
return rayleigh;
case "(x;a,b)=>[-x+b≤0]·[-x≤0]·a·b^a·x^(-1+-a)":
return pareto;
case "(x;α,β)=>([-x≤0]·[α≠0]·x^(-1+α)·⅟e^(x·β)+[α=0]·δ(0)[x])·([α=0]+[α≠0]·⅟(∫dξ₁[-ξ₁≤0]·ξ₁^(-1+α)·⅟e^(β·ξ₁)))":
return gamma;
case "(x;l)=>[0≤x]·l·e^(-x·l)":
return exponential;
default:
return Token.none;
}
}
Token getToken(string s){
static Token[const(char)*] tokens;
if(auto t=s.ptr in tokens) return *t;
return tokens[s.ptr]=computeToken(s);
}