From 33ab61dc162a5fc6229da5fbf274a1584f756ade Mon Sep 17 00:00:00 2001 From: Gerd Duscher <50049264+gduscher@users.noreply.github.com> Date: Wed, 30 Oct 2024 17:49:24 -0400 Subject: [PATCH] Improve Drude Fit --- notebooks/Spectroscopy/Analyse_Low_Loss.ipynb | 443 +----------------- pyTEMlib/eels_tools.py | 12 +- pyTEMlib/low_loss_widget.py | 17 +- 3 files changed, 25 insertions(+), 447 deletions(-) diff --git a/notebooks/Spectroscopy/Analyse_Low_Loss.ipynb b/notebooks/Spectroscopy/Analyse_Low_Loss.ipynb index 9f0e442e..5fee017e 100644 --- a/notebooks/Spectroscopy/Analyse_Low_Loss.ipynb +++ b/notebooks/Spectroscopy/Analyse_Low_Loss.ipynb @@ -188,7 +188,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 132, "metadata": { "ExecuteTime": { "end_time": "2024-09-25T17:48:50.060660Z", @@ -202,7 +202,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "46454b54de3848c0aff17bb9cd939361", + "model_id": "7f15f7b42bb3420e819b5ee5461129e9", "version_major": 2, "version_minor": 0 }, @@ -229,285 +229,6 @@ "infoWidget= pyTEMlib.info_widget.EELSWidget()" ] }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [], - "source": [ - "plt.close('all')" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.0, 1.0)" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fit_start = self.low_loss_tab[6, 0].value" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\gduscher\\Documents\\Github\\pyTEMlib\\notebooks\\Spectroscopy\\../..\\pyTEMlib\\eels_tools.py:564: RuntimeWarning: divide by zero encountered in divide\n", - " eps = 1 - Ep**2/(E**2+Ew**2) + 1j * Ew * Ep**2/E/(E**2+Ew**2)\n", - "C:\\Users\\gduscher\\Documents\\Github\\pyTEMlib\\notebooks\\Spectroscopy\\../..\\pyTEMlib\\eels_tools.py:564: RuntimeWarning: invalid value encountered in divide\n", - " eps = 1 - Ep**2/(E**2+Ew**2) + 1j * Ew * Ep**2/E/(E**2+Ew**2)\n", - "C:\\Users\\gduscher\\Documents\\Github\\pyTEMlib\\notebooks\\Spectroscopy\\../..\\pyTEMlib\\eels_tools.py:565: RuntimeWarning: invalid value encountered in divide\n", - " elf = (-1/eps).imag\n" - ] - } - ], - "source": [ - "pp = infoWidget.low_loss.get_drude()" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\gduscher\\Documents\\Github\\pyTEMlib\\notebooks\\Spectroscopy\\../..\\pyTEMlib\\eels_tools.py:564: RuntimeWarning: divide by zero encountered in divide\n", - " eps = 1 - Ep**2/(E**2+Ew**2) + 1j * Ew * Ep**2/E/(E**2+Ew**2)\n", - "C:\\Users\\gduscher\\Documents\\Github\\pyTEMlib\\notebooks\\Spectroscopy\\../..\\pyTEMlib\\eels_tools.py:564: RuntimeWarning: invalid value encountered in divide\n", - " eps = 1 - Ep**2/(E**2+Ew**2) + 1j * Ew * Ep**2/E/(E**2+Ew**2)\n", - "C:\\Users\\gduscher\\Documents\\Github\\pyTEMlib\\notebooks\\Spectroscopy\\../..\\pyTEMlib\\eels_tools.py:565: RuntimeWarning: invalid value encountered in divide\n", - " elf = (-1/eps).imag\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e3301aff68b8451b8a261a88a3ada3f6", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJOklEQVR4nO3dd3wUdf7H8fekhwRCL4FI711QDEgREAThuJ+eBTmpcoIIItg4ThFEA3fnqScnCCqop4ANRAEpCgFFpAhHPQUNRaUIB4QSNmW/vz8gK5ulBDYwO8zr+bg9st+Znf3s10De+X7nO2MZY4wAAADgGmF2FwAAAIAriwAIAADgMgRAAAAAlyEAAgAAuAwBEAAAwGUIgAAAAC5DAAQAAHAZAiAAAIDLEAABAABchgAIAADgMgRAAAAAlyEAAgAAuAwBEAAAwGUIgAAAAC5DAAQAAHAZAiAAAIDLEAABAABchgAIAADgMgRAAAAAlyEAAgAAuAwBEAAAwGUIgAAAAC5DAAQAAHAZAiAAAIDLEACBAjJt2jRZlnXOx9KlS337VqpU6Zz7tWnTJuCYa9asOe977969Ww888IBq1Kih2NhYFS9eXPXr11f//v21e/fu87526dKlsixLH3zwwXn3syxLDz744AX74WwWLFigDh06KDExUdHR0UpMTFSbNm00bty4SzpeQXvuuec0e/Zsu8sAgCsmwu4CgKvN1KlTVatWrYD2OnXq+D1v0aKF/v73vwfsV6RIkYt6v59++knXXnutihYtquHDh6tmzZo6cuSItmzZovfee08//vijkpKSLu5DFKBJkyZp4MCBuv322zVhwgQVL15cu3fv1ooVK/TBBx/oiSeesK22XM8995z+8Ic/6Pe//73dpQDAFUEABApYvXr11LRp0wvuV7RoUd1www1Bv9+UKVN04MABrVq1SpUrV/a1//73v9ef//xneb3eoN8jGCkpKWrVqlXACOO9995re22XIiMjQzExMbIsy+5SAOCSMQUMONzBgwcVFham0qVLn3V7WJi9f80PHjyocuXKnXVb3tpyp5lfffVV1ahRQ9HR0apTp45mzJgR8Nq9e/fq/vvvV4UKFRQVFaXKlStr9OjRys7O9tvP4/FozJgxql27tmJiYlSiRAnddNNNWrFihe89jx8/rjfffDNgGj53Cn7hwoXq27evSpUqpUKFCsnj8ah3796qVKlSQF1PP/10QDjM/VxTp05VzZo1FRsbq6ZNm2rlypUyxuhvf/ubKleurPj4eLVt21bbt2/Pb/f61blkyRINHDhQJUuWVIkSJXTbbbfpl19+Cdh/5syZSk5OVlxcnOLj49WxY0etW7fOt33u3LmyLEurV6/2tX344YeyLEu33nqr37EaNGig22+/Pd+19u7dW/Hx8dq+fbs6d+6s+Ph4JSUlafjw4fJ4PH77ZmZmauzYsapVq5aio6NVqlQp9enTR7/++qtvn0cffVQJCQnKycnxtQ0ePFiWZelvf/ubry3378nLL7+c71qBqxkBEChgOTk5ys7O9nuc+cMplzEmYL/s7GwZYy7q/ZKTk+X1enXbbbdpwYIFSk9PL6iPUiCSk5P14Ycf6umnn9Z//vOfs/bFmebMmaN//vOfGjNmjD744ANVrFhR3bt39xtB3Lt3r66//notWLBATz31lObPn69+/fopJSVF/fv39+2XnZ2tTp066ZlnnlGXLl00a9YsTZs2Tc2bN9euXbskSV9//bViY2PVuXNnff311/r666/1yiuv+NXUt29fRUZG6u2339YHH3ygyMjIi+6HTz/9VK+99prGjRun6dOn6+jRo7r11ls1fPhwffXVV5owYYImT56sLVu26Pbbb7/o7wNJuu+++xQZGal3331Xf/3rX7V06VL98Y9/9NvnueeeU/fu3VWnTh299957evvtt3X06FG1bNlSW7ZskSS1bt1akZGRWrx4se91ixcvVmxsrFJTU5WVlSVJ2r9/vzZt2qT27dtfVJ1ZWVn63e9+p3bt2unjjz9W37599cILL2j8+PG+fbxer7p166Zx48bpnnvu0dy5czVu3DgtWrRIbdq0UUZGhiSpffv2Sk9P16pVqwJqXbRoka/t888/lzHmomsFrloGQIGYOnWqkXTWR3h4uN++FStWPOe+zzzzTMAxV69efc739Xq95v777zdhYWFGkrEsy9SuXds8/PDDJi0t7YJ1L1myxEgy77///nn3k2QGDRp0wePltX37dlOvXj3f54uNjTXt2rUzEyZMMJmZmQHvERsba/bu3etry87ONrVq1TLVqlXztd1///0mPj7e7Ny50+/1f//7340ks3nzZmOMMW+99ZaRZKZMmXLeGuPi4kyvXr0C2nP7v2fPngHbevXqZSpWrBjQPmrUKJP3n1ZJpmzZsubYsWO+ttmzZxtJplGjRsbr9fraX3zxRSPJbNiw4bw1n63OBx54wK/9r3/9q5Fk9uzZY4wxZteuXSYiIsIMHjzYb7+jR4+asmXLmjvvvNPXduONN5q2bdv6nlerVs08+uijJiwszKSmphpjjHnnnXeMJPP999/nu9ZevXoZSea9997za+/cubOpWbOm7/n06dONJPPhhx/67bd69WojybzyyivGGGOOHz9uoqKizJgxY4wxxvz0009Gknn88cdNbGysOXnypDHGmP79+5vExMR81wlc7RgBBArYW2+9pdWrV/s9vvnmm4D9brzxxoD9Vq9erX79+l3U+1mWpUmTJunHH3/UK6+8oj59+igrK0svvPCC6tatq9TU1IL6aJekatWq+s9//qPU1FSNHj1a7du31+rVq/Xggw8qOTlZJ0+e9Nu/Xbt2KlOmjO95eHi47rrrLm3fvl0//fSTpFOjaTfddJMSExP9Rk87deokSb7PPH/+fMXExKhv375BfYaLmeI8l5tuuklxcXG+57Vr15YkderUyW/KOLd9586dF/0ev/vd7/yeN2jQwO9YCxYsUHZ2tnr27OnXbzExMWrdurXfSvV27drpq6++UkZGhnbu3Knt27fr7rvvVqNGjXwja4sXL9Y111yj6tWrX1SdlmWpa9euAbWe+Zk//fRTFS1aVF27dvWrtVGjRipbtqyv1kKFCik5Odk3Wrlo0SIVLVpUjz76qDIzM/Xll1/6amX0D/gNi0CAAla7du18LQJJSEjI1375VbFiRQ0cOND3/L333lP37t316KOP+k2P2SEsLEytWrVSq1atJEnHjx9Xv379NHPmTL3xxht64IEHfPuWLVs24PW5bQcPHlSFChW0b98+ffLJJ+ecij1w4IAk6ddff1ViYmLQ50Ge6xzGi1G8eHG/51FRUedtzxuM86NEiRJ+z6OjoyXJN126b98+SdJ111131tef2U/t27fX6NGj9eWXX2rnzp0qWbKkGjdurPbt22vx4sV65pln9Pnnn19SqCpUqJBiYmICaj3zM+/bt0+HDx/29Udeuf+Nc2t95plndPz4cS1evFht27ZViRIl1KRJEy1evFhVqlRRWlqaRo8efdG1AlcrAiBwlbrzzjuVkpKiTZs22V1KgLi4OI0YMUIzZ84MqG/v3r0B++e25QackiVLqkGDBnr22WfPevzExERJUqlSpfTll1/K6/UGFQLPtuI3JiYmYNGC5B9MQk3JkiUlyXdu5fk0a9ZM8fHxWrx4sXbs2KF27drJsiy1a9dOzz//vFavXq1du3ZdtlG13IUsn3322Vm3Fy5c2Pd1u3bt9OSTT2rZsmX6/PPPNWrUKF/7woULfavj27Vrd1lqBZyIAAg43J49e846QnXs2DHt3r3bF4bscq76tm7dKkkB9X3++efat2+fbxo4JydHM2fOVNWqVVWhQgVJUpcuXTRv3jxVrVpVxYoVO+d7d+rUSdOnT9e0adPOOw0cHR3tGyXLr0qVKmn//v1+tWZmZmrBggUXdZwrqWPHjoqIiNAPP/xwwWntyMhItWrVSosWLdLu3bt9F+1u2bKlIiIi9Je//MUXCC+HLl26aMaMGcrJyVGzZs3Ou+/111+vIkWK6MUXX9TevXt18803Szo1Mjh+/Hi99957qlOnju1/F4BQQgAECtimTZsCLkUinToXrlSpUr7nhw8f1sqVKwP2i46OVuPGjf3avvjiC+3YsSNg386dO+vZZ5/VV199pbvuukuNGjVSbGys0tLSNGHCBB08eNDvUhjnc7ZapFMrQnPr/uGHH856x5A6deoEXOg6V926ddWuXTt16tRJVatW1cmTJ/XNN9/o+eefV5kyZQLOeSxZsqTatm2rJ598UnFxcXrllVf03//+1+9SMGPGjNGiRYvUvHlzDRkyRDVr1tTJkye1Y8cOzZs3T5MmTVKFChXUvXt3TZ06VQMGDNB3332nm266SV6vV998841q166tu+++W5JUv359LV26VJ988onKlSunwoULq2bNmuftr7vuuktPPfWU7r77bj366KM6efKk/vnPf15wlbOdKlWqpDFjxmjkyJH68ccfdcstt6hYsWLat2+fVq1apbi4OL9p0nbt2mn48OGS5Bvpi42NVfPmzbVw4UI1aNDgnJcfCtbdd9+td955R507d9ZDDz2k66+/XpGRkfrpp5+0ZMkSdevWTf/3f/8n6dR5oq1bt9Ynn3yiypUrq2rVqpJOXWw9Ojpan3/+uYYMGXJZ6gQcy+5VKMDV4nyrgJVnJer5VgGXL18+38dMS0szK1euNIMGDTINGzY0xYsXN+Hh4aZUqVLmlltuMfPmzbtg3bmrgM/1WLJkiTHGnHefUaNGnfP4r776qrnttttMlSpVTKFChUxUVJSpWrWqGTBggNm9e7ffvjq90viVV14xVatWNZGRkaZWrVrmnXfeCTjur7/+aoYMGWIqV65sIiMjTfHixU2TJk3MyJEj/VbbZmRkmKeeespUr17dREVFmRIlSpi2bduaFStW+PZZv369adGihSlUqJCRZFq3bu3X/+dahT1v3jzTqFEjExsba6pUqWImTJhwzlXAeVdQp6WlGUnmb3/721n/e1xoVfaZzlVn7rFy/xvmmj17trnppptMkSJFTHR0tKlYsaL5wx/+YBYvXuy333/+8x8jyVSvXt2v/dlnnzWSzLBhw/JdY65evXqZuLi4gPaz9VtWVpb5+9//bho2bGhiYmJMfHy8qVWrlrn//vvNtm3b/PZ96aWXjCTTv39/v/abb77ZSDJz5sy56FqBq5llzCVcbAoALgPLsjRo0CBNmDDB7lIA4KrGZWAAAABchnMAASBEGWMueE5heHh4SNyX2Ov1XvDezhER/MgBQgUjgABChjGG6d8zvPnmm4qMjDzvw+4LfefKvV3e+R4AQgfnAAJAiDp48KDS0tLOu0/NmjX9rolnlx07dlzwGogFeeFzAMEhAAIAALgMU8AFZNmyZeratasSExNlWZZmz559Ua9/+umnZVlWwOPMe4cCAAAUBAJgATl+/LgaNmx4yecvPfLII9qzZ4/fo06dOrrjjjsKuFIAAOB2BMAC0qlTJ40dO1a33XbbWbdnZmbqscceU/ny5RUXF6dmzZpp6dKlvu3x8fEqW7as77Fv3z5t2bIl4C4JAAAAwWJN/hXSp08f7dixQzNmzFBiYqJmzZqlW265RRs3blT16tUD9n/ttddUo0YNtWzZ0oZqAQDA1YwRwCvghx9+0PTp0/X++++rZcuWqlq1qh555BHdeOONmjp1asD+Ho9H77zzDqN/AADgsmAE8Ar49ttvZYxRjRo1/No9Ho9KlCgRsP9HH32ko0ePqmfPnleqRAAA4CIEwCvA6/UqPDxca9euVXh4uN+2+Pj4gP1fe+01denSRWXLlr1SJQIAABchAF4BjRs3Vk5Ojvbv33/Bc/rS0tK0ZMkSzZkz5wpVBwAA3IYAWECOHTum7du3+56npaVp/fr1Kl68uGrUqKEePXqoZ8+eev7559W4cWMdOHBAX3zxherXr6/OnTv7XvfGG2+oXLly6tSpkx0fAwAAuAB3AikgS5cu1U033RTQ3qtXL02bNk1ZWVkaO3as3nrrLf38888qUaKEkpOTNXr0aNWvX1/SqaniihUrqmfPnnr22Wev9EcAAAAuQQAEAABwGS4DAwAA4DIEQAAAAJchAAIAALgMq4CD4PV69csvv6hw4cKyLMvucgAAQD4YY3T06FElJiYqLMydY2EEwCD88ssvSkpKsrsMAABwCXbv3q0KFSrYXYYtCIBBKFy4sKRT30BFihSxuRoAAJAf6enpSkpK8v0cdyMCYBByp32LFClCAAQAwGHcfPqWOye+AQAAXIwACAAA4DIEQAAAAJchAAIAALgMARAAAMBlCIAAAAAuQwAEAABwGQIgAACAyxAAAQAAXMbVAfDnn3/WH//4R5UoUUKFChVSo0aNtHbtWrvLAgAAuKxceyu4Q4cOqUWLFrrppps0f/58lS5dWj/88IOKFi1qd2kAAACXlWsD4Pjx45WUlKSpU6f62ipVqmRfQQAAAFeIa6eA58yZo6ZNm+qOO+5Q6dKl1bhxY02ZMuW8r/F4PEpPT/d7QNKJ/0mLnpJ+/c7uSgAAQD64NgD++OOPmjhxoqpXr64FCxZowIABGjJkiN56661zviYlJUUJCQm+R1JS0hWsOIR9MkT66iXpX83srgQAAOSDZYwxdhdhh6ioKDVt2lQrVqzwtQ0ZMkSrV6/W119/fdbXeDweeTwe3/P09HQlJSXpyJEjKlKkyGWvOWQ9X0s6uufU108fsbcWAAAuID09XQkJCa7++e3aEcBy5cqpTp06fm21a9fWrl27zvma6OhoFSlSxO8BSe78HQIAAMdybQBs0aKFvvvO/5y177//XhUrVrSpIufaFWbUr2xprYiJsbsUAACQD65dBfzwww+refPmeu6553TnnXdq1apVmjx5siZPnmx3aY7zWJFIbY4M06rYGG20uxgAAHBBrh0BvO666zRr1ixNnz5d9erV0zPPPKMXX3xRPXr0sLs0x9nv2u8iAACcybUjgJLUpUsXdenSxe4yHM9rdwEAAOCiMHaDoLEEBAAAZyEAImhey+4KAADAxSAAImhMAQMA4CwEQASNKWAAAJyFAIigecUcMAAATkIARNCYAgYAwFkIgAgaU8AAADgLARBBYxUwAADOQgBE0BgBBADAWQiACBrnAAIA4CwEQASNAAgAgLMQABE0Y3ESIAAATkIABAAAcBkCIAAAgMsQAAEAAFyGAAgAAOAyBEAAAACXIQAiaJbhUtAAADgJARBB4yIwAAA4CwEQQSMAAgDgLARAAAAAlyEAImiMAAIA4CwEQAAAAJchACJojAACAOAsBEAEjQAIAICzEAABAABchgCIoFlcBxoAAEchACJoTAEDAOAsBEAEjQAIAICzEABRAJgDBgDASQiACBojgAAAOAsBEEEjAAIA4CwEQASNAAgAgLMQAAEAAFyGAAgAAOAyBEAEzTAJDACAoxAAAQAAXIYAiKBZXAcQAABHIQACAAC4DAEQQeMcQAAAnIUACAAA4DIEQASNcwABAHAWAiAAAIDLEAABAABcxrUB8Omnn5ZlWX6PsmXL2l2WI7EIBAAAZ4mwuwA71a1bV4sXL/Y9Dw8Pt7EaAACAK8PVATAiIoJRvwJwahEIo4AAADiFa6eAJWnbtm1KTExU5cqVdffdd+vHH3+0uyQAAIDLzrUjgM2aNdNbb72lGjVqaN++fRo7dqyaN2+uzZs3q0SJEmd9jcfjkcfj8T1PT0+/UuUCAAAUGNeOAHbq1Em333676tevr/bt22vu3LmSpDfffPOcr0lJSVFCQoLvkZSUdKXKBQAAKDCuDYB5xcXFqX79+tq2bds59xkxYoSOHDnie+zevfsKVggAAFAwXDsFnJfH49HWrVvVsmXLc+4THR2t6OjoK1gVAABAwXPtCOAjjzyi1NRUpaWl6ZtvvtEf/vAHpaenq1evXnaXBgAAcFm5dgTwp59+Uvfu3XXgwAGVKlVKN9xwg1auXKmKFSvaXRoAAMBl5doAOGPGDLtLAAAAsIVrp4BRkLgINAAATkIARAEwdhcAAAAuAgEQAADAZQiAAAAALkMABAAAcBkCIAoAi0AAAHASAiAKAItAAABwEgIgAACAyxAAAQAAXIYACAAA4DIEQBQAFoEAAOAkBEAUABaBAADgJARAAAAAlyEAAgAAuAwBEAWAcwABAHASAiAAAIDLEAABAABchgCIoFmsAgYAwFEIgAga8Q8AAGchAKIAsAgEAAAnIQACAAC4DAEQAADAZQiACNqZi0CM4YxAAABCHQEQQSPyAQDgLARAFIDfFoEY47WxDgAAkB8EQBQo4yUAAgAQ6giACJrfOYAiAAIAEOoIgChQhjMCAQAIeQRABM0v8rEKGACAkEcARAE4404gBEAAAEIeARAFilXAAACEPgIggsYiEAAAnIUAiKAZpoABAHAUAiAKFLeCAwAg9BEAUaC4DAwAAKGPAIig+Z0DyCIQAABCHgEQBYsACABAyCMAImgsAgEAwFkIgChQnAMIAEDoIwCiQBEAAQAIfQRABM1vEYiXcwABAAh1BEAUKO4EAgBA6CMAImgsAgEAwFkIgChQxD8AAEIfARBBO/McQK4DCABA6CMAnpaSkiLLsjR06FC7S3E07gQCAEDoIwBKWr16tSZPnqwGDRrYXYrjcRkYAABCX4TdBVwsj8ejVatWaceOHTpx4oRKlSqlxo0bq3Llypd0vGPHjqlHjx6aMmWKxo4dW8DVugOLQAAAcBbHBMAVK1bo5Zdf1uzZs5WZmamiRYsqNjZW//vf/+TxeFSlShX96U9/0oABA1S4cOF8H3fQoEG69dZb1b59+wsGQI/HI4/H43uenp5+yZ/nasUIIAAAoc8RU8DdunXTH/7wB5UvX14LFizQ0aNHdfDgQf300086ceKEtm3bpr/85S/6/PPPVaNGDS1atChfx50xY4a+/fZbpaSk5Gv/lJQUJSQk+B5JSUnBfKyrkmEEEACAkOeIEcAOHTro/fffV1RU1Fm3V6lSRVWqVFGvXr20efNm/fLLLxc85u7du/XQQw9p4cKFiomJyVcdI0aM0LBhw3zP09PTCYHyv/QLi0AAAAh9lnHpkM3s2bP1f//3fwoPD/e15eTkyLIshYWFyePx+G07m/T0dCUkJOjIkSMqUqTI5S45ZDWbWk8nwk6dB7jk1vdVsmQtmysCAODc+PntkBHAM+3evVuWZalChQqSpFWrVundd99VnTp19Kc//Snfx2nXrp02btzo19anTx/VqlVLjz/++AXDH87Bnb9PAADgKI4LgPfcc4/+9Kc/6d5779XevXt18803q27duvr3v/+tvXv36qmnnsrXcQoXLqx69er5tcXFxalEiRIB7Tg/poABAHAWRywCOdOmTZt0/fXXS5Lee+891atXTytWrNC7776radOm2VscWAUMAIADOG4EMCsrS9HR0ZKkxYsX63e/+50kqVatWtqzZ09Qx166dGmw5bmS/wggARAAgFDnuBHAunXratKkSVq+fLkWLVqkW265RZL0yy+/qESJEjZX507mPM8AAEDocVwAHD9+vF599VW1adNG3bt3V8OGDSVJc+bM8U0Nwz6cAwgAQOhz3BRwmzZtdODAAaWnp6tYsWK+9j/96U+Ki4uzsTL3MtaZTxgBBAAg1DluBLBt27Y6evSoX/iTpOLFi+uuu+6yqSp38zsHkClgAABCnuMC4NKlS5WZmRnQfvLkSS1fvtyGisBlYAAAcBbHTAFv2LDB9/WWLVu0d+9e3/OcnBx99tlnKl++vB2lAQAAOIpjAmCjRo1kWZYsy1Lbtm0DtsfGxurll1+2oTKciRFAAABCn2MCYFpamowxqlKlilatWqVSpUr5tkVFRal06dLcvs0mTAEDAOAsjgmAFStWlCR5vQSMUGPO8TUAAAhNjgmAZ/r++++1dOlS7d+/PyAQ5vdewCg4fqGPEUAAAEKe4wLglClTNHDgQJUsWVJly5aVZf12ETrLsgiAtmMMEACAUOe4ADh27Fg9++yzevzxx+0uBaeZM0I49wIGACD0Oe46gIcOHdIdd9xhdxnIlSfwEQABAAh9jguAd9xxhxYuXGh3GTjN5DkHk1XAAACEPsdNAVerVk1PPvmkVq5cqfr16ysyMtJv+5AhQ2yqzK3MeZ4BAIBQ5LgAOHnyZMXHxys1NVWpqal+2yzLIgBeYYH3/iUCAgAQ6hwXANPS0uwuAWdgChgAAOdx3DmACC1GeQMfI4AAAIQ6x40A9u3b97zb33jjjStUCSQFrgLmTi0AAIQ8xwXAQ4cO+T3PysrSpk2bdPjwYbVt29amqtwr7zmAjP8BABD6HBcAZ82aFdDm9Xr1wAMPqEqVKjZU5HIB1/0jAgIAEOquinMAw8LC9PDDD+uFF16wuxTXybvog0UgAACEvqsiAErSDz/8oOzsbLvLcJ28i0ACLwsDAABCjeOmgIcNG+b33BijPXv2aO7cuerVq5dNVblYwK3gGAEEACDUOS4Arlu3zu95WFiYSpUqpeeff/6CK4RR8Lj3LwAAzuO4ALhkyRK7S8AZAqZ8CYQAAIQ8xwXAXL/++qu+++47WZalGjVqqFSpUnaX5EosAgEAwHkctwjk+PHj6tu3r8qVK6dWrVqpZcuWSkxMVL9+/XTixAm7y3OhvNcBZAQQAIBQ57gAOGzYMKWmpuqTTz7R4cOHdfjwYX388cdKTU3V8OHD7S7PfQLuBUwABAAg1DluCvjDDz/UBx98oDZt2vjaOnfurNjYWN15552aOHGifcW5UOCIHwEQAIBQ57gRwBMnTqhMmTIB7aVLl2YK2AaBt4IjAAIAEOocFwCTk5M1atQonTx50teWkZGh0aNHKzk52cbK3MnkmQJmFTAAAKHPcVPAL730km655RZVqFBBDRs2lGVZWr9+vWJiYrRgwQK7y3MhLgQNAIDTOC4A1qtXT9u2bdO///1v/fe//5UxRnfffbd69Oih2NhYu8tzncDLwNhUCAAAyDfHBUBJio2NVf/+/e0uAzrbkg8SIAAAoc5x5wCmpKTojTfeCGh/4403NH78eBsqcjsWgQAA4DSOC4CvvvqqatWqFdBet25dTZo0yYaKXM7kPQeQAAgAQKhzXADcu3evypUrF9BeqlQp7dmzx4aK3C3gHECxCAQAgFDnuACYlJSkr776KqD9q6++UmJiog0VuVvAeB8jgAAAhDzHLQK57777NHToUGVlZalt27aSpM8//1yPPfYYt4KzQeBlXwiAAACEOscFwMcee0z/+9//9MADDygzM1OSFBMTo8cff1wjRoywuTr34TIwAAA4j+MCoGVZGj9+vJ588klt3bpVsbGxql69uqKjo+0uzZ0CFoFwDiAAAKHOcQEwV3x8vK677jq7y3A97gUMAIDzOGIRyIABA7R79+587Ttz5ky98847l7ki/IbLwAAA4DSOCIClSpVSvXr11KlTJ02cOFGrV6/Wzz//rIMHD2r79u2aM2eOHnvsMV1zzTV68cUX1aBBgwsec+LEiWrQoIGKFCmiIkWKKDk5WfPnz78Cn+bqwiIQAACcxxFTwM8884wGDx6s119/XZMmTdKmTZv8thcuXFjt27fXa6+9pg4dOuTrmBUqVNC4ceNUrVo1SdKbb76pbt26ad26dapbt26Bf4arF+cAAgDgNJZx4Jzd4cOHtXPnTmVkZKhkyZKqWrWqLMsK+rjFixfX3/72N/Xr1y9f+6enpyshIUFHjhxRkSJFgn5/J9q/d4PaLejhe/5Gg6G6rnH++g8AADvw89shI4B5FS1aVEWLFi2w4+Xk5Oj999/X8ePHlZycfM79PB6PPB6P73l6enqB1eBUee/8wSIQAABCnyPOAbxcNm7cqPj4eEVHR2vAgAGaNWuW6tSpc879U1JSlJCQ4HskJSVdwWpDU0Dgc96AMgAAruPqAFizZk2tX79eK1eu1MCBA9WrVy9t2bLlnPuPGDFCR44c8T3yuzL5qpb3OoDcCxgAgJDnyCngghIVFeVbBNK0aVOtXr1aL730kl599dWz7h8dHc0FpwNwGRgAAJzG1SOAeRlj/M7xw4UZb95zAAEAQKhzXAB8+umntXPnzqCP8+c//1nLly/Xjh07tHHjRo0cOVJLly5Vjx49Lvxi+ATcCYTLwAAAEPIcFwA/+eQTVa1aVe3atdO7776rkydPXtJx9u3bp3vvvVc1a9ZUu3bt9M033+izzz7TzTffXMAVX91Y9QsAgPM4LgCuXbtW3377rRo0aKCHH35Y5cqV08CBA7V69eqLOs7rr7+uHTt2yOPxaP/+/Vq8eDHh71LkPeePEUAAAEKe4wKgJDVo0EAvvPCCfv75Z73xxhv6+eef1aJFC9WvX18vvfSSjhw5YneJrhE4BWxTIQAAIN8cGQBzeb1eZWZmyuPxyBij4sWLa+LEiUpKStLMmTPtLs8VAheBkAABAAh1jgyAa9eu1YMPPqhy5crp4YcfVuPGjbV161alpqbqv//9r0aNGqUhQ4bYXaZL5L0OIAEQAIBQ57gA2KBBA91www1KS0vT66+/rt27d2vcuHG+6/lJUs+ePfXrr7/aWKV7BMQ95oABAAh5jrsQ9B133KG+ffuqfPny59ynVKlS8npZjHBFBNwJhAAIAECoc9wIoDFGxYoVC2jPyMjQmDFjbKjI3QJu/cYIIAAAIc9xAXD06NE6duxYQPuJEyc0evRoGypyN+NlBBAAAKdxXAA0xsiyrID2//znPypevLgNFblbwGVgCIAAAIQ8x5wDWKxYMVmWJcuyVKNGDb8QmJOTo2PHjmnAgAE2VuhWeS8ETQAEACDUOSYAvvjiizLGqG/fvho9erQSEhJ826KiolSpUiUlJyfbWKE7GRaBAADgOI4JgL169ZIkVa5cWc2bN1dkZKTNFeGUPBeCZgQQAICQ54gAmJ6eriJFikiSGjdurIyMDGVkZJx139z9cGUwAggAgPM4IgAWK1ZMe/bsUenSpVW0aNGzLgLJXRySk5NjQ4XuFTDixwggAAAhzxEB8IsvvvCt8F2yZInN1cBf3sBHAAQAINQ5IgC2bt36rF/DfgFTwIwAAgAQ8hx3HcDPPvtMX375pe/5v/71LzVq1Ej33HOPDh06ZGNl7pT3TiCcAwgAQOhzXAB89NFHlZ6eLknauHGjhg0bps6dO+vHH3/UsGHDbK7OfRgBBADAeRwxBXymtLQ01alTR5L04YcfqmvXrnruuef07bffqnPnzjZXBwAAEPocNwIYFRWlEydOSJIWL16sDh06SJKKFy/uGxnElcQUMAAATuO4EcAbb7xRw4YNU4sWLbRq1SrNnDlTkvT999+rQoUKNlfnPoFTwN5z7AkAAEKF40YAJ0yYoIiICH3wwQeaOHGiypcvL0maP3++brnlFpurc5+AwMc5gAAAhDzHjQBec801+vTTTwPaX3jhBRuqQd4ZX+IfAAChz3EBUJK8Xq+2b9+u/fv3y+v1H4Fq1aqVTVW5E+f8AQDgPI4LgCtXrtQ999yjnTt3Bpx/xq3grry8AZDLwAAAEPocFwAHDBigpk2bau7cuSpXrtxZ7wuMKyjvIhCxCAQAgFDnuAC4bds2ffDBB6pWrZrdpUBnuRMII4AAAIQ8x60CbtasmbZv3253GTgHzgkEACD0OW4EcPDgwRo+fLj27t2r+vXrKzIy0m97gwYNbKrMnRjxAwDAeRwXAG+//XZJUt++fX1tlmXJGMMiEBsEBEACIQAAIc9xATAtLc3uEnCGvBeCZgoYAIDQ57gAWLFiRbtLgB8uAwMAgNM4bhGIJL399ttq0aKFEhMTtXPnTknSiy++qI8//tjmytwnb9xjBBAAgNDnuAA4ceJEDRs2TJ07d9bhw4d95/wVLVpUL774or3FuVHAiB8BEACAUOe4APjyyy9rypQpGjlypMLDw33tTZs21caNG22szJ0CrwNoUyEAACDfHBcA09LS1Lhx44D26OhoHT9+3IaK3C3wnD8SIAAAoc5xAbBy5cpav359QPv8+fNVp06dK1+Q67EIBAAAp3HcKuBHH31UgwYN0smTJ2WM0apVqzR9+nSlpKTotddes7s818kb+LgXMAAAoc9xAbBPnz7Kzs7WY489phMnTuiee+5R+fLl9dJLL+nuu++2uzzXYcQPAADncVwAlKT+/furf//+OnDggLxer0qXLm13Sa6V97IvBEIAAEKf484BbNu2rQ4fPixJKlmypC/8paenq23btjZW5lIBU8AEQAAAQp3jAuDSpUuVmZkZ0H7y5EktX77chorcjgAIAIDTOGYKeMOGDb6vt2zZor179/qe5+Tk6LPPPlP58uXtKM3VCHwAADiPYwJgo0aNZFmWLMs661RvbGysXn75ZRsqc7eAc/44BxAAgJDnmACYlpYmY4yqVKmiVatWqVSpUr5tUVFRKl26tN+dQXBlBNwJhBFBAABCnmMCYMWKFSVJXm/BXGcuJSVFH330kf773/8qNjZWzZs31/jx41WzZs0COb5rMAAIAIDjOCYAnun777/X0qVLtX///oBA+NRTT+XrGKmpqRo0aJCuu+46ZWdna+TIkerQoYO2bNmiuLi4y1H2VSngMjCMAAIAEPIcFwCnTJmigQMHqmTJkipbtqwsy/Jtsywr3wHws88+83s+depUlS5dWmvXrlWrVq0KtOarWWDgIwACABDqHBcAx44dq2effVaPP/54gR73yJEjkqTixYsX6HGvenmvA8gcMAAAIc9xAfDQoUO64447CvSYxhgNGzZMN954o+rVq3fO/Twejzwej+95enp6gdZxNWAKGACA0Oe4C0HfcccdWrhwYYEe88EHH9SGDRs0ffr08+6XkpKihIQE3yMpKalA63AiYwpmUQ4AALhyHDcCWK1aNT355JNauXKl6tevr8jISL/tQ4YMuajjDR48WHPmzNGyZctUoUKF8+47YsQIDRs2zPc8PT3d9SEw8DKAjAACABDqHBcAJ0+erPj4eKWmpio1NdVvm2VZ+Q6AxhgNHjxYs2bN0tKlS1W5cuULviY6OlrR0dGXVPfVKu91AFkEAgBA6HNcAExLSyuQ4wwaNEjvvvuuPv74YxUuXNh3a7mEhATFxsYWyHu4Qd4RP0YAAQAIfY47B7CgTJw4UUeOHFGbNm1Urlw532PmzJl2l+YwXAcQAACnccQI4LBhw/TMM88oLi7O7xy8s/nHP/6Rr2MyUlVA8o4A2lQGAADIP0cEwHXr1ikrK8v39bmceVFoXBkBgY9gDQBAyHNEAFyyZMlZv4b9WAQCAIDzuPYcQBSQvJeBsacKAABwEQiACEreRR+cWwkAQOgjACIoee8EwipgAABCHwEQQckb9wiAAACEPgIggkTgAwDAaQiACA53AgEAwHEIgAhK3nMAGREEACD0EQARlMBVwDYVAgAA8o0AiKAw5QsAgPMQABEUL5eBAQDAcQiACBKLQAAAcBoCIIKSN/AxAggAQOgjACIoXjEFDACA0xAAEZTAy8AAAIBQRwBEUALP+WMEEACAUEcARFACrwNIAAQAINQRABGUvFPAxD8AAEIfARBBCVgFzAggAAAhjwCIoBixCAQAAKchACIoXAcQAADnIQAiKNwKDgAA5yEAIigBgY9zAAEACHkEQASFRSAAADgPARBBCTwHkEUhAACEOgIggpJ3CtjLCCAAACGPAIigsAoYAADnIQAiKN48U755VwUDAIDQQwBEcPKMAHoZAQQAIOQRABGUgOsAcg4gAAAhjwCIoAQsAmEVMAAAIY8AiKDkHfFjFTAAAKGPAIigBF4GhhFAAABCHQEQQQkYAWQRCAAAIY8AiKDkHQFkEQgAAKGPAIig5J3yZQQQAIDQRwBEkFgEAgCA0xAAEZS8gY9bwQEAEPoIgAhK4GVgWAUMAECoIwAiKIEXgmYEEACAUEcARFAIgAAAOA8BEEHhTiAAADgPARBByR0BDDsd/FgEAgBA6CMAIii5iz7CfM/tqwUAAOSPqwPgsmXL1LVrVyUmJsqyLM2ePdvukhwnN+9FnP6CcwABAAh9rg6Ax48fV8OGDTVhwgS7S3Esk2cEkClgAABCX4TdBdipU6dO6tSpk91lOFpu4As//ZxFIAAAhD5XB8CL5fF45PF4fM/T09NtrCY0BARARgABAAh5rp4CvlgpKSlKSEjwPZKSkuwuyXa5l4EhAAIA4BwEwIswYsQIHTlyxPfYvXu33SXZzhcAWQQCAIBjMAV8EaKjoxUdHW13GSHF65sCtiQFXhgaAACEHkYAEZTcRR+5v0l47SsFAADkk6tHAI8dO6bt27f7nqelpWn9+vUqXry4rrnmGhsrcw7v6ch3agTQMAUMAIADuDoArlmzRjfddJPv+bBhwyRJvXr10rRp02yqylly7wQSYZ0KgMQ/AABCn6sDYJs2bThnLUgBU8D0JwAAIY9zABGU3CngiNPfSkwBAwAQ+giACIpvCvj0KmAWgQAAEPoIgAhK7ojfqXMAGQEEAMAJCIAIitd3J5BT30rEPwAAQh8BEEFhBBAAAOchACIoOSbvIhAAABDqCIAISu5ldCIspoABAHAKAiCC4rsXsMVlYAAAcAoCIILizTMCyBQwAAChjwCIoPy2CCTc7zkAAAhdBEAEJfdOIJG+AAgAAEIdARBB8Z4e8AtnEQgAAI5BAERQcnLvBcwIIAAAjkEARFByR/w4BxAAAOcgACIoObm3ggs7FQCJfwAAhD4CIIJiAlYBAwCAUEcARFByTgfAyDACIAAATkEARFBybwUXbkVIIgACAOAEBEAEJds3AkgABADAKQiACEpuAIwKi5TEIhAAAJyAAIig5DACCACA4xAAEZTs0+cARoZHS2IEEAAAJyAAIii5I4DRpwNglmVnNQAAID8IgAhK1ukAWCgiVpKUbVm+lcEAACA0EQARlJzTf8aeDoCSlOXNsqcYAACQLwRABCV3FXChqDhfW2ZOpl3lAACAfCAAIijZp/+MiSzsa8vM8dhTDAAAyBcCIILiuwxMVCFFnD73LzMrw86SAADABRAAEZTs06t+IyLiFHU6AGZlnbCxIgAAcCEEQAQldwo4IirWFwAzswmAAACEMgIgLpkxRlnWqSHAiMj43wJg1kk7ywIAABdAAMQlO/NyLzGRcYo8ffm/zBxGAAEACGUEQFyykzm/jfRFR8Yq6vTXjAACABDaCIC4ZLnX+7OMUUR4jKJOjwBmZbMKGACAUEYAxCXzZJ8a6Ys2RlZElKJ06nzAzGxGAAEACGUEQFwyjydd0qkAqIgYRZ5uJwACABDaCIC4ZJ7Mo5JOB8DIWEVZ4ZK4DAwAAKGOAIhLlnHy1AhgjDFSWISirFPfTlwIGgCA0EYAxCU75jkkSYo3lmRZirEiJEkZmcfsLAsAAFwAARCX7JjniCQp/vTq36Jhp84CPJJ5xK6SAABAPhAAccmOnV4EEnf63L+iYTGSpEMeAiAAAKGMAIhLdjjjV0lSgnVq5K9YRKwk6VBmum01AQCACyMA4pIdzDggSSoRfir4FY0uJkk6dHp1MAAACE0EQFyyXzMOSpJKhhfSseVfqljYqQD4vywWgQAAEMpcHwBfeeUVVa5cWTExMWrSpImWL19ud0mOsTPjVyUcM2ry3M/a3b+/Sry8XjJGu3KOK9ubbXd5AADgHFwdAGfOnKmhQ4dq5MiRWrdunVq2bKlOnTpp165ddpcW8k5kndCPWUfUeY3X12Z++Z/ab/LKY0k/fDfHxuoAAMD5WMYYY3cRdmnWrJmuvfZaTZw40ddWu3Zt/f73v1dKSsoFX5+enq6EhAQdOXJERYoUuZylhhavV//+tJ/GH1qjQQuz1Xrtb5v2lwnXg32ku49n6Ym6/XTSROpk+kF5jh5U1vH/SRmHZHmOKiz7uKKyjyvGZChb4cq0YnQosqwOxVVSdnyiwhIqKLpEBcWXqqgSZSuqRNEiCg+PkCzLvs8NALgquPbn9xki7C7ALpmZmVq7dq2eeOIJv/YOHTpoxYoVZ32Nx+ORx+PxPU9PvzyrXT8e/ydlr14jSTKWJJnTX1unvjaSZXJbT+1jTuci63Tjb6k+oMHvqaW8m43v//Mey5KR5FWWcuTNsvRwmFThZLyk3875K70vR6/8Syp+NEybIt6QN/zUm+SES9mRRtlRp/7MiZSyI8OUHRknK/fzWHvlDd+rnHCjnIhTbeHZln7MlsK8p/fJ/aC5f8ryq06yTvXH6fZTu1m//SlLOmP7uZ1tuzlV6xk9lXvcwJ493WryEVitgP88+Sgnb0PeI1i/tV6ghHz9Bpjb7WctwQrcVlAuZ96/lIIv1JfWb39vgpGfb5vzyU8NZ76H3/5Gp74nC6Dv89ZREMfMz/vg6hLR9Hr9/rFJdpdx1XFtADxw4IBycnJUpkwZv/YyZcpo7969Z31NSkqKRo8efdlry/h+ixpuyrjs7xOc3H9xAxd8lDy9CDgq25L8TgW8EqN3Js+fAAAn+0/hzXaXcFVybQDMZeWZUjTGBLTlGjFihIYNG+Z7np6erqSkpAKvKf66Vvo2/Eu/0abc33Ct07+eG0uSZSl3gNAyuTtbvmnSvJ/it8/12xZLp0ctdLbXWLn/O73FkjcsWhGRRRQRX02VZs9SWHZWQP0mOkbHJvxLB62flZ15SCezjsl4MhWW4ZGV4Tn950mFn8xSeEamTHiYTFiYLK9XYdk5CsvMUVhmtkx4mLyR4cqJsJRpjLJl5DVGXuM9/aeRMV5JRub015YxkjGyjFfyGhn91iZzagTTMucKiecYJj2zybJ05hCgZbxnbM3zvVQAIdSSuXCWNcZ/atz4/u/CkfsiSrTOOFsk4LhBf1QHBPbTI2Nna/f9PZQ5Y5T50uTr16QLHdx3kAtXcWr0PXfv09/fp/9NsfJ1hPPXYHz/ghhfX+VnZPq8zlaUy84OufAsxtUjoUkLu0u4Krk2AJYsWVLh4eEBo3379+8PGBXMFR0drejo6MteW5cBz1329ygIPx09oqMLFgS0F76hmeq0bG5DRQAAID9cuwo4KipKTZo00aJFi/zaFy1apObNCS/5EZd8w1nbY5s0ucKVAACAi+HaEUBJGjZsmO699141bdpUycnJmjx5snbt2qUBAwbYXZojxN3Y0vd18d69JWOUsXmTit11p31FAQCAC3J1ALzrrrt08OBBjRkzRnv27FG9evU0b948VaxY0e7SHCGqQnlVev89eTMyFHf99XaXAwAA8snV1wEMFtcRAgDAefj57eJzAAEAANyKAAgAAOAyBEAAAACXIQACAAC4DAEQAADAZQiAAAAALkMABAAAcBkCIAAAgMsQAAEAAFyGAAgAAOAyBEAAAACXIQACAAC4DAEQAADAZSLsLsDJjDGSpPT0dJsrAQAA+ZX7czv357gbEQCDcPToUUlSUlKSzZUAAICLdfToUSUkJNhdhi0s4+b4GySv16tffvlFhQsXlmVZdpdjq/T0dCUlJWn37t0qUqSI3eWEJProwuij/KGfLow+yh+39pMxRkePHlViYqLCwtx5NhwjgEEICwtThQoV7C4jpBQpUsRV/4hcCvrowuij/KGfLow+yh839pNbR/5yuTP2AgAAuBgBEAAAwGUIgCgQ0dHRGjVqlKKjo+0uJWTRRxdGH+UP/XRh9FH+0E/uxSIQAAAAl2EEEAAAwGUIgAAAAC5DAAQAAHAZAiAAAIDLEAARtFdeeUWVK1dWTEyMmjRpouXLl9td0hWzbNkyde3aVYmJibIsS7Nnz/bbbozR008/rcTERMXGxqpNmzbavHmz3z4ej0eDBw9WyZIlFRcXp9/97nf66aefruCnuLxSUlJ03XXXqXDhwipdurR+//vf67vvvvPbh36SJk6cqAYNGvguyJucnKz58+f7ttNHgVJSUmRZloYOHeprc3s/Pf3007Isy+9RtmxZ33a39w9+QwBEUGbOnKmhQ4dq5MiRWrdunVq2bKlOnTpp165ddpd2RRw/flwNGzbUhAkTzrr9r3/9q/7xj39owoQJWr16tcqWLaubb77Zdx9pSRo6dKhmzZqlGTNm6Msvv9SxY8fUpUsX5eTkXKmPcVmlpqZq0KBBWrlypRYtWqTs7Gx16NBBx48f9+1DP0kVKlTQuHHjtGbNGq1Zs0Zt27ZVt27dfD+c6SN/q1ev1uTJk9WgQQO/dvpJqlu3rvbs2eN7bNy40beN/oGPAYJw/fXXmwEDBvi11apVyzzxxBM2VWQfSWbWrFm+516v15QtW9aMGzfO13by5EmTkJBgJk2aZIwx5vDhwyYyMtLMmDHDt8/PP/9swsLCzGeffXbFar+S9u/fbySZ1NRUYwz9dD7FihUzr732Gn2Ux9GjR0316tXNokWLTOvWrc1DDz1kjOF7yRhjRo0aZRo2bHjWbfQPzsQIIC5ZZmam1q5dqw4dOvi1d+jQQStWrLCpqtCRlpamvXv3+vVPdHS0Wrdu7euftWvXKisry2+fxMRE1atX76rtwyNHjkiSihcvLol+OpucnBzNmDFDx48fV3JyMn2Ux6BBg3Trrbeqffv2fu300ynbtm1TYmKiKleurLvvvls//vijJPoH/iLsLgDOdeDAAeXk5KhMmTJ+7WXKlNHevXttqip05PbB2fpn586dvn2ioqJUrFixgH2uxj40xmjYsGG68cYbVa9ePUn005k2btyo5ORknTx5UvHx8Zo1a5bq1Knj+8FLH0kzZszQt99+q9WrVwds43tJatasmd566y3VqFFD+/bt09ixY9W8eXNt3ryZ/oEfAiCCZlmW33NjTECbm11K/1ytffjggw9qw4YN+vLLLwO20U9SzZo1tX79eh0+fFgffvihevXqpdTUVN92t/fR7t279dBDD2nhwoWKiYk5535u7qdOnTr5vq5fv76Sk5NVtWpVvfnmm7rhhhskubt/8BumgHHJSpYsqfDw8IDfCvfv3x/wG6Yb5a68O1//lC1bVpmZmTp06NA597laDB48WHPmzNGSJUtUoUIFXzv99JuoqChVq1ZNTZs2VUpKiho2bKiXXnqJPjpt7dq12r9/v5o0aaKIiAhFREQoNTVV//znPxUREeH7nG7vpzPFxcWpfv362rZtG99H8EMAxCWLiopSkyZNtGjRIr/2RYsWqXnz5jZVFToqV66ssmXL+vVPZmamUlNTff3TpEkTRUZG+u2zZ88ebdq06arpQ2OMHnzwQX300Uf64osvVLlyZb/t9NO5GWPk8Xjoo9PatWunjRs3av369b5H06ZN1aNHD61fv15VqlShn/LweDzaunWrypUrx/cR/Nmx8gRXjxkzZpjIyEjz+uuvmy1btpihQ4eauLg4s2PHDrtLuyKOHj1q1q1bZ9atW2ckmX/84x9m3bp1ZufOncYYY8aNG2cSEhLMRx99ZDZu3Gi6d+9uypUrZ9LT033HGDBggKlQoYJZvHix+fbbb03btm1Nw4YNTXZ2tl0fq0ANHDjQJCQkmKVLl5o9e/b4HidOnPDtQz8ZM2LECLNs2TKTlpZmNmzYYP785z+bsLAws3DhQmMMfXQuZ64CNoZ+Gj58uFm6dKn58ccfzcqVK02XLl1M4cKFff8mu71/8BsCIIL2r3/9y1SsWNFERUWZa6+91nd5DzdYsmSJkRTw6NWrlzHm1GUXRo0aZcqWLWuio6NNq1atzMaNG/2OkZGRYR588EFTvHhxExsba7p06WJ27dplw6e5PM7WP5LM1KlTffvQT8b07dvX9/eoVKlSpl27dr7wZwx9dC55A6Db++muu+4y5cqVM5GRkSYxMdHcdtttZvPmzb7tbu8f/MYyxhh7xh4BAABgB84BBAAAcBkCIAAAgMsQAAEAAFyGAAgAAOAyBEAAAACXIQACAAC4DAEQAADAZQiAAJBHmzZtNHToUNve/+DBgypdurR27NhRoMfduHGjKlSooOPHjxfocQE4DwEQAEJMSkqKunbtqkqVKuVr/65du6p9+/Zn3fb111/Lsix9++23ql+/vq6//nq98MILBVgtACciAAJwpKysLLtLuCwyMjL0+uuv67777sv3a/r166cvvvhCO3fuDNj2xhtvqFGjRrr22mslSX369NHEiROVk5NTYDUDcB4CIICgGGP017/+VVWqVFFsbKwaNmyoDz74wLd96dKlsixLn3/+uZo2bapChQqpefPm+u677/yO88knn6hJkyaKiYlRlSpVNHr0aGVnZ/u2W5alSZMmqVu3boqLi9PYsWMlSWPHjlXp0qVVuHBh3XfffXriiSfUqFEjSdKyZcsUGRmpvXv3+r3X8OHD1apVq3x/xkOHDqlnz54qVqyYChUqpE6dOmnbtm2+7Tt37lTXrl1VrFgxxcXFqW7dupo3b57vtT169FCpUqUUGxur6tWra+rUqed8r/nz5ysiIkLJycl+7Vu2bFHnzp0VHx+vMmXK6N5779WBAwckSV26dFHp0qU1bdo0v9ecOHFCM2fOVL9+/XxtHTt21MGDB5Wamprvzw/g6kMABBCUv/zlL5o6daomTpyozZs36+GHH9Yf//jHgIAxcuRIPf/881qzZo0iIiLUt29f37YFCxboj3/8o4YMGaItW7bo1Vdf1bRp0/Tss8/6HWPUqFHq1q2bNm7cqL59++qdd97Rs88+q/Hjx2vt2rW65pprNHHiRN/+rVq1UpUqVfT222/72rKzs/Xvf/9bffr0yfdn7N27t9asWaM5c+bo66+/ljFGnTt39o1CDho0SB6PR8uWLdPGjRs1fvx4xcfHS5KefPJJbdmyRfPnz9fWrVs1ceJElSxZ8pzvtWzZMjVt2tSvbc+ePWrdurUaNWqkNWvW6LPPPtO+fft05513SpIiIiLUs2dPTZs2TWfe3v39999XZmamevTo4WuLiopSw4YNtXz58nx/fgBXIQMAl+jYsWMmJibGrFixwq+9X79+pnv37sYYY5YsWWIkmcWLF/u2z50710gyGRkZxhhjWrZsaZ577jm/Y7z99tumXLlyvueSzNChQ/32adasmRk0aJBfW4sWLUzDhg19z8ePH29q167tez579mwTHx9vjh07ds7P1bp1a/PQQw8ZY4z5/vvvjSTz1Vdf+bYfOHDAxMbGmvfee88YY0z9+vXN008/fdZjde3a1fTp0+ec75VXt27dTN++ff3annzySdOhQwe/tt27dxtJ5rvvvjPGGLN161YjyXzxxRe+fVq1auX773Cm//u//zO9e/fOd00Arj6MAAK4ZFu2bNHJkyd18803Kz4+3vd466239MMPP/jt26BBA9/X5cqVkyTt379fkrR27VqNGTPG7xj9+/fXnj17dOLECd/r8o6Mfffdd7r++uv92vI+7927t7Zv366VK1dKOnVO3J133qm4uDgtX77c7z3feeedgM+4detWRUREqFmzZr62EiVKqGbNmtq6daskaciQIRo7dqxatGihUaNGacOGDb59Bw4cqBkzZqhRo0Z67LHHtGLFivP2aUZGhmJiYvza1q5dqyVLlvjVWqtWLUny9XOtWrXUvHlzvfHGG7725cuX+4205oqNjfXrVwDuE2F3AQCcy+v1SpLmzp2r8uXL+22Ljo72ex4ZGen72rIsv9d7vV6NHj1at912W8B7nBmG4uLiArbnHiuXOWMKVJJKly6trl27aurUqapSpYrmzZunpUuXSjoVKNevX+/bt0yZMgHHz3u8M9tz3/u+++5Tx44dNXfuXC1cuFApKSl6/vnnNXjwYHXq1Ek7d+7U3LlztXjxYrVr106DBg3S3//+97Met2TJkjp06JBfm9frVdeuXTV+/PiA/XPDtHRqMciDDz6of/3rX5o6daoqVqyodu3aBbzmf//7n6pWrXrW9wfgDowAArhkderUUXR0tHbt2qVq1ar5PZKSkvJ9nGuvvVbfffddwDGqVaumsLBz/zNVs2ZNrVq1yq9tzZo1Afvdd999mjFjhl599VVVrVpVLVq0kHRqJOzM9ypcuPBZP2N2dra++eYbX9vBgwf1/fffq3bt2r62pKQkDRgwQB999JGGDx+uKVOm+LaVKlVKvXv31r///W+9+OKLmjx58jk/U+PGjbVly5aA/tm8ebMqVaoU0D9nhuI777xT4eHhevfdd/Xmm2+qT58+AQFZkjZt2qTGjRufswYAVz9GAAFcssKFC+uRRx7Rww8/LK/XqxtvvFHp6elasWKF4uPj1atXr3wd56mnnlKXLl2UlJSkO+64Q2FhYdqwYYM2btzoW+17NoMHD1b//v3VtGlTNW/eXDNnztSGDRtUpUoVv/06duyohIQEjR07VmPGjLmoz1i9enV169ZN/fv316uvvqrChQvriSeeUPny5dWtWzdJ0tChQ9WpUyfVqFFDhw4d0hdffOELh0899ZSaNGmiunXryuPx6NNPP/ULjnl17NhRI0aM0KFDh1SsWDFJpxaZTJkyRd27d9ejjz6qkiVLavv27ZoxY4amTJmi8PBwSVJ8fLzuuusu/fnPf9aRI0fUu3fvgOPv2LFDP//88zmvGwjAHRgBBBCUZ555Rk899ZRSUlJUu3ZtdezYUZ988okqV66c72N07NhRn376qRYtWqTrrrtON9xwg/7xj3+oYsWK531djx49NGLECD3yyCO69tprlZaWpt69ewecQxcWFqbevXsrJydHPXv2vOjPOHXqVDVp0kRdunRRcnKyjDGaN2+eb1o7JydHgwYNUu3atXXLLbeoZs2aeuWVVySdWnU7YsQINWjQQK1atVJ4eLhmzJhxzveqX7++mjZtqvfee8/XlpiYqK+++ko5OTnq2LGj6tWrp4ceekgJCQkBI6T9+vXToUOH1L59e11zzTUBx58+fbo6dOhwwb4FcHWzzLlOcAEAB7r55ptVtmxZv0u/SFL//v21b98+zZkzx6bK8m/evHl65JFHtGnTpvNOgV8sj8ej6tWra/r06b5pcADuxBQwAMc6ceKEJk2apI4dOyo8PFzTp0/X4sWLtWjRIt8+R44c0erVq/XOO+/o448/trHa/OvcubO2bdumn3/++aLOpbyQnTt3auTIkYQ/AIwAAnCujIwMde3aVd9++608Ho9q1qypv/zlL36ridu0aaNVq1bp/vvv5x64AHAaARAAAMBlWAQCAADgMgRAAAAAlyEAAgAAuAwBEAAAwGUIgAAAAC5DAAQAAHAZAiAAAIDLEAABAABchgAIAADgMv8Ps8+X7jXfPTUAAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pp = infoWidget.low_loss.get_drude()\n", - "pp.data_type = 'spectrum'\n", - "\n", - "pp.plot()\n", - "plt.plot(infoWidget.energy_scale, infoWidget.dataset)\n", - "plt.plot(infoWidget.energy_scale, infoWidget.datasets['resolution_function'])\n", - "plt.plot(infoWidget.energy_scale, infoWidget.dataset - pp - infoWidget.datasets['resolution_function'])\n" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20 4 1\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d8b429aca41e4e2ca9dfde89bc98b11b", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+x0lEQVR4nO3deZhcdZ3v8c+ptfdKb+kl3VkhhKwsYQkiIEskFxHG0YuO10FnxhkdYODGuaPojKAz3jDjXK86CON2ufp4NTqPgLiwBIGgYpwkJGQjC1k7vaTTnXRXr1XVVef+UXWqu7ORpLvqnDrn/XqeetJdXZ3+Fqep+uS3fH+GaZqmAAAA4Bk+uwsAAABAfhEAAQAAPIYACAAA4DEEQAAAAI8hAAIAAHgMARAAAMBjCIAAAAAeQwAEAADwGAIgAACAxxAAAQAAPIYACAAA4DEEQAAAAI8hAAIAAHgMARAAAMBjCIAAAAAeQwAEAADwGAIgAACAxxAAAQAAPIYACAAA4DEEQAAAAI8hAAIAAHgMARAAAMBjCIAAAAAeQwAEAADwGAIgAACAxxAAAQAAPIYACAAA4DEEQAAAAI8hAAIAAHgMARAAAMBjCIAAAAAeQwAEAADwGAIgAACAxxAAAQAAPIYACAAA4DEEQAAAAI8hAAIAAHgMARAAAMBjCIAAAAAeQwAEAADwGAIgAACAxxAAAQAAPIYACAAA4DEEQAAAAI8hAAIAAHgMARAAAMBjCIAAAAAeQwAEAADwGAIgAACAxxAAAQAAPIYACAAA4DEEQAAAAI8hAAIAAHgMARAAAMBjCIAAAAAeQwAEAADwmIDdBRSyVCqltrY2lZeXyzAMu8sBAABnwTRN9fX1qbGxUT6fN8fCCIAT0NbWpubmZrvLAAAA56GlpUVNTU12l2ELAuAElJeXS0r/AlVUVNhcDQAAOBvRaFTNzc3Z93EvIgBOgDXtW1FRQQAEAKDAeHn5ljcnvgEAADyMAAgAAOAxBEAAAACPIQACAAB4DAEQAADAYwiAAAAAHkMABAAA8BgCIAAAgMcQAAEAADzGswHw4YcflmEY42719fV2lwUAAJBznj4KbsGCBXrxxRezn/v9fhurAQAAyA9PB8BAIMCoHwAA8BzPTgFL0p49e9TY2KhZs2bpgx/8oPbt23fGx8diMUWj0XE3AO709KZWPb2p1e4yACAnPBsAr7rqKn3/+9/X888/r29/+9vq6OjQNddco+7u7tN+z6pVqxSJRLK35ubmPFYMIF+O9sX033+yWSt/slk9g3G7ywGASWeYpmnaXYQTDAwMaM6cOfq7v/s7rVy58pSPicViisVi2c+j0aiam5vV29urioqKfJUKIMde3HFEf/H9DZKkn37yGl0+o9LmigBMpmg0qkgk4un3b0+vARyrtLRUixYt0p49e077mHA4rHA4nMeqANjhjcM92Y/3He0nAAJwHc9OAZ8oFovpzTffVENDg92lALDZ5pae7Mf7ugbsKwQAcsSzAfBv//ZvtXbtWu3fv19/+MMf9P73v1/RaFR333233aUBsJFpmnpjbAA82m9fMQCQI56dAj58+LA+9KEPqaurS7W1tbr66qu1bt06zZgxw+7SANjoQPegosMj2c/3HWUEEID7eDYArl692u4SADiQNfpXX1GkjuiwDnQPaCSZUsDv2QkTAC7EKxoAjGGt/7t1Yb3CAZ8SSVOHjw/ZWxQATDICIACMYe0AvnT6FM2qKZUk7etiHSAAdyEAAkBGfCSl7W3pE36WNE3R7NpMAGQdIACXIQACQMbOjqjiIylFioOaUV2i2TVlkqS9BEAALkMABIAMawPIkuYpMgxjzAggU8AA3IUACAAZm1t6JUmXNEUkSbNr0yOANIMG4DYEQADIsDaALGmeIknZEcCjfTH1DSdsqgoAJh8BEAAkRYcT2puZ6rUCYEVRULXl6fO/2QgCwE0IgAAgadvhXpmm1FRZrJqycPb+2bSCAeBCBEAAkLT5hOlfS3YdICOAAFyEAAgAGt0BfEnTlHH3z6EXIAAXIgACgEaPgDt5BDAdAPfSCgaAixAAAXheR++wjkRj8hnSwmkV475mNYPe3zWgVMq0ozwAmHQEQACeZ43+za0rV0koMO5rTZXFCvoNxUZSau0ZsqE6AJh8BEAAnmf1/7vkhOlfSQr4fZpRbe0EZh0gAHcgAALwvDdOs/7Pkm0FwzpAAC5BAATgaamUqS2H00fALTlhB7CFVjAA3IYACMDT9nX1qz82ouKgX3Pryk75GGsnMM2gAbgFARCAp21uSY/+LZoWUcB/6pdEegECcBsCIABPG13/FzntY6xWMO29wxqMj+SjLADIKQIgAE974zRHwI1VWRpSVWlIEqOAANyBAAjAs4YTSb3ZHpV0+g0gluxOYFrBAHABAiAAz9rRHlUiaaq6NKSmyuIzPja7EYRWMABcgAAIwLPG9v8zDOOMj6UVDAA3IQAC8KxsAHyb6V9p7BQwI4AACh8BEIBnvWE1gD7DDmDL2BFA0zRzWhcA5BoBEIAn9QzGtT+zoeNsRgCnV5XI7zM0GE+qIzqc4+oAILcIgAA8yTr+bUZ1iSozLV7OJBTwaXpViSTWAQIofARAAJ5krf+75Az9/06UXQfITmAABY4ACMCTsg2gz2L612K1gtnLCCCAAkcABOA5pmlmzwA+0wkgJ8puBKEZNIACRwAE4DmtPUPq6o8p4DO0oLHirL+PKWAAbkEABOA5b2RG/+Y1lKso6D/r77NGAFt7hjScSOakNgDIBwIgAM85n/V/klRTFlJ5UUCmKR3oZhoYQOEiAALwnM1jjoA7F4ZhaA5HwgFwAQIgAE8ZSaa0NdMD8FxawFisncCsAwRQyAiAADzlraP9GkokVRryZ0fzzgUjgADcgAAIwFOsBtCLmiLy+4xz/n5rJ/BeWsEAKGAEQACeYvX/u6S58ry+P9sLsLNfpmlOWl0AkE8EQACeMnoEXOS8vn9GdYkMQ+qLjehof2wSKwOA/CEAAvCMoXhSu470STr3HcCWoqBfTZXFklgHCKBwEQABeMa2tl4lU6amlodVX1F03n/P7Bo2ggAobARAAJ7xxpj+f4Zx7htALLSCAVDoCIAAPGNzdv3flAn9PdmNIOwEBlCgCIAAPON8j4A70ZwaRgABFDYCIABP6O6PqeXYkKR0D8CJsEYAW44PKT6SmnBtAJBvBEAAnrAlc/zb7NpSRYqDE/q76irCKg35lUyZOnSMaWAAhYcACMATsuv/Jjj9K0mGYWhWZiPIXnYCAyhABEAAnmCt/7tk+pRJ+fs4ExhAISMAAvCEba1RSdKiaRNb/2cZ7QXIRhAAhYcACMD1hhNJdWWObZtZXTopf2e2FyCtYAAUIAIgANfr6B2WJBUFfZpSMrENIJbZ2TWAjAACKDwEQACu19aTbv/SOKV4QieAjDUr0wuwZzChYwPxSfk7ASBfCIAAXK8tMwLYGCmetL+zJBRQYyR9njDrAAEUGgIgANdrz4wANmQC22SZzU5gAAWKAAjA9dp6R6eAJ1N2HWAXI4AACgsBMGPVqlUyDEMPPPCA3aUAmGRtPZkp4CmTPAKYPROYEUAAhYUAKGn9+vX61re+pcWLF9tdCoAcaO+1poAnewSQXoAACpPnA2B/f78+/OEP69vf/rYqKyvtLgdADoyOAOZmCvjQsUGNJFOT+ncDQC55PgDec889uu2223TzzTfbXQqAHIgOJ9QfG5E0+VPAjZFiFQV9SiRNtRwfmtS/GwByKWB3AXZavXq1Xn/9da1fv/6sHh+LxRSLxbKfR6PRXJUGYJK0Z0b/IsVBlYQm9yXP5zM0s7pUOzv6tO9of7Y3IAA4nWdHAFtaWnT//ffrBz/4gYqKzm5UYNWqVYpEItlbc3NzjqsEMFFjm0DnwhxawQAoQJ4NgBs3blRnZ6cuv/xyBQIBBQIBrV27Vl//+tcVCASUTCZP+p4HH3xQvb292VtLS4sNlQM4F9kWMJPcA9AyJ3smMBtBABQOz04B33TTTdq6deu4+z72sY9p3rx5+vSnPy2/33/S94TDYYXD4XyVCGASWFPADZO8/s9i7QTeywgggALi2QBYXl6uhQsXjruvtLRU1dXVJ90PoHDlegrY2glMKxgAhcSzU8AAvGF0Cjg3AdDa+NHVH1fvUCInPwMAJptnRwBP5ZVXXrG7BACTrL03MwWcozWA5UVBTS0Pq7Mvpn1H+3XpdPqJAnA+RgABuFYqZWbXAOZqClgaOw3MOkAAhYEACMC1ugfiiidTMgypPkcjgNKYI+HYCQygQBAAAbiWdQZwbVlYQX/uXu5m1zACCKCwEAABuFauzgA+Ec2gARQaAiAA1xptAZO76V9JmpkZATx4bECmaeb0ZwHAZCAAAnAtawq4IUctYCzWDuPhRErHB2kFA8D5CIAAXKutNz9TwEVBv2rL06cEtR4fyunPAoDJQAAE4FrZKeAc7gC2TMuEzNaewZz/LACYKAIgANcaPQc4tyOA0mgAPMwIIIACQAAE4EqJZEqdfdYUcB5GACvTAdDaeQwATkYABOBKR6LDSplS0G+opjSc85/HFDCAQkIABOBK1hnA9ZEi+XxGzn/eaABkChiA8xEAAbiStQEk1y1gLNZOY3YBAygEBEAArmStxZuWhw0g0ugawOODCQ3GR/LyMwHgfBEAAbjSaBPo3G8AkaRIcVDl4YCk0dFHAHAqAiAAV2rLYwsYizUKSCsYAE5HAATgStYo3LQ8tICxNLIRBECBIAACcKV8nQM8lrXekClgAE5HAATgOkPxpI4PJiRJjfkMgJXsBAZQGAiAAFynLTP6Vxryq6I4kLefSy9AAIWCAAjAdcaeAWwYuW8CbaEXIIBCQQAE4DpteW4BY2nKTAF3RIc1kkzl9WcDwLkgAAJwndEdwPlb/ydJtWVhhfw+pcx0CAQApyIAAnCd7BRwHjeASJLPZ6gh03aGaWAATkYABOA62SngPPYAtFi7jtkIAsDJCIAAXKe9N7/nAI9ltYKhFyAAJyMAAnAV0zSz4Svfm0AkWsEAKAwEQACuEh0a0WA8KSn/awAlzgMGUBgIgABcxVr/V1UaUnHIn/efzwgggEJAAATgKnZO/0rjzwM2TdOWGgDg7RAAAbhKW689LWAs1s7j4URKxwbittQAAG+HAAjAVdqzTaDtGQEMB/yaWh6WxDQwAOciAAJwlewUsA0tYCycCQzA6QiAAFxldArYnhFAaXQnMCOAAJyKAAjAVdp77TkHeKwmdgIDcDgCIADXSKVMdVgjgDYGwOwIIFPAAByKAAjANbr6Y0okTfkMqS6zEcMOnAcMwOkIgABcw1r/V1dRpIDfvpc3zgMG4HQEQACuYXcTaIsVAI8PJjQYH7G1FgA4FQIgANdwQgsYSaooCqq8KCCJdYAAnIkACMA12jNTwHbuALZYNRxmGhiAAxEAAbiGU6aApfFnAgOA0xAAAbiG3ecAj0UrGABORgAE4Bqj5wA7IADSDBqAgxEAAbhCfCSlo/0xSVLDFPungDkPGICTEQABuMKR6LBMUwoFfKouDdldDr0AATgaARCAK4zdAGIYhs3VjJ4H3BEdViKZsrkaABiPAAjAFawWMI0O2AAiSTVlYYX8PqVMZc8nBgCnIAACcIXWbBNo+9f/SZLPZ2RrYRoYgNMQAAG4QntvOmQ5ZQRQYicwAOciAAJwhfaezBSwA1rAWKaxExiAQxEAAbiC06aApTHNoBkBBOAwBEAAruC0TSDSmF6ABEAADkMABFDwBmIj6h1KSJIaHTQC2EQABOBQBEAABc/aAFIeDqi8KGhzNaPGNoM2TdPmagBgFAEQQMFry2wAcdL6P0mqjxTJMKThRErdA3G7ywGALAIggIKXbQHjoB3AkhQO+FVbFpZEL0AAzuLZAPj4449r8eLFqqioUEVFhZYtW6Znn33W7rIAnIdWawTQQRtALNmdwLSCAeAgng2ATU1NeuSRR7RhwwZt2LBBN954o+644w5t377d7tIAnKP2HqsJtLOmgCWaQQNwpoDdBdjl9ttvH/f5l770JT3++ONat26dFixYYFNVAM5HtgWMw6aApdERwMOMAAJwEM8GwLGSyaT+4z/+QwMDA1q2bNlpHxeLxRSLxbKfR6PRfJQH4G20ObAJtMUaAWQNIAAn8ewUsCRt3bpVZWVlCofD+sQnPqGnnnpK8+fPP+3jV61apUgkkr01NzfnsVoAp2KaptoceA6whSlgAE7k6QB40UUXafPmzVq3bp0++clP6u6779aOHTtO+/gHH3xQvb292VtLS0seqwVwKj2DCQ0nUpLSbVechuPgADiRp6eAQ6GQLrjgAknS0qVLtX79en3ta1/TN7/5zVM+PhwOKxwO57NEAG/DClY1ZSEVBf02V3MyawSwZzChgdiISsOeftkF4BCeHgE8kWma49b4AXA+awOIE1vASFJ5UVDlRenQxzpAAE7h2X+Kfvazn9WKFSvU3Nysvr4+rV69Wq+88oqee+45u0sDcA5Gm0A7b/rXMm1KsXZ29Olwz5AurCu3uxwA8G4APHLkiD7ykY+ovb1dkUhEixcv1nPPPadbbrnF7tIAnIM2BzeBtjRVpgMgzaABOIVnA+B3v/tdu0sAMAmsaVWnjwBKbAQB4BysAQRQ0Jx6DvBYjfQCBOAwBEAABa0QpoA5DxiA0xAAARSsZMpUR9Q6Bo4pYAA4WwRAAAXraF9MyZQpv8/Q1HIHB8DMCOCR6LASyZTN1QAAARBAAbOOgKuvKJLfZ9hczenVlIYV8vuUMqWOTN9CALATARBAwbI2VTQ48Ai4sXw+IztFzTQwACcgAAIoWO091vo/524AsbARBICTEAABFCxrCrjBwRtALGwEAeAkBEAABSvbBNrBLWAs9AIE4CQEQAAFq723gKaAGQEE4CAEQAAFa7QJdAFMAbMGEICDEAABFKTYSFJd/TFJhTEC2DSlRFJ6BNA0TZurAeB1BEAABcnqp1cU9KmyJGhzNW+vPlIkw5BiIyl1D8TtLgeAxxEAARQka/q3MVIsw3BuE2hLKODT1PKwJKaBAdiPAAigIGWbQBdACxgLG0EAOAUBEEBBard6ABZACxjLtMrMOkBGAAHYjAAIoCC1FVALGAvHwQFwCgIggII02gS6cKaAm5gCBuAQBEAABelg96AkqbmqxOZKzh69AAE4BQEQQMEZTiR1oHtAkjS3rtzmas7etDG9AAHATgRAAAXnrc5+maZUVRpSTVnI7nLOmrUGsHcoof7YiM3VAPAyAiCAgrOzo0+SNLeurCB6AFrKi4KqKApIGl3DCAB2IAACKDi7j6QD4EUFNP1roRUMACcgAAIoOLsyI4AX1VfYXMm5s5pBH2YEEICNCIAACk52BLC+zOZKzt20zDpApoAB2IkACKCg9A4l1J5pAn1hQU4B0woGgP0IgAAKyp7M6F9jpEgVRUGbqzl3tIIB4AQEQAAFZVcmAM6tL7zRP2l0BJApYAB2IgACKCi7Owp3B7A02gvwSHRYiWTK5moAeBUBEEBByY4AFmgArCkNKxTwKWVKHZm1jACQbwRAAAXDNM0xLWAKMwD6fMZoKxg2ggCwCQEQQME42h/T8cGEfIZ0wdTCawFjsQIg6wAB2IUACKBg7O7olyTNrC5VUdBvczXnz1oHyE5gAHYhAAIoGIW+/s+SbQXDFDAAmxAAARQMawdwobaAsVitYA73DNpcCQCvIgACKBjWCGChtoCxzKoplSTtPtJvcyUAvIoACKAgpFJm9hSQQjwDeKyLG8rlM6SjfTF1RmkFAyD/CIAACkJrz5AG4kmF/D7NqC61u5wJKQkFNLs2HWK3t0VtrgaAFxEAARQEq//f7NpSBf2F/9K1sLFCkrS9rdfmSgB4UeG/igLwhOz6vwLfAGJZ0BiRJG1rZQQQQP4RAAEUhN1uC4DTMiOA7YwAAsg/AiCAgpA9Aq7AdwBbFjSkRwBbjg2pdzBhczUAvIYACMDxEsmU9h0dkFT4TaAtkZKgmqvS/QAZBQSQbwRAAI53sHtA8WRKpSF/9hxdN7BGAbezDhBAnhEAATjerswZwBfWlcvnM2yuZvIsYCcwAJsQAAE4nltOADnRwmmZEUB6AQLIMwIgAMfb1ZEOSIV+BvCJrBHAvUf7NRRP2lwNAC8hAAJwPOvMXLeNAE6tKFJteVgpU3qzg1FAAPlDAATgaMOJpA50Z3YAF/gZwKeSXQfYyjpAAPlDAATgaG919ss0parSkGrLwnaXM+kWNrIOEED+EQABOJrVAHpuXZkMwz07gC3WCOA2dgIDyCMCIABH2+3SHcAW60zg3R39SiRTNlcDwCsIgAAczWoB47YdwJbmqmKVFwUUT6a0J7PZBQByjQAIwNF2u+wM4BMZhsE0MIC8IwACcKzeoYTaeoclpU8BcStrI8gONoIAyBMCIADH2pOZ/m2IFClSHLS5mtxZMC0zAkgrGAB54tkAuGrVKl1xxRUqLy/X1KlTdeedd2rXrl12lwVgjOz6PxeP/kljRgDbo0qlTJurAeAFng2Aa9eu1T333KN169ZpzZo1GhkZ0fLlyzUwMGB3aQAyrPV/81y6AcQyu7ZMRUGfBuNJ7e/mNQhA7gXsLsAuzz333LjPn3jiCU2dOlUbN27UddddZ1NVAMbyygig32doXn2FNrf0aHtbVHNq3XfiCQBn8ewI4Il6e9Nrb6qqqk77mFgspmg0Ou4GIDdM08w2gb7I5SOAkrQwsw5wOzuBAeQBAVDpN5qVK1fq2muv1cKFC0/7uFWrVikSiWRvzc3NeawS8Jau/riODyZkGNIFU90/ImY1hN7eyj8sAeQeAVDSvffeqy1btuhHP/rRGR/34IMPqre3N3traWnJU4WA91gngMysLlVR0G9zNbk3eiZwr0yTjSAAcsuzawAt9913n5555hm9+uqrampqOuNjw+GwwmH3HUYPONHOMWcAe8Hc+jIFfIaOD6Z7H06bUmx3SQBczLMjgKZp6t5779WTTz6pl156SbNmzbK7JABjuP0EkBOFA/5ss+vt9AMEkGOeDYD33HOPfvCDH+iHP/yhysvL1dHRoY6ODg0NDdldGgC5/wzgUxk9Eo51gAByy7MB8PHHH1dvb69uuOEGNTQ0ZG8//vGP7S4N8LxUysyeAuKVEUBpNADuYCcwgBzz7BpAFlkDztXaM6SBeFIhv08za0rtLidvFk6zNoIwAgggtzw7AgjAuawdwLNrSxX0e+dl6uKGChmG1N47rO7+mN3lAHAx77yyAigY1vo/LzSAHqssHNCs6vSIJ6OAAHKJAAjAcXZ3eOMIuFOZn90IwjpAALlDAATgODs91gJmLNYBAsgHAiAAR0kkU9p3dECS96aApdGdwPQCBJBLBEAAjnKwe0DxZEolIb8nT8OwzgQ+0D2ovuGEzdUAcCsCIABH2dXRL0m6sK5cPp9hczX5V1UaUmOkSJL0ZnufzdUAcCsCIABHsXYAz/Pg+j/L/Mwo4DamgQHkCAEQgKNkdwB7cP2fZeG0zDpANoIAyBECIABH2e3BI+BOZK0D3E4rGAA5QgAE4BjDiaQOdKd3AM+tL7O5GvtYI4B7Ovs1nEjaXA0ANyIAAnCMtzr7lTKlypKgasvCdpdjm/qKIlWVhpRMmdrVwUYQAJOPAAjAMXaNOQHEMLy3A9hiGMZoP0DWAQLIAQIgAMfY7dEzgE+FdYAAcokACMAxrBYwXjwD+EQLsmcCMwIIYPIRAAE4htUChhHA0TOBd7ZHNZJM2VwNALchAAJwhOhwQm29w5IYAZSkGVUlKgsHFBtJaW/mbGQAmCwEQACOsCcz/dsQKVKkOGhzNfbz+QzNb7A2grAOEMDkIgACcATrDGBG/0bNt9YBtrIOEMDkIgACcISdHemQw/q/UaOtYBgBBDC5CIAAHOG3e7okSUuapthbiINYG0F2tEWVSpk2VwPATQiAAGy392i/9nUNKOg3dN3cGrvLcYwLppYpFPCpLzailuODdpcDwEUIgABst2bHEUnS1bOrVV7EBhBL0O/TvMyUOCeCAJhMBEAAtnsxEwCXz6+zuRLnyTaEbmUdIIDJQwAEYKuu/pg2HjouSbrpYgLgiUaPhGMEEMDkIQACsNVLOztlmtLCaRVqnFJsdzmOM3YnsGmyEQTA5CAAArCVtf7vlovrba7EmebVV8hnSF39cXX2xewuB4BLEAAB2GYontRv9hyVJN08f6rN1ThTccivC6aWSaIfIIDJQwAEYJvfvdWl4URK06YUZ489w8msdYCcCAJgshAAAdjGmv69+eKpMgzD5mqca1GmIfRre7tsrgSAWxAAAdgilTL1652Z9X/zWf93Jrdk2uP8Yf8xdUaHba4GgBsQAAHYYlNLj7r64yoPB3TlrCq7y3G05qoSXTZ9ikxT+uXWdrvLAeACBEAAtnjxzfTo3w3zpioU4KXo7bx3SaMk6Zk32myuBIAb8KoLwBbZ9i+c/nFW/sviBvkMadOhHrUc41xgABNDAASQd/u7BvRWZ78CPkPXz621u5yCMLW8SFfPrpYk/XwLo4AAJoYACCDvrLN/r55drUhx0OZqCoc1DfzzN1gHCGBiCIAA8m5s+xecvVsX1ivgM/Rme1RvdfbZXQ6AAkYABJBXxwbi2nDwmCTpZtb/nZMpJSFdl5kyf4ZRQAATQAAEkFcv7exUypQubqhQU2WJ3eUUHGsa+BdvtMk0TZurAVCoCIAA8upFdv9OyM3z6xQO+LSva0Db2zgaDsD5IQACyJvhRFKv7jkqSVpOADwvZeGAbr44/d/u5/QEBHCeCIAA8ub3e7s1GE+qIVKkBY0VdpdTsG5f0iBJ+sWWdqVSTAMDOHcEQAB580J292+dDMOwuZrCdcNFU1UWDqi1Z0ivHzpudzkAChABEEBepFKmfp05/o3dvxNTFPRr+QKmgQGcPwIggLzY0tqrzr6YysIBXT27yu5yCt7tmd3Av9zarpFkyuZqABQaAiCAvFizo0OSdP3cWoUDfpurKXzXXlCjypKguvrjWrfvmN3lACgwBEAAefHijk5JtH+ZLEG/TysWpTeDMA0M4FwRAAHk3KHuQe060ie/z9ANF9XaXY5r3L44PQ387LZ2xUaSNlcDoJAQAAHk3JrM5o8rZ1ZpSknI5mrc48pZVaqrCCs6PKLf7O6yuxwABYQACCDnrPV/TP9OLr/P0G2L0qOAzzANDOAcEAAB5FTPYFzrD6R71REAJ997L0kHwDU7jmgwPmJzNQAKBQEQQE69vKtTyZSpefXlaq4qsbsc11nSFFFzVbGGEkm9tLPT7nIAFAgCIICcsnb/WufXYnIZhpHdDPLMZqaBAZwdAiCAnImNJPXKLtq/5Jo1DfzKrqOKDidsrgZAISAAAsiZ3+/t1kA8qanlYS2aFrG7HNe6qK5cF04tUzyZ0vPbOuwuB0ABIAACyJkXx5z96/MZNlfjXoZh6L2Zo+F+vqXd5moAFAJPB8BXX31Vt99+uxobG2UYhp5++mm7SwJcwzRNTv/Io/dkAuDv3upSd3/M5moAOJ2nA+DAwICWLFmiRx991O5SANfZ1hpVR3RYJSG/ls2utrsc15tVU6pF0yJKpkz9imlgAG8jYHcBdlqxYoVWrFhhdxmAK/309cOSpOsurFVR0G9zNd7w3iWN2traq5+/0aaPXD3D7nIAOJinRwAB5EbLsUH98A+HJEn/jSCSN7ctbpAkrT9wTO29QzZXA8DJCIDnIBaLKRqNjrsBONn/XrNb8WRK115Qo2svrLG7HM9onFKsK2dWyTSlX7IZBMAZEADPwapVqxSJRLK35uZmu0sCHOfN9qie2twqSfr0rfNsrsZ7bl+SHgXkbGAAZ0IAPAcPPvigent7s7eWlha7SwIc51+f3yXTTE9HLmqi91++rVjUIL/P0JbDvTrQNWB3OQAcigB4DsLhsCoqKsbdAIxaf+CYfr2zU36foU/dMtfucjyppiysa+akd13/8D8P2VwNAKfydADs7+/X5s2btXnzZknS/v37tXnzZh06xIsmcK5M09Qjz+6UJN11RbNm15bZXJF3fewdMyVJT/xuv/Ye7be3GACO5OkAuGHDBl166aW69NJLJUkrV67UpZdeqs9//vM2VwYUnhff7NTGg8dVFPTp/psutLscT7txXp1unDdViaSph5/ZLtM07S4JgMN4ug/gDTfcwAsjMAmSKVNffj49+vdn75iluooimyvC598zX7/d06Xf7OnS89s7dOvCBrtLAuAgnh4BBDA5nnz9sHYf6VekOKi/un6O3eVA0syaUv3V9bMlSf/4izc1FE/aXBEAJyEAApiQ4URSX31xjyTpr2+Yo0hx0OaKYPnrGy7QtCnFau0Z0mOvvGV3OQAchAAIYEJ+sO6gWnuG1BAp0t3XzLS7HIxRHPLrH95zsSTpm2v30RYGQBYBEMB5iw4n9I2X0yNLD9x8IWf+OtC7F9TrnRfWKJ5M6Yu/2GF3OQAcggAI4Lx9+9V9Oj6Y0JzaUv3xZU12l4NTMAxDD793gYJ+Qy/t7NSLO47YXRIAByAAAjgvnX3D+s5v9kuS/se75yng5+XEqebUlunPr01vCPnCL7ZrOMGGEMDreMUGcF7+7ddvaSiR1CXNU/TuBXV2l4O3cd+NF6i+okgtx4b0zbX77C4HgM0IgADO2cHuAf0oc8zYp2+dJ8MwbK4Ib6c0HNDnbktvCHnslbfUcmzQ5ooA2IkACOCc/a8XdmskZer6ubValjl3Fs73nsUNWja7WrGRlP6RDSGApxEAAZyTba29euaNNknS3916kc3V4FwYhqEv3LFAAZ+hF3Yc0Su7Ou0uCYBNCIAAzsm/PL9LknTHJY1a0BixuRqcq7l15fpopl/jw89sV2yEDSGAFxEAAZy11/Z26dXdRxXwGfrULYz+Far7b75QteVhHegezO7kBuAtBEAAZ8U0Tf3zc+nRvz+5arqmV5fYXBHOV3lRUJ/9L/MkSY++9JZae4ZsrghAvhEAAZyVH6w7qDdaelQS8uu+Gy+0uxxM0J2XTNMVMys1lEjqS79kQwjgNQRAAG/r128e0UPPbJck3X9TevoQhc0wDH3hvQvlM6Rfbe3Qb/d02V0SgDwiAAI4ozdaenTvDzcpZUr/dWmT/vK62XaXhEkyv7FCH7l6hiTpoWe2KT6SsrkiAPlCAARwWoe6B/Xn31uvoURS182t1Zf+aBFNn11m5fKLVF0a0t6jA/rMT7colTLtLglAHhAAAZzS8YG4Pvp//1Nd/XHNb6jQYx++TEHO+3WdSHFQ//zHi+X3GXpyU6s++9RWQiDgAbyaAzjJcCKpj39/g/YdHdC0KcV64mNXqCwcsLss5MjN8+v01bsukc+QVq9v0cM/3y7TJAQCbkYABDBOKmXqUz95QxsOHld5UUBPfOwK1VUU2V0Wcuz2JY368vuXyDCk7//+oL70yzcJgYCLEQABjPM/f/Wmfrm1XUG/oW99ZKnm1pXbXRLy5I8vb9L//KNFkqTv/Ha//vWFXYRAwKUIgACynvjdfn3nt+mTIf71A0u0bE61zRUh3z505XR98Y4FkqRvvLxX//bSWzZXBCAXCIAAJEnPbevQF3+Rbgj8d7depDsumWZzRbDLny6bqb+/7WJJ0lfW7Na/r91rc0UAJhsBEIA2Hjyu+1dvkmlK/+3q6frk9XPsLgk2+4t3ztb/eHf6vOdHnt2p//NbzgwG3IQACHjc/q4B/cX31is2ktJN86bq4dsX0OsPkqR73nWB/uam9LF/X/zFDv1g3UGbKwIwWQiAgId198f00Sf+U8cHE1rSFNG//cmlCtDrD2P895sv1F9dnz795e+f3qafrG+xuSIAk4FXesCjjg/E9eff26CD3YNqrirWd+6+QiUhev1hPMMw9Jlb5+lj75gpSfr0k1v09KZWe4sCMGG82gMe9Id93bp/9WZ1RIc1pSSo//uxK1VbHra7LDiUYRj6/HvmKz6S0v/7wyGt/MlmBf0+3ba4we7SAJwnAiDgIcmUqUdfektf+/VupUxpdm2pvvEnl2lObZndpcHhDMPQP96xUPGRlP5j42H9zepN2tUR1b03XqhQgMkkoNAQAAGP6Ogd1v2rN+kP+49Jkt5/eZO+8N4FKuWIN5wln8/QI3+8WIYh/WTDYX39pbf0wo4j+tcPLNHCaRG7ywNwDgyTNu/nLRqNKhKJqLe3VxUVFXaXA5zWSzuP6FM/eUPHBxMqDfn1T3+0UH90aZPdZaGA/WJLmz7/s+06NhBXwGfonnddoHvedQGjgSgIvH8TACeEXyA4XXwkpX9+bqe+m+nhtnBahf7tQ5dpVk2pzZXBDbr6Y/qHp7fp2W0dkqSLGyr0vz6wRPMbeT2Es/H+TQCcEH6B4GQHugZ03482aWtrryTpY++Yqc+smKdwwG9zZXAT0zT18y3teuhn23R8MKGAz9B9N16ov37XHAVpKQSH4v2bADgh/ALBqX62uVWfe2qb+mMjmlIS1Jffv0S3zK+zuyy42NG+mP7+6a16fvsRSdKCxgr96weW6OIGXhvhPLx/EwAnhF8gOM1gfEQPP7NdP9lwWJJ05cwqfe1Dl6ghUmxzZfAC0zT1zBtteuiZ7eoZTCjoN/Q3N16oT9zAaCCchfdvAuCE8AsEp0imTP1iS5v+95rdOtA9KMOQ/ubGC3XfjRdwsgfyrrNvWJ97apvW7EiPBi6clh4NnFfP6yScgfdvAuCE8AsEuyVTpn7+Rpu+/tIe7Ts6IEmqqwjrq3ddqmVzqm2uDl5mmqae3tyqh5/Zod6hhAxDevf8ev3l9bN12fRKu8uDx/H+TQCcEH6BYJdTBb8pJUF9/J2z9afLZqi8KGhzhUBaZ3RYn//Zdj23vSN739IZlfrL62br5ovr5PMZNlYHr+L9mwA4IfwCId9Gkin9fEub/u3Xb2lf1/jgd/c1M1VGU2c41O4jffr2q/v09OZWJZLpt53ZNaX6i3fO1vsum6aiILvTkT+8fxMAJ4RfIOQLwQ9ucSQ6rCd+d0D/7w8H1Tc8IkmqKQvpT5fN1EeunqHK0pDNFcILeP8mAE4Iv0DINYIf3Ko/NqLV/3lI/+e3+9XWOyxJKg769V+XNunPr52t6dUlNlcIN+P9mwA4IfwCIVfebI/qZ5vb9Mzm1uybY2VJUB+/brb+dBnBD+6RSKb0q63t+ubafdrRHpUk+QzpxnlTtWJhg26+uE6REta0YnLx/k0AnBB+gTCZDh8f1DNvtOlnm9q060hf9n6CH7zANE29trdb33x1n17dfTR7f8BnaNmcaq1Y2KBb5teptjxsY5VwC96/CYATwi8QJur4QFy/3Nqun21u1foDx7P3h/w+vWtere68ZJreNW8qC+ThKXuO9OkXW9r13LaOcf8Y8hnS0plVWrGwXu9eUK/GKTQ4x/nh/ZsAOCH8AuF8DMWTWvPmEf1sU6vW7j6qkVT6f0HDkK6eVa07L23UrQsbFClm2gvYd7Rfz23v0HPbOrTlcO+4ry1pnqJbF9RrxcJ6zawptalCFCLevwmAE8IvEM6GaZra1zWg197q0u/e6tare45qMJ7Mfn1BY4XuvGSa3rOkgSPbgDNo7RnSc9s69Py2Dq0/eExj371mVpdo6cwqXTmzSktnVmpWTakMgx6DODXevwmAE8IvEE6nvXdIv3urW6/t7dJrb3WrIzo87uvNVcW685JpuuOSRl0wtdymKoHC1dk3rBe2H9Hz2zv02t5uJVPj38pqykJaOqNKV8yq0hUzKzW/oYJjEZHF+zcBcEL4BYLl+EBcv9/Xrd+91aXf7+3OtmyxhPw+XT6jUu+4oFrXXlirJU0RRieASdI7lNDrh45r/f5j2nDguDYf7lF8JDXuMSUhvy6bXqkrZqYD4YJpEZZZeBjv3wTACeEXyJsSyZR2H+nT9taotrb26vVDx7WjPTpuOspnSIuapugdc6p1zZwaLZ1ZyUYOIE9iI0ltPdyr9QeOa/2BY9pw4JiimabTYzVGijSvoUIX1ZdrXn255tVXaHZtqYKMFLoe798EwAnhF8j94iPpsLe1tVdbW3u1vbVXb3b0nTS6IElz68p0zZwaXTOnWlfNrmZ0AXCIVMrU7s4+rT9wXBsOpEcJW3uGTvnYoN/QnNqydCAcEw7rK4oYtXcR3r8JgBPCL5B7mKapYwNx7T06kB7da0sHvl0dfdlzS8cqLwpoYWNEi5oiWjgtoqtnV2lqeZENlQM4H71DCe0+0qed7VHt7OjTzo4+7eroU3/s5JFCKX1KyfSqEk2vLtH0qhLNyP5ZqqbKYkYNCwzv3wTACeEXqPAkkim1HBvU3qMD2nu0X3s7+7X3aL/2dQ2oZzBxyu+JFAe1cFqFFk6LaNG0iBY2RjS9qkQ+H6MBgJuYpqnDx4e0q6NPOzui2VC4r2vgpE0mY/kMqXFKcSYUlmpGdYkaIkWqryhSfaRIdRVFLAFxGN6/CYATwi+QMw0nkmrtGdLh40M6fHxQLceGtO9oOugd7B7M9t07kWFIjZFizZlapgWNFVqUCXxNlcVM/QAeFh9JqbVnSAe7B3To2KAOdqdvLccGdfDYgIYTJy8JOVFlSVB1FUXpYBgpUn1FseojYdVHilVXEVZ1aViVJUF2KucJ798S50qh4JwY8NJ/jn58tC92xu8vDvo1u7ZUc2rLNKe2LPvxrJpSFYf4VzqA8UIBn2bVlGrWKZpNm6apo30xHcwEw0OZkNgRHdaRaEztvUMaTqR0fDCh44MJ7ezoO8VPSDMMqbIkpOrSkKrLQqouC6umNKSq0rCqy0KqydxXVRrSlOKgKoqDTD3jvBEA4RjJlKmu/piORIfV0TusI30xdY75+EjvsI70DZ92qnas0pBfTZUlaqosVlNlsWbVlGrO1HTgq68oYvoWwKQwDENTK4o0taJIV8ysOunrpmkqOjSi9uiQOnrTr2cd0fF/HokOq2coIdOUjg3EdWwgrj2dZ/fzy8IBRYqDmlKSvkWKg4oUh9KfZ+6vKAqqrCig8qKgysIBVWQ+Lgr6mN3wMAIgcmokmdKxgbi6+uPqHoipqz+m7v705+mPY+rqj6uzb1hH+2I6wzKbcUpDfjVXWQFvNOhZH0eKg7ywAbCdYRiKlAQVKQlqXv3ppxpHkulRwu6B9Gtk90Bc3f3Wx+nXye7+mLozAbEv09amPzai/tjIaXc1n0nAZ6isKKCycDoQlhcFVB4OqKwooJJQQKUhv0rCJ/wZCqg0PPpnaSig4pBfxUG/ioJ++fnHdcEgAOKspVKm+oZHdGwwruODcR0fiKenNQYyn4/52HrxOn4Wo3Vj+X2GasvCqqsIq64ivXi6PlKkqeXh7GLquvIiVRQHCHgAXCPg96m2PKza8vBZPX4kmVLf8Ih6hhLqGYyrZyih6FBCPYOZ21BcvZnP+4YT6hseydwS6o+NKGVKIykz+3jp3APkqYQCPpVkAqEVCktCfhWH0h+n7/MpHDj9n+ETPp9eXaJpUzgmc7J5PgA+9thj+vKXv6z29nYtWLBAX/3qV/XOd77T7rJyajiRVHQokX5xGEqod3DMx9kXkfi4+3oHEzo+GD/rEbqxfIZUVRpSdWlYNeWZP8vGrGkpDWtqRVj1FUWqLgvzL0gAeBsBv0+VpSFVloYknbw28UxM09RgPKm+4RH1xxKKDo+of0xAHIgnNRgbSf8ZT48wDsaSGoiPaDCe1EAs/af1tbGbYOIjKcVHUurRuf3j/0z+5sYLtHL5RZP29yHN0wHwxz/+sR544AE99thjesc73qFvfvObWrFihXbs2KHp06fbXd4ppVKmBuIj4/411zc8ouhw+n/i6FAi/fFQ5r6h9P19Y+47VRPjc1Ea8qdfeErS60yqMh9XloRUWRpUZUlIVaWhbMirLAkR6gDAIQzDUGk4oNJwQNLE+5emUqZiIykNJZLpWzyp4URSg/Hxnw9l7ouNJDWcSCk2klQs8+dwIqXhRFKxkfF/DieSqq2gx2oueLoNzFVXXaXLLrtMjz/+ePa+iy++WHfeeadWrVr1tt+fq23kz25t13PbO8YFPCvk9cdGNBlXzGdIFcXpRcKRzG6yKSUhRYozC4qLQ2PuTz+mqjQd+MIBdsoCAAoXbWA8PAIYj8e1ceNGfeYznxl3//Lly/Xaa6+d8ntisZhisdEWI9FoNCe17TrSp59tbjvjY4J+Y3TRblFA5WEryAVUUZQObtZOL+vjiuLRj0tDAXbCAgDgUZ4NgF1dXUomk6qrqxt3f11dnTo6Ok75PatWrdIXvvCFnNd23dzazK6sMTuzxoS9iqKgwgG27wMAgPPj2QBoOTFEmaZ52mD14IMPauXKldnPo9GompubJ72my6ZX6rLplZP+9wIAAEgeDoA1NTXy+/0njfZ1dnaeNCpoCYfDCofPbos+AACAU3n2DJlQKKTLL79ca9asGXf/mjVrdM0119hUFQAAQO55dgRQklauXKmPfOQjWrp0qZYtW6ZvfetbOnTokD7xiU/YXRoAAEDOeDoA3nXXXeru7tYXv/hFtbe3a+HChfrVr36lGTNm2F0aAABAzni6D+BE0UcIAIDCw/u3h9cAAgAAeBUBEAAAwGMIgAAAAB5DAAQAAPAYAiAAAIDHEAABAAA8hgAIAADgMQRAAAAAj/H0SSATZfXQjkajNlcCAADOlvW+7eWzMAiAE9DX1ydJam5utrkSAABwrvr6+hSJROwuwxYcBTcBqVRKbW1tKi8vl2EYZ3xsNBpVc3OzWlpaXH/sDM/Vvbz0fHmu7uWl58tzPTXTNNXX16fGxkb5fN5cDccI4AT4fD41NTWd0/dUVFS4/n9CC8/Vvbz0fHmu7uWl58tzPZlXR/4s3oy9AAAAHkYABAAA8BgCYJ6Ew2E99NBDCofDdpeSczxX9/LS8+W5upeXni/PFafDJhAAAACPYQQQAADAYwiAAAAAHkMABAAA8BgCIAAAgMcQAPPgscce06xZs1RUVKTLL79cv/nNb+wuKScefvhhGYYx7lZfX293WZPi1Vdf1e23367GxkYZhqGnn3563NdN09TDDz+sxsZGFRcX64YbbtD27dvtKXaC3u65fvSjHz3pOl999dX2FDtBq1at0hVXXKHy8nJNnTpVd955p3bt2jXuMW65tmfzXN10bR9//HEtXrw42xR42bJlevbZZ7Nfd8t1ld7+ubrpup5o1apVMgxDDzzwQPY+N13bXCIA5tiPf/xjPfDAA/rc5z6nTZs26Z3vfKdWrFihQ4cO2V1aTixYsEDt7e3Z29atW+0uaVIMDAxoyZIlevTRR0/59X/5l3/RV77yFT366KNav3696uvrdcstt2TPiy4kb/dcJenWW28dd51/9atf5bHCybN27Vrdc889WrdundasWaORkREtX75cAwMD2ce45dqezXOV3HNtm5qa9Mgjj2jDhg3asGGDbrzxRt1xxx3ZIOCW6yq9/XOV3HNdx1q/fr2+9a1vafHixePud9O1zSkTOXXllVean/jEJ8bdN2/ePPMzn/mMTRXlzkMPPWQuWbLE7jJyTpL51FNPZT9PpVJmfX29+cgjj2TvGx4eNiORiPnv//7vNlQ4eU58rqZpmnfffbd5xx132FJPrnV2dpqSzLVr15qm6e5re+JzNU13X1vTNM3KykrzO9/5jquvq8V6rqbpzuva19dnXnjhheaaNWvM66+/3rz//vtN03T3/7OTjRHAHIrH49q4caOWL18+7v7ly5frtddes6mq3NqzZ48aGxs1a9YsffCDH9S+ffvsLinn9u/fr46OjnHXORwO6/rrr3ftdX7llVc0depUzZ07Vx//+MfV2dlpd0mTore3V5JUVVUlyd3X9sTnanHjtU0mk1q9erUGBga0bNkyV1/XE5+rxW3X9Z577tFtt92mm2++edz9br62ky1gdwFu1tXVpWQyqbq6unH319XVqaOjw6aqcueqq67S97//fc2dO1dHjhzRP/3TP+maa67R9u3bVV1dbXd5OWNdy1Nd54MHD9pRUk6tWLFCH/jABzRjxgzt379f//AP/6Abb7xRGzduLOgO/KZpauXKlbr22mu1cOFCSe69tqd6rpL7ru3WrVu1bNkyDQ8Pq6ysTE899ZTmz5+fDQJuuq6ne66S+67r6tWr9frrr2v9+vUnfc2t/8/mAgEwDwzDGPe5aZon3ecGK1asyH68aNEiLVu2THPmzNH3vvc9rVy50sbK8sMr1/muu+7Kfrxw4UItXbpUM2bM0C9/+Uu9733vs7Gyibn33nu1ZcsW/fa3vz3pa267tqd7rm67thdddJE2b96snp4e/fSnP9Xdd9+ttWvXZr/uput6uuc6f/58V13XlpYW3X///XrhhRdUVFR02se56drmClPAOVRTUyO/33/SaF9nZ+dJ/zpxo9LSUi1atEh79uyxu5ScsnY6e/U6NzQ0aMaMGQV9ne+77z4988wzevnll9XU1JS9343X9nTP9VQK/dqGQiFdcMEFWrp0qVatWqUlS5boa1/7miuv6+me66kU8nXduHGjOjs7dfnllysQCCgQCGjt2rX6+te/rkAgkL1+brq2uUIAzKFQKKTLL79ca9asGXf/mjVrdM0119hUVf7EYjG9+eabamhosLuUnJo1a5bq6+vHXed4PK61a9d64jp3d3erpaWlIK+zaZq699579eSTT+qll17SrFmzxn3dTdf27Z7rqRTytT0V0zQVi8VcdV1Px3qup1LI1/Wmm27S1q1btXnz5uxt6dKl+vCHP6zNmzdr9uzZrr+2k8amzSeesXr1ajMYDJrf/e53zR07dpgPPPCAWVpaah44cMDu0ibdpz71KfOVV14x9+3bZ65bt858z3veY5aXl7viufb19ZmbNm0yN23aZEoyv/KVr5ibNm0yDx48aJqmaT7yyCNmJBIxn3zySXPr1q3mhz70IbOhocGMRqM2V37uzvRc+/r6zE996lPma6+9Zu7fv998+eWXzWXLlpnTpk0ryOf6yU9+0oxEIuYrr7xitre3Z2+Dg4PZx7jl2r7dc3XbtX3wwQfNV1991dy/f7+5ZcsW87Of/azp8/nMF154wTRN91xX0zzzc3XbdT2VsbuATdNd1zaXCIB58I1vfMOcMWOGGQqFzMsuu2xc2wU3ueuuu8yGhgYzGAyajY2N5vve9z5z+/btdpc1KV5++WVT0km3u+++2zTNdOuBhx56yKyvrzfD4bB53XXXmVu3brW36PN0puc6ODhoLl++3KytrTWDwaA5ffp08+677zYPHTpkd9nn5VTPU5L5xBNPZB/jlmv7ds/Vbdf2z/7sz7Kvu7W1teZNN92UDX+m6Z7rappnfq5uu66ncmIAdNO1zSXDNE0zf+ONAAAAsBtrAAEAADyGAAgAAOAxBEAAAACPIQACAAB4DAEQAADAYwiAAAAAHkMABAAA8BgCIAAAgMcQAAEAADyGAAgAAOAxBEAAAACPIQACAAB4DAEQAADAYwiAAAAAHkMABAAA8BgCIAAAgMcQAAEAADyGAAgAAOAxBEAAAACPIQACAAB4DAEQAADAYwiAAAAAHkMABAAA8BgCIAAAgMcQAAEAADyGAAgAAOAxBEAAAACPIQACAAB4DAEQAADAYwiAAAAAHkMABAAA8Jj/D1RhdYoQDibDAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def energy_loss_function(E: np.ndarray, Ep: float, Ew: float, A: float) -> np.ndarray:\n", - " \n", - " eps = 1 - Ep**2/(E**2+Ew**2) + 1j * Ew * Ep**2/E/(E**2+Ew**2)\n", - " #eps = drude(E, Ep, Ew, 1)\n", - " print(Ep, Ew, 1)\n", - " elf = (-1/eps).imag\n", - " return elf\n", - "def drude(energy_scale, peak_position, peak_width, gamma):\n", - " \"\"\"dielectric function according to Drude theory\"\"\"\n", - "\n", - " eps = (1 - (peak_position ** 2 - peak_width * energy_scale * 1j) /\n", - " (energy_scale ** 2 + 2 * energy_scale * gamma * 1j)) # Mod drude term\n", - " return eps\n", - "eps = drude(np.arange(1,40,1), 20, 4, 1)\n", - "elf = (-1/eps).imag\n", - "elf = energy_loss_function(np.arange(1,40,1), 20, 4, 1)\n", - "plt.figure()\n", - "plt.plot(np.arange(1,40,1), elf)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# spectrum.energy_loss[201]" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "#infoWidget.core_loss.set_convolution()\n", - "infoWidget._update()" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'experiment': {'single_exposure_time': 0.02,\n", - " 'number_of_frames': 10,\n", - " 'collection_angle': 0.1,\n", - " 'convergence_angle': 5.4,\n", - " 'exposure_time': 0.2,\n", - " 'acceleration_voltage': 100.0,\n", - " 'flux_ppm': 218.11655667701862,\n", - " 'count_conversion': 1,\n", - " 'beam_current': 0},\n", - " 'zero_loss': {'startFitEnergy': -7.5,\n", - " 'endFitEnergy': 7.5,\n", - " 'fit_parameter': array([7.67078782e-01, 1.24762000e+03, 1.40183443e+00, 4.44197241e-02,\n", - " 3.14870586e+03, 1.15657452e+00]),\n", - " 'original_low_loss': 'mean_aggregate_EELS Spectrum Image_new_new'},\n", - " 'plasmon': array([-5.86584062e+01, 8.67607974e+03, 2.20279403e+05])}" - ] - }, - "execution_count": 81, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b6c8b7c601674198b4eeb3620caf3fdd", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0iklEQVR4nO3dd3iTVcMG8DurSTd0DzqBQqGMUkTK3mWK29fBhk8EZRRReB0IooiK4kCGCsgrQgURZVNWmcreyBBoGS2lBbpncr4/QkJD0pK20CTt/buuXG1OzpOcPF13z3okQggBIiIiIqoxpJZuABERERFVLQZAIiIiohqGAZCIiIiohmEAJCIiIqphGACJiIiIahgGQCIiIqIahgGQiIiIqIZhACQiIiKqYRgAiYiIiGoYBkAiIiKiGoYBkIiIiKiGYQAkIiIiqmEYAImIiIhqGAZAIiIiohqGAZCIiIiohmEAJCIiIqphGACJiIiIahgGQCIiIqIahgGQiIiIqIZhACQiIiKqYRgAiYiIiGoYBkAiIiKiGoYBkIiIiKiGYQAkIiIiqmEYAIksIDc3Fx988AF27NjxSF+nU6dOkEgkJm/BwcH6ejt27Ci1nkQiweLFiw2eMyIi4oGvvWnTJvTo0QN+fn5QKpXw8/NDp06d8MknnzzwWCEEli9fjvbt28PLywsqlQp16tRBTEwMfvjhh4qcioeqqr5+D9sHH3wAiUSCtLQ0SzeFiCxMbukGENVEubm5mDp1KgBtoHqUQkNDsXTpUqNypVJpVPbxxx+jc+fORuV169Yt12vOmzcPr732Gp555hl8++23cHNzw5UrV7B3716sXLkSkyZNKvP4yZMnY+bMmRgxYgQmTpwIZ2dnJCYmYtu2bfjjjz8wfPjwcrXnYavKrx8R0aPAAEg1Um5uLhwcHCzdjCphb2+P1q1bm1W3fv36Ztcty4wZM9ChQwesXLnSoHzAgAHQaDRlHpuXl4fZs2dj4MCBWLBggcFjgwcPfuDx1qgmfb8RkW3gELCV0A3NHD9+HM899xxcXV3h5uaG2NhYFBcX4+zZs+jZsyecnZ0RHByMTz/91Og5MjMz8eabbyIkJAR2dnbw9/fHuHHjkJOTY1Bvzpw56NChA7y8vODo6IgmTZrg008/RVFRkUE93VDfgQMH0L59ezg4OCA0NBSffPJJuf8Ix8XFoUePHvD19YW9vT3Cw8MxadIko7YBwPfff4+wsDAolUo0atQIv/zyCwYPHmwwZAkAV69exbPPPgtnZ2fUqlULL7/8Mg4cOGA0ZDl48GA4OTnhxIkT6NGjB5ydndG1a1cAQGFhIaZPn46GDRtCqVTC09MTQ4YMwc2bNw1eq6CgABMmTICPjw8cHBzQoUMHHDp0CMHBwRg8eLC+3s2bNzFq1Cg0atQITk5O8PLyQpcuXbBr1y59ncuXL8PT0xMAMHXqVP0wa8nnOX/+PF566SV4eXlBqVQiPDwcc+bMKdc5t6T09HT4+vqafEwqLfvXTk5ODgoKCsw6/vLly5BIJPj000/x0UcfITAwECqVCi1btsTWrVuNjjX3vN65cwcTJkxAaGgolEolvLy80Lt3b/zzzz8P/PrpfpYPHz6MZ599FrVr19b3oHbq1Mlkj+H939+69/XZZ59h5syZCA4Ohr29PTp16oRz586hqKgIkyZNgp+fH1xdXfHUU08hNTW1zPNaGt3P+b59+9CmTRvY29sjODgYixYtAgCsW7cOLVq0gIODA5o0aYKNGzcaHH/hwgUMGTIE9evXh4ODA/z9/dGvXz+cOHHC6LVOnTqFHj16wMHBAZ6enhg9ejTWrVsHiURiNJy+ZcsWdO3aFS4uLnBwcEDbtm1Nfk3LojuPn3/+Ob744guEhITAyckJ0dHR+Ouvv4zqHzx4EE888QTc3NygUqkQGRmJX3/9Vf94ZmYm5HI5PvvsM31ZWloapFIpXF1dUVxcrC8fM2YMPD09IYQwq62LFy+GRCLB9u3b8dprr8HDwwPu7u54+umncf36daP6cXFxiI6OhqOjI5ycnBATE4MjR47oH9ed1wMHDujLfvvtN0gkEvTp08fguZo2bYpnnnnGrHYC936nXrhwAb1794aTkxMCAgIwYcIEFBQUGNQ153fsxIkT4erqCrVarS9744039D8DOunp6ZBKpfjmm2/MbiuVQZBVmDJligAgGjRoID788EMRHx8v3nrrLQFAvP7666Jhw4bi66+/FvHx8WLIkCECgPjtt9/0x+fk5IjmzZsLDw8P8cUXX4gtW7aIr776Sri6uoouXboIjUajrzt+/Hgxd+5csXHjRrFt2zbx5ZdfCg8PDzFkyBCDNnXs2FG4u7uL+vXri3nz5on4+HgxatQoAUD89NNP5Xp/H374ofjyyy/FunXrxI4dO8S8efNESEiI6Ny5s0G9+fPnCwDimWeeEWvXrhVLly4VYWFhIigoSAQFBenrZWdni3r16gk3NzcxZ84csWnTJjF+/HgREhIiAIhFixbp6w4aNEgoFAoRHBwsZsyYIbZu3So2bdok1Gq16Nmzp3B0dBRTp04V8fHx4ocffhD+/v6iUaNGIjc3V/8cL774opBKpWLSpEli8+bNYvbs2SIgIEC4urqKQYMG6ev9888/4rXXXhPLly8XO3bsEGvXrhXDhg0TUqlUbN++XQghRH5+vti4caMAIIYNGyb27dsn9u3bJy5cuCCEEOLUqVPC1dVVNGnSRCxZskRs3rxZTJgwQUilUvHBBx+U67x37NhRNG7cWBQVFRnd1Gq1vt727dsFABEXF2eyrqnnLEu3bt2EXC4XU6ZMEUePHhXFxcXlane9evWEs7OzmDVrljhz5ozB929Jly5dEgBEQECAaNeunfjtt9/EihUrxGOPPSYUCoXYu3evvq655zUzM1M0btxYODo6imnTpolNmzaJ3377TYwdO1Zs27btgV8/3c9yUFCQePvtt0V8fLxYvXq1/tx17NjR6H0MGjTI4Ptb976CgoJEv379xNq1a8XPP/8svL29RVhYmBgwYIAYOnSo2LBhg5g3b55wcnIS/fr1e+B51bXt5s2b+jLdz3mDBg3Ejz/+KDZt2iT69u0rAIipU6eKJk2aiGXLlon169eL1q1bC6VSKa5du6Y/PiEhQUyYMEGsXLlSJCQkiN9//108+eSTwt7eXvzzzz/6etevXxfu7u4iMDBQLF68WKxfv14MGDBABAcHCwD6nw8hhPjf//4nJBKJePLJJ8WqVavEmjVrRN++fYVMJhNbtmx54Pu8/zwGBweLnj17itWrV4vVq1eLJk2aiNq1a4s7d+7o627btk3Y2dmJ9u3bi7i4OLFx40YxePBgo98nrVu3Fj169NDfX758uVCpVEIikYg9e/boy8PDw8Xzzz9vdlsXLVokAIjQ0FDxxhtviE2bNokffvhB1K5d2+j35EcffSQkEokYOnSoWLt2rVi1apWIjo4Wjo6O4tSpU0IIIbKysoRCoRAff/yx/riRI0cKe3t74ejoKAoLC4UQQty4cUNIJBLx3Xffmd3WQYMGCTs7OxEeHi4+//xzsWXLFvH+++8LiUQipk6dqq9n7u9Y3c9TyZ/Xhg0bCnt7e9G9e3d9WVxcnAAgTp8+bXZbqXQMgFZC94t51qxZBuXNmzcXAMSqVav0ZUVFRcLT01M8/fTT+rIZM2YIqVQqDhw4YHD8ypUrBQCxfv16k6+rVqtFUVGRWLJkiZDJZOLWrVv6xzp27CgAiL///tvgmEaNGomYmJgKv1eNRiOKiopEQkKCACCOHTumb4uPj494/PHHDeonJiYKhUJh8Adyzpw5AoDYsGGDQd1XX33VZAAEIBYuXGhQd9myZUZBWgghDhw4IADofyGeOnVKABBvv/22yeNLBsD7FRcXi6KiItG1a1fx1FNP6ctv3rwpAIgpU6YYHRMTEyPq1KkjMjIyDMpff/11oVKpDL5GD6L7Gpq6DRs2TF9PFwBLu125csXgOR8UAC9cuCAiIiL0x9vb24uuXbuKb7/9Vv+Hpyz79+8XgYGB+uOdnZ1F3759xZIlSwzCoO4PvJ+fn8jLy9OXZ2ZmCjc3N9GtWzd9mbnnddq0aQKAiI+PL7V9ZX39dD/L77//vtFj5Q2AzZo1Mwjqs2fPFgDEE088YXD8uHHjBACj91Za2+4PgADEwYMH9WXp6elCJpMJe3t7g7B39OhRAUB8/fXXpb5GcXGxKCwsFPXr1xfjx4/Xl0+cOFFIJBJ9QNGJiYkxCIA5OTnCzc3NKNCq1WrRrFkz0apVqzLfY0m689ikSRODf0L2798vAIhly5bpyxo2bCgiIyON/uHp27ev8PX11X8d3n33XWFvby/y8/OFEEIMHz5c9OzZUzRt2lQffq5duyYAiAULFpjdVl0AHDVqlEH5p59+KgCI5ORkIYQQSUlJQi6XizfeeMOgXlZWlvDx8TEIne3atRNdunTR369Xr56YOHGikEqlIiEhQQghxNKlSwUAce7cObPbqvud+uuvvxqU9+7dWzRo0EB/39zfsTk5OcLOzk5MmzZNCCHE1atX9b9zS57rESNGCD8/P7PbSWXjELCV6du3r8H98PBwSCQS9OrVS18ml8tRr149JCYm6svWrl2LiIgING/eHMXFxfpbTEyM0fDKkSNH8MQTT8Dd3R0ymQwKhQIDBw6EWq3GuXPnDF7fx8cHrVq1Mihr2rSpwWub4+LFi3jppZfg4+Ojf82OHTsCAM6cOQMAOHv2LFJSUvD8888bHBsYGIi2bdsalCUkJMDZ2Rk9e/Y0KH/xxRdLbcP9Qxxr165FrVq10K9fP4Nz1rx5c/j4+OjPWUJCAgAYtevZZ5+FXG48jXbevHlo0aIFVCoV5HI5FAoFtm7dqn+fZcnPz8fWrVvx1FNPwcHBwaBdvXv3Rn5+vsmhq7LUrVsXBw4cMLq99957RnVnzpxpsq63t3e5X/PYsWNISEjA1KlT0a1bNxw4cACvv/46oqOjkZ+fX+bxjz32GC5cuICNGzfiv//9L6Kjo7F161YMHDgQTzzxhNGw2tNPPw2VSqW/7+zsjH79+mHnzp1Qq9XlOq8bNmxAWFgYunXrVq73fL/yDKmVpnfv3gZD3uHh4QBgNISnK09KSqrQ6/j6+iIqKkp/383NDV5eXmjevDn8/PyMXqfkz39xcTE+/vhjNGrUCHZ2dpDL5bCzs8P58+cNvucTEhIQERGBRo0aGbz2/T+ze/fuxa1btzBo0CCDr5NGo0HPnj1x4MABk1NHytKnTx/IZDL9/aZNmxq8jwsXLuCff/7Byy+/rH9PJb8/kpOTcfbsWQBA165dkZeXh7179wLQDlV3794d3bp1Q3x8vL4MQIW+h5544gmD+/e3ddOmTSguLsbAgQMN2qlSqdCxY0eD3/Vdu3bFnj17kJeXh8TERFy4cAH/+c9/0Lx5c4O2BgYGon79+uVqp0QiQb9+/Yzaev/fJXN+xzo4OCA6Olp/3uLj41GrVi1MnDgRhYWF2L17t76tlf25pHu4CMTKuLm5Gdy3s7ODg4ODwR83XXlmZqb+/o0bN3DhwgUoFAqTz6vb9iEpKQnt27dHgwYN8NVXXyE4OBgqlQr79+/H6NGjkZeXZ3Ccu7u70XMplUqjemXJzs5G+/btoVKpMH36dISFhcHBwQFXrlzB008/rX+u9PR0ADAZNry9vXHp0iX9/fT09FLrmeLg4AAXFxeDshs3buDOnTuws7MzeYzunJXWLrlcbnR+vvjiC0yYMAEjR47Ehx9+CA8PD8hkMrz33ntmBcD09HQUFxfjm2++KXWeS3m38NDNiTNHaGio2XUfRCqVokOHDujQoQMA7dy+YcOGIS4uDgsXLsSoUaPKPF6hUCAmJgYxMTEAtOfm2Wefxdq1a7Fhwwb07t1bX9fHx8foeB8fHxQWFiI7OxvZ2dlmn9ebN28iMDCwQu+5pNLmMJaHqd8HZZU/KFib+zq65zTndWJjYzFnzhy8/fbb6NixI2rXrg2pVIrhw4cb/J5IT09HSEiI0evc/3N148YNANp/sEpz69YtODo6mvHOtO7/OdWtgNe1T/eab775Jt58802Tz6H7/mjTpg0cHBywZcsWBAQE4PLly+jevTuuXr2Kb775BtnZ2diyZQtCQ0NNvt+H1dbHHnvM5PEl/2Ho1q0bpk6dit27dyMxMREeHh6IjIxEt27dsGXLFnz44YfYunVrhUKVqb9LSqXS4HvD3N+xurZ++OGHyMnJwZYtW9ClSxe4u7sjKipKfz4vXbqkX31PlccAWE14eHjA3t4eCxcuLPVxAFi9ejVycnKwatUqBAUF6R8/evToI2vbtm3bcP36dezYsUPf6wdoJ9qXpPvFp/sFV1JKSopR3f379z+wno5EIjEq002yvn9Su46zs7NRu/z9/fWPFxcX68Ohzs8//4xOnTph7ty5BuVZWVkmX+N+tWvXhkwmw4ABAzB69GiTdSryR8UaODo6YvLkyYiLi8PJkyfLfby7uzvGjRuHHTt24OTJkwYB0NTXPSUlBXZ2dnBycoJCoTD7vHp6euLq1avlbt/9TH3PqVQqZGRkGJXb8r58P//8MwYOHIiPP/7YoDwtLQ21atXS33d3dzfrZ1v3u+qbb74pdUV6eXukH0T3mpMnT8bTTz9tsk6DBg0AaENwu3btsGXLFtSpUwc+Pj5o0qQJQkNDAWj31Ny6davRaM7DbuvKlSsNfoeb8vjjj8PJyQlbtmzB5cuX0bVrV0gkEnTt2hWzZs3CgQMHkJSU9Mh61cz9HQtoeyvfe+897Ny5E1u3bsWUKVP05Zs3b9b/fOoW8FHlMQBWE3379sXHH38Md3f3MgOC7o9SyT3ghBD4/vvvH1nbTL0mAMyfP9/gfoMGDeDj44Nff/0VsbGx+vKkpCTs3bvXYCiqY8eO+PXXX7FhwwaD4fHly5eb3a6+ffti+fLlUKvVePzxx0utp+vBiouLQ4sWLfTlK1euNFj1B2jf6/3v8/jx49i3bx8CAgL0Zff/V6/j4OCAzp0748iRI2jatGmp/zlbu+TkZJM9YLpe0JJfy/sVFRUhMzPTZO9zacevWrUKn332mb5HIisrC2vWrEH79u0hk8nKdV579eqF999/H9u2bUOXLl1M1int6/cgwcHBWLFiBQoKCvTPkZ6ejr179xr1UNsKU9/z69atw7Vr11CvXj19WceOHfH555/j9OnTBsPA9//Mtm3bFrVq1cLp06fx+uuvP9rG39WgQQPUr18fx44dMwqypnTr1g2TJ0+Gs7OzPjw5OjqidevW+Oabb3D9+vVHFqpiYmIgl8vx77//PnCagUKhQIcOHRAfH48rV67oN2Fv37495HI53n33XX0gfBTM/R0LAK1atYKLiwtmz56NlJQUdO/eHYD2XM+cORO//vorGjVqVObvDiofBsBqYty4cfjtt9/QoUMHjB8/Hk2bNoVGo0FSUhI2b96MCRMm4PHHH0f37t1hZ2eHF198EW+99Rby8/Mxd+5c3L59+5G1rU2bNqhduzZGjhyJKVOmQKFQYOnSpTh27JhBPalUiqlTp+LVV1/Fs88+i6FDh+LOnTuYOnUqfH19DYY2Bg0ahC+//BKvvPIKpk+fjnr16mHDhg3YtGmT/rke5D//+Q+WLl2K3r17Y+zYsWjVqhUUCgWuXr2K7du3o3///njqqafQuHFjvPjii5g1axZkMhm6dOmCU6dOYdasWXB1dTV4rb59++LDDz/ElClT0LFjR5w9exbTpk1DSEiIQVh0dnZGUFAQ/vjjD3Tt2hVubm7w8PBAcHAwvvrqK7Rr1w7t27fHa6+9huDgYGRlZeHChQtYs2YNtm3bVq7zn5eXV+q8wft7WM6fP2+ybp06dVCnTh39/czMTKM9/gBt71nHjh3RuHFjdO3aFb169ULdunWRn5+Pv//+G7NmzYK3tzeGDRtWanszMjIQHByM5557Dt26dUNAQACys7OxY8cOfPXVVwgPDzfqpZHJZOjevTtiY2Oh0Wgwc+ZMZGZmGgwXmXtex40bh7i4OPTv3x+TJk1Cq1atkJeXh4SEBPTt2xedO3cu8+tXlgEDBmD+/Pl45ZVXMGLECKSnp+PTTz+12fAHaL/nFy9ejIYNG6Jp06Y4dOgQPvvsM4PvF0B7XhcuXIhevXph2rRp8Pb2xi+//IJ//vkHwL2fWScnJ3zzzTcYNGgQbt26hWeffRZeXl64efMmjh07hps3bxr1sD8M8+fPR69evRATE4PBgwfD398ft27dwpkzZ3D48GGsWLFCX7dr165Qq9XYunUrfvrpJ315t27dMGXKFEgkklL/eais4OBgTJs2De+88w4uXryInj17onbt2rhx4wb2798PR0dHg+/7rl27YsKECfr2Adq9Qdu0aYPNmzejadOm8PLyeiRtNfd3LKD9Ge7YsSPWrFmDkJAQ/dZJbdu2hVKpxNatWzFmzJhH0s4ay9KrUEjL1Oo8IbSrrRwdHY3qm1qJmZ2dLd59913RoEEDYWdnp9/yYvz48SIlJUVfb82aNaJZs2ZCpVIJf39/MXHiRLFhwwajrRhKW+15/4pFc+zdu1dER0cLBwcH4enpKYYPHy4OHz5stGJXCCEWLFgg6tWrJ+zs7ERYWJhYuHCh6N+/v4iMjDSol5SUJJ5++mnh5OQknJ2dxTPPPCPWr18vAIg//vjDoL2mzqEQ2hXVn3/+uf58ODk5iYYNG4pXX31VnD9/Xl8vPz9fxMbGCi8vL6FSqUTr1q3Fvn37hKurq8FKx4KCAvHmm28Kf39/oVKpRIsWLcTq1atNnrMtW7aIyMhIoVQqjVYTX7p0SQwdOlT4+/sLhUIhPD09RZs2bcT06dPLdd7LWgUMQL/i8UGrgN955x2znlO3wnX+/Pni6aefFqGhocLBwUHY2dmJunXripEjRxqsKDaloKBAfP7556JXr14iMDBQKJVKoVKpRHh4uHjrrbdEenq6wXkCIGbOnCmmTp0q6tSpI+zs7ERkZKTYtGmT0XObe15v374txo4dKwIDA4VCoRBeXl6iT58+BtualPb1K+1nWeenn34S4eHhQqVSiUaNGom4uLhSVwF/9tlnBsfqvk4rVqwwKNetIL1/F4D7lbYK2NTPeVBQkOjTp49ROQAxevRo/f3bt2+LYcOGCS8vL+Hg4CDatWsndu3aZXLF88mTJ0W3bt2ESqUSbm5uYtiwYeKnn34y2A1AJyEhQfTp00e4ubkJhUIh/P39RZ8+fYzee1lKO4+693H/Ku5jx46J559/Xnh5eQmFQiF8fHxEly5dxLx58wzqaTQa4eHhIQAYrJLes2ePACBatGhhdht1Svsa6r7mJX83CyHE6tWrRefOnYWLi4tQKpUiKChIPPvss0bb5Bw7dkwAEPXr1zco/+ijjwQAERsbW+62lvY7Vff9VZK5v2OFEOKrr74SAMSIESMMyrt37y4AiD///LPcbaXSSYQwc5dKIgu5c+cOwsLC8OSTTxpdGeJ+H3/8Md59910kJSUZ9UA8bHv37kXbtm2xdOlSvPTSS4/0tci0y5cvIyQkBJ999lmpk/fJuv3f//0fli1bhvT0dJud8kBkizgETFYlJSUFH330ETp37gx3d3ckJibiyy+/RFZWFsaOHWtQ99tvvwUANGzYEEVFRdi2bRu+/vprvPLKKw89/MXHx2Pfvn2IioqCvb09jh07hk8++QT169cvddI4ERmaNm0a/Pz8EBoaiuzsbKxduxY//PAD3n33XYY/oirGAEiVolary7zUkUQiMdh/60GUSiUuX76MUaNG4datW3BwcEDr1q0xb948NG7c2KCug4MDvvzyS1y+fBkFBQUIDAzE22+/jXfffbfC76c0Li4u2Lx5M2bPno2srCx4eHigV69emDFjhtFWCFXhYZ93oqqgUCjw2Wef4erVqyguLkb9+vXxxRdfGP1zZ477F2DdTyqVmjUX+FETQhhc4swUmUxmctV4VdNoNA+8zKepvU/JNnEImColODi4zE2h79+YlB4OnneqyXRD/2WZMmUKPvjgg6ppUBkWL16MIUOGlFln+/btJq8RXdUGDx5ssKjFFEaG6oMBkCrlxIkTRhf/LsnZ2Vm/fxY9PDzvVJMVFhbi+PHjZdbx8/Ozii1D0tPTDTaxN6VBgwYGe+JZyuXLlx+4J+XD2iieLI8BkIiIiKiGsfwEiWpi586d6NevH/z8/CCRSLB69epyP4cQAp9//jnCwsKgVCoREBBg1qakREREROXB2ZwPSU5ODpo1a4YhQ4ZU+CLwY8eOxebNm/H555+jSZMmyMjIsOlLRBEREZF14hDwIyCRSPD777/jySef1JcVFhbi3XffxdKlS3Hnzh1ERERg5syZ+om/Z86cQdOmTXHy5EnO3SIiIqJHikPAVWTIkCHYs2cPli9fjuPHj+O5555Dz549cf78eQDAmjVrEBoairVr1yIkJATBwcEYPnw4bt26ZeGWExERUXXDAFgF/v33XyxbtgwrVqxA+/btUbduXbz55pto164dFi1aBAC4ePEiEhMTsWLFCixZsgSLFy/GoUOH8Oyzz1q49URERFTdcA5gFTh8+DCEEAgLCzMoLygogLu7OwDtBpwFBQVYsmSJvt6PP/6IqKgonD17lsPCRERE9NAwAFYBjUYDmUyGQ4cOGV2dwcnJCQDg6+sLuVxuEBLDw8MBAElJSQyARERE9NAwAFaByMhIqNVqpKamon379ibrtG3bFsXFxfj3339Rt25dAMC5c+cAAEFBQVXWViIiIqr+uAr4IcnOzsaFCxcAaAPfF198gc6dO8PNzQ2BgYF45ZVXsGfPHsyaNQuRkZFIS0vDtm3b0KRJE/Tu3RsajQaPPfYYnJycMHv2bGg0GowePVp/DVoiIiKih4UB8CHZsWMHOnfubFQ+aNAgLF68GEVFRZg+fTqWLFmCa9euwd3dHdHR0Zg6dSqaNGkCALh+/TreeOMNbN68GY6OjujVqxdmzZoFNze3qn47REREVI0xABIRERHVMNwGhoiIiKiGYQAkIiIiqmEYAImIiIhqGG4DUwkajQbXr1+Hs7MzJBKJpZtDREREZhBCICsrC35+fpBKa2ZfGANgJVy/fh0BAQGWbgYRERFVwJUrV1CnTh1LN8MiGAArwdnZGYD2G8jFxcXCrSEiIiJzZGZmIiAgQP93vCZiAKwE3bCvi4sLAyAREZGNqcnTt2rmwDcRERFRDcYASERERFTDMAASERER1TAMgEREREQ1DAMgERERUQ3DAEhERERUwzAAEhEREdUwDIBERERENQwDIBEREVENwwBIREREVMMwABIRERHVMNUmAO7cuRP9+vWDn58fJBIJVq9eXWb9VatWoXv37vD09ISLiwuio6OxadOmqmksERERkQVVmwCYk5ODZs2a4dtvvzWr/s6dO9G9e3esX78ehw4dQufOndGvXz8cOXLkEbe0mtJogD1fAydXWbolRERE9AASIYSwdCMeNolEgt9//x1PPvlkuY5r3LgxXnjhBbz//vtm1c/MzISrqysyMjLg4uJSgZZWI6d+B1YMBiABptwGJBJLt4iIiMgk/v2uRj2AlaXRaJCVlQU3NzdLN8U23b589xMBFGZbsiVERET0AHJLN8BazJo1Czk5OXj++edLrVNQUICCggL9/czMzKpomm0oKBH6ctMBpbPl2kJERERlYg8ggGXLluGDDz5AXFwcvLy8Sq03Y8YMuLq66m8BAQFV2EorV5B17/O8OxZrBhERET1YjQ+AcXFxGDZsGH799Vd069atzLqTJ09GRkaG/nblypUqaqUNUBfe+7y4oPR6REREZHE1egh42bJlGDp0KJYtW4Y+ffo8sL5SqYRSqayCltkgddG9z4vzLNcOIiIieqBqEwCzs7Nx4cIF/f1Lly7h6NGjcHNzQ2BgICZPnoxr165hyZIlALThb+DAgfjqq6/QunVrpKSkAADs7e3h6upqkfdg00r2ABblW64dRERE9EDVZgj44MGDiIyMRGRkJAAgNjYWkZGR+i1dkpOTkZSUpK8/f/58FBcXY/To0fD19dXfxo4da5H22zyDIWAGQCIiImtWbXoAO3XqhLK2NFy8eLHB/R07djzaBtU0BkPADIBERETWrNr0AJKFaUoEwCLOASQiIrJmDID0cJQcAtYUW64dRERE9EAMgPRwlBwCLvk5ERERWR0GQHo42ANIRERkMxgA6eFgACQiIrIZDID0cJQc9mUAJCIismoMgPRwsAeQiIjIZjAA0sNRMgByEQgREZFVYwCkh0NdotePPYBERERWjQGQHg6DIWC15dpBRERED8QASA+HwSIQDgETERFZMwZAeji4CISIiMhmMADSw8FFIERERDaDAZAqT6MBRIl5f5wDSEREZNUYAKnyxH2Bj0PAREREVo0BkCrv/h4/LgIhIiKyagyAVHnsASQiIrIpDIBUeff3AKoZAImIiKwZAyBVHnsAiYiIbAoDIFWe0RxABkAiIiJrxgBIlccASEREZFMYAKnyOARMRERkUxgAqfKMFoFwGxgiIiJrxgBIlcceQCIiIpvCAEiVZzQHkJeCIyIismYMgFR5QmN4n1cCISIismoMgFR59w/5cgiYiIjIqjEAUuVxCJiIiMimMABS5RktAmEAJCIismYMgFR59we++wMhERERWRUGQKo8o0UgDIBERETWjAGQKo89gERERDaFAZAqjxtBExER2RQGQKo8XeCTKu7e15Rel4iIiCyOAZAqTzcELLPTfuQQMBERkVVjAKTK0wU+ma4HkAGQiIjImjEAUuXphnzlyrv3OQeQiIjImjEAUuUJDgETERHZEgZAqjzNfUPAQgMIYbn2EBERUZkYAKnydEO+MuW9svs3hyYiIiKrwQBIlacb8pXb3SvjPEAiIiKrxQBIladbBCIrGQA5D5CIiMhaVZsAuHPnTvTr1w9+fn6QSCRYvXr1A49JSEhAVFQUVCoVQkNDMW/evEff0Oro/kUgJcuIiIjI6lSbAJiTk4NmzZrh22+/Nav+pUuX0Lt3b7Rv3x5HjhzBf//7X4wZMwa//fbbI25pNXT/IpCSZURERGR15JZuwMPSq1cv9OrVy+z68+bNQ2BgIGbPng0ACA8Px8GDB/H555/jmWeeeUStrKb0PYAlFoEwABIREVmtatMDWF779u1Djx49DMpiYmJw8OBBFBUVWahVNspUDyCHgImIiKxWtekBLK+UlBR4e3sblHl7e6O4uBhpaWnw9fU1OqagoAAFBQX6+5mZmY+8nTZBt+JXIgUkMm34Yw8gERGR1aqxPYAAIJFIDO6Lu5sX31+uM2PGDLi6uupvAQEBj7yNNkG3559UBkjv/k/BbWCIiIisVo0NgD4+PkhJSTEoS01NhVwuh7u7u8ljJk+ejIyMDP3typUrVdFU66fr7ZPItCEQ4BAwERGRFauxQ8DR0dFYs2aNQdnmzZvRsmVLKBQKk8colUoolUqTj9VourAnlWlDIMAhYCIiIitWbXoAs7OzcfToURw9ehSAdpuXo0ePIikpCYC2927gwIH6+iNHjkRiYiJiY2Nx5swZLFy4ED/++CPefPNNSzTfthn0AN79luKl4IiIiKxWtekBPHjwIDp37qy/HxsbCwAYNGgQFi9ejOTkZH0YBICQkBCsX78e48ePx5w5c+Dn54evv/6aW8BUhL4HUMo5gERERDag2gTATp066RdxmLJ48WKjso4dO+Lw4cOPsFU1hK4HUCrnEDAREZENqDZDwGRBXARCRERkUxgAqfJKLgLRDwEzABIREVkrBkCqvJI9gBKpYRkRERFZHQZAqjyDHkAOARMREVk7BkCqPH0PoJSLQIiIiGwAAyBVnqlLwbEHkIiIyGoxAFLl6fb8k8rvDQFzH0AiIiKrxQBIlWdyEQivBEJERGStGACp8rgIhIiIyKYwAFLlcREIERGRTWEApMozWATCHkAiIiJrxwBIlWdwKTheCYSIiMjaMQBS5ennAMpLLALhKmAiIiJrxQBIlaffBqbkEDBXARMREVkrBkCqPC4CISIisikMgFR5XARCRERkUxgAqfIMNoJmDyAREZG1YwCkyuNG0ERERDaFAZAqz+Sl4BgAiYiIrBUDIFWefhWwnKuAiYiIbAADIFWefhEIVwETERHZAgZAqjyTVwLhRtBERETWigGQKo+LQIiIiGwKAyBVHheBEBER2RQGQKo8kz2AXARCRERkrRgAqfI0JQIgF4EQERFZPQZAqjyDRSCcA0hERGTtGACp8gR7AImIiGwJAyBVHnsAiYiIbAoDIFWeQQ8gVwETERFZOwZAqjyTG0EzABIREVkrBkCqvJKXguMQMBERkdVjAKTK0132TSrnIhAiIiIbwABIlcdFIERERDaFAZAqj4tAiIiIbAoDIFWeyR5AXgqOiIjIWjEAUuXpF4FwI2giIiJbwABIlafvAeQqYCIiIlvAAEiVx0vBERER2RQGQKq8ktvA6HoAdWVERERkdRgAqfK4CISIiMimMABS5QgBQGg/5xAwERGRTWAApMopGfS4CISIiMgmVKsA+N133yEkJAQqlQpRUVHYtWtXmfWXLl2KZs2awcHBAb6+vhgyZAjS09OrqLXVRMmgxx5AIiIim1BtAmBcXBzGjRuHd955B0eOHEH79u3Rq1cvJCUlmay/e/duDBw4EMOGDcOpU6ewYsUKHDhwAMOHD6/ilts4gx5AXgqOiIjIFlSbAPjFF19g2LBhGD58OMLDwzF79mwEBARg7ty5Juv/9ddfCA4OxpgxYxASEoJ27drh1VdfxcGDB6u45TbOoAdQzkvBERER2YBqEQALCwtx6NAh9OjRw6C8R48e2Lt3r8lj2rRpg6tXr2L9+vUQQuDGjRtYuXIl+vTpU+rrFBQUIDMz0+BW45Xc7kXKVcBERES2QG7JFy8oKMD+/ftx+fJl5ObmwtPTE5GRkQgJCSnX86SlpUGtVsPb29ug3NvbGykpKSaPadOmDZYuXYoXXngB+fn5KC4uxhNPPIFvvvmm1NeZMWMGpk6dWq62VXuaEkFPwjmAREREtsAiPYB79+7Fiy++iFq1aqFTp04YN24cPvzwQ7zyyiuoV68e6tevj88++wxZWVnlel6JRGJwXwhhVKZz+vRpjBkzBu+//z4OHTqEjRs34tKlSxg5cmSpzz958mRkZGTob1euXClX+6olgyFgqXYY+P5yIiIisipVHgD79++PZ599Fv7+/ti0aROysrKQnp6Oq1evIjc3F+fPn8e7776LrVu3IiwsDPHx8Q98Tg8PD8hkMqPevtTUVKNeQZ0ZM2agbdu2mDhxIpo2bYqYmBh89913WLhwIZKTk00eo1Qq4eLiYnCr8UpuAg3wSiBEREQ2oMqHgHv06IEVK1bAzs7O5OOhoaEIDQ3FoEGDcOrUKVy/fv2Bz2lnZ4eoqCjEx8fjqaee0pfHx8ejf//+Jo/Jzc2FXG749mUybXgRQpj7dqjkdYABDgETERHZgCoPgKNHjza7buPGjdG4cWOz6sbGxmLAgAFo2bIloqOjsWDBAiQlJemHdCdPnoxr165hyZIlAIB+/fphxIgRmDt3LmJiYpCcnIxx48ahVatW8PPzK/8bq6mMegDvdipzEQgREZHVsugikCtXrkAikaBOnToAgP379+OXX35Bo0aN8H//93/leq4XXngB6enpmDZtGpKTkxEREYH169cjKCgIAJCcnGywJ+DgwYORlZWFb7/9FhMmTECtWrXQpUsXzJw58+G9wZpAN9Srm/vHHkAiIiKrJxEWHO9s3749/u///g8DBgxASkoKGjRogMaNG+PcuXP6BRrWLDMzE66ursjIyKi58wHTzgPftgRUrsCkJODybmBxH8AjDHj9gKVbR0REZIR/vy28D+DJkyfRqlUrAMCvv/6KiIgI7N27F7/88gsWL15syaaRue4fAmYPIBERkdWzaAAsKiqCUqkEAGzZsgVPPPEEAKBhw4alrsQlK3P/IhBeCo6IiMjqWTQANm7cGPPmzcOuXbsQHx+Pnj17AgCuX78Od3d3SzaNzFVqDyAXgRAREVkriwbAmTNnYv78+ejUqRNefPFFNGvWDADw559/6oeGycoZ9QBKDcuJiIjI6lh0FXCnTp2QlpaGzMxM1K5dW1/+f//3f3B0dLRgy8hsup4+fQC8+y3FjaCJiIislkV7ALt06YKsrCyD8AcAbm5ueOGFFyzUKioXXdDjIhAiIiKbYdEAuGPHDhQWFhqV5+fnY9euXRZoEZUbF4EQERHZHIsMAR8/flz/+enTpw2u4atWq7Fx40b4+/tbomlUXlwEQkREZHMsEgCbN28OiUQCiUSCLl26GD1ub2+Pb775xgIto3IrrQeQcwCJiIislkUC4KVLlyCEQGhoKPbv3w9PT0/9Y3Z2dvDy8oJMJrNE06i8jK4FfPdbikPAREREVssiAVB3fV4Nhwltn9CtAr47nZSrgImIiKyeRbeBAYBz585hx44dSE1NNQqE1n4tYMK9HkBd8CsZAIUAJBLLtIuIiIhKZdEA+P333+O1116Dh4cHfHx8ICkRFiQSCQOgLbh/GxhpiaF7oblXTkRERFbDogFw+vTp+Oijj/D2229bshlUGUaLQEp8S2mKDQMhERERWQWL7gN4+/ZtPPfcc5ZsAlVWaYtAAM4DJCIislIWDYDPPfccNm/ebMkmUGWVtggEYAAkIiKyUhYdAq5Xrx7ee+89/PXXX2jSpAkUCoXB42PGjLFQy8hsZfYAcisYIiIia2TRALhgwQI4OTkhISEBCQkJBo9JJBIGQFtgNAdQCkACQLAHkIiIyEpZNABeunTJki9PD8P9PYCAthdQU8QASEREZKUsOgeQqoH7ewABbgZNRERk5SzaAzh06NAyH1+4cGEVtYQqTN8DWOJ/CQZAIiIiq2bRAHj79m2D+0VFRTh58iTu3LmDLl26WKhVVC76VcAlvpV0vYFcBEJERGSVLBoAf//9d6MyjUaDUaNGITQ01AItonLT9fJxCJiIiMhmWN0cQKlUivHjx+PLL7+0dFPIHKUtAgEYAImIiKyU1QVAAPj3339RXMzwYBO4CISIiMjmWHQIODY21uC+EALJyclYt24dBg0aZKFWUbmY7AHkHEAiIiJrZtEAeOTIEYP7UqkUnp6emDVr1gNXCJOV0PcAchUwERGRrbBoANy+fbslX54eBs3dVcCcA0hERGQzLBoAdW7evImzZ89CIpEgLCwMnp6elm4SmYtzAImIiGyORReB5OTkYOjQofD19UWHDh3Qvn17+Pn5YdiwYcjNzbVk08hcZc4BZAAkIiKyRhYNgLGxsUhISMCaNWtw584d3LlzB3/88QcSEhIwYcIESzaNzFVmDyAXgRAREVkjiw4B//bbb1i5ciU6deqkL+vduzfs7e3x/PPPY+7cuZZrHJmHl4IjIiKyORbtAczNzYW3t7dRuZeXF4eAbYX+UnCcA0hERGQrLBoAo6OjMWXKFOTn5+vL8vLyMHXqVERHR1uwZWS2suYAqouqvj1ERET0QBYdAv7qq6/Qs2dP1KlTB82aNYNEIsHRo0ehUqmwadMmSzaNzKW/FnCJbyXOASQiIrJqFg2AEREROH/+PH7++Wf8888/EELgP//5D15++WXY29tbsmlkLm4DQ0REZHMsvg+gvb09RowYYelmUEWZHAJmACQiIrJmFp0DOGPGDCxcuNCofOHChZg5c6YFWkTlZvJScNwHkIiIyJpZNADOnz8fDRs2NCpv3Lgx5s2bZ4EWUbmVeSk4zgEkIiKyRhYNgCkpKfD19TUq9/T0RHJysgVaROVmag6gTKH9yB5AIiIiq2TRABgQEIA9e/YYle/Zswd+fn4WaBGVG+cAEhER2RyLLgIZPnw4xo0bh6KiInTp0gUAsHXrVrz11lu8FJytMLkKmHMAiYiIrJlFewDfeustDBs2DKNGjUJoaChCQ0PxxhtvYMyYMZg8eXK5n++7775DSEgIVCoVoqKisGvXrjLrFxQU4J133kFQUBCUSiXq1q1rclEKlaHMS8FxDiAREZE1smgPoEQiwcyZM/Hee+/hzJkzsLe3R/369aFUKsv9XHFxcRg3bhy+++47tG3bFvPnz0evXr1w+vRpBAYGmjzm+eefx40bN/Djjz+iXr16SE1NRXExe63KhZeCIyIisjkW3wcQAJycnPDYY49V6jm++OILDBs2DMOHDwcAzJ49G5s2bcLcuXMxY8YMo/obN25EQkICLl68CDc3NwBAcHBwpdpQI3EOIBERkc2p8iHgkSNH4sqVK2bVjYuLw9KlSx9Yr7CwEIcOHUKPHj0Mynv06IG9e/eaPObPP/9Ey5Yt8emnn8Lf3x9hYWF48803kZeXV+rrFBQUIDMz0+BW4/FKIERERDanynsAPT09ERERgTZt2uCJJ55Ay5Yt4efnB5VKhdu3b+P06dPYvXs3li9fDn9/fyxYsOCBz5mWlga1Wg1vb2+Dcm9vb6SkpJg85uLFi9i9ezdUKhV+//13pKWlYdSoUbh161ap8wBnzJiBqVOnlv9NV2cmrwXMRSBERETWrMoD4Icffog33ngDP/74I+bNm4eTJ08aPO7s7Ixu3brhhx9+MOrRexCJRGJwXwhhVKaj0WggkUiwdOlSuLq6AtAOIz/77LOYM2eOyWsRT548GbGxsfr7mZmZCAgIKFcbq50yh4C5CISIiMgaWWQOoJeXFyZPnozJkyfjzp07SExMRF5eHjw8PFC3bt1SQ1tpPDw8IJPJjHr7UlNTjXoFdXx9feHv768PfwAQHh4OIQSuXr2K+vXrGx2jVCortEClWtMvAjG1Cpg9gERERNbIotvAAECtWrXQrFkztG7dGvXq1St3+AMAOzs7REVFIT4+3qA8Pj4ebdq0MXlM27Ztcf36dWRnZ+vLzp07B6lUijp16pS7DTUWF4EQERHZHIsHwIclNjYWP/zwAxYuXIgzZ85g/PjxSEpKwsiRIwFoh28HDhyor//SSy/B3d0dQ4YMwenTp7Fz505MnDgRQ4cONTn8S6XgRtBEREQ2xyq2gXkYXnjhBaSnp2PatGlITk5GREQE1q9fj6CgIABAcnIykpKS9PWdnJwQHx+PN954Ay1btoS7uzuef/55TJ8+3VJvwTZxDiAREZHNqTYBEABGjRqFUaNGmXxs8eLFRmUNGzY0GjamcuI2MERERDan2gwBk4VwDiAREZHNsWgA/OCDD5CYmGjJJlBlmVwFzDmARERE1syiAXDNmjWoW7cuunbtil9++QX5+fmWbA5VBOcAEhER2RyLBsBDhw7h8OHDaNq0KcaPHw9fX1+89tprOHDggCWbReXBOYBEREQ2x+JzAJs2bYovv/wS165dw8KFC3Ht2jW0bdsWTZo0wVdffYWMjAxLN5HKwjmARERENsfiAVBHo9GgsLAQBQUFEELAzc0Nc+fORUBAAOLi4izdPCqNyWsBMwASERFZM4sHwEOHDuH111+Hr68vxo8fj8jISJw5cwYJCQn4559/MGXKFIwZM8bSzaTSlLkIhHMAiYiIrJFFA2DTpk3RunVrXLp0CT/++COuXLmCTz75BPXq1dPXGThwIG7evGnBVlKZOARMRERkcyy6EfRzzz2HoUOHwt/fv9Q6np6e0Gg0VdgqKhcuAiEiIrI5Fu0BFEKgdu3aRuV5eXmYNm2aBVpE5cYeQCIiIptj0QA4depUZGdnG5Xn5uZi6tSpFmgRlZvJHkDOASQiIrJmFu8BlEgkRuXHjh2Dm5ubBVpE5aYbnmcPIBERkc2wyBzA2rVrQyKRQCKRICwszCAEqtVqZGdnY+TIkZZoGpWXvgew5CpgBkAiIiJrZpEAOHv2bAghMHToUEydOhWurq76x+zs7BAcHIzo6GhLNI3Ki3MAiYiIbI5FAuCgQYMAACEhIWjTpg0UCoUlmkEPA+cAEhER2ZwqD4CZmZlwcXEBAERGRiIvLw95eXkm6+rqkRVjDyAREZHNqfIAWLt2bSQnJ8PLywu1atUyuQhEtzhErWYPklUTgvsAEhER2aAqD4Dbtm3Tr/Ddvn17Vb88PUyixAbdvBYwERGRzajyANixY0eTn5MNKjnHT2JqFTB7cImIiKyRRfcB3LhxI3bv3q2/P2fOHDRv3hwvvfQSbt++bcGWkVlEiYBnchEIewCJiIiskUUD4MSJE5GZmQkAOHHiBGJjY9G7d29cvHgRsbGxlmwamcOgB9DUHMCiqm0PERERmcUi28DoXLp0CY0aNQIA/Pbbb+jXrx8+/vhjHD58GL1797Zk08gcpfYAcg4gERGRNbNoD6CdnR1yc3MBAFu2bEGPHj0AAG5ubvqeQbJiD+oBFJp7l4ojIiIiq2HRHsB27dohNjYWbdu2xf79+xEXFwcAOHfuHOrUqWPJppE5DFYBm5gDCNztJbTo/xlERER0H4v+Zf72228hl8uxcuVKzJ07F/7+/gCADRs2oGfPnpZsGplD3wMoAUru51hySxgOAxMREVkdi/YABgYGYu3atUblX375pQVaQ+VmahNogAGQiIjIylk0AAKARqPBhQsXkJqaCs1988U6dOhgoVaRWUxdBg5gACQiIrJyFg2Af/31F1566SUkJiZCCGHwGC8FZwPM6gHk15CIiMjaWDQAjhw5Ei1btsS6devg6+tr8rrAZMVK6wGUSLRlQs0eQCIiIitk0QB4/vx5rFy5EvXq1bNkM6iiNKX0AALaXkA1AyAREZE1sugq4McffxwXLlywZBOoMkobAga4GTQREZEVs2gP4BtvvIEJEyYgJSUFTZo0gUKhMHi8adOmFmoZmaW0IWCgRADkHEAiIiJrY9EA+MwzzwAAhg4dqi+TSCQQQnARiC0oswfwbhl7AImIiKyOxa8FTDbMrB5ABkAiIiJrY9EAGBQUZMmXp8rSXQpOamIqKQMgERGR1bL4RVr/97//oW3btvDz80NiYiIAYPbs2fjjjz8s3DJ6IPYAEhER2SSLBsC5c+ciNjYWvXv3xp07d/Rz/mrVqoXZs2dbsmlkDrPmAHIeJxERkbWxaAD85ptv8P333+Odd96BTHYvRLRs2RInTpywYMvILOwBJCIiskkWDYCXLl1CZGSkUblSqUROTo4FWkTlwn0AiYiIbJJFA2BISAiOHj1qVL5hwwY0atSo6htE5cMeQCIiIptk0VXAEydOxOjRo5Gfnw8hBPbv349ly5ZhxowZ+OGHHyzZNDJHmauAOQeQiIjIWlk0AA4ZMgTFxcV46623kJubi5deegn+/v746quv8J///MeSTSNzsAeQiIjIJll8G5gRI0YgMTERqampSElJwZUrVzBs2LAKPdd3332HkJAQqFQqREVFYdeuXWYdt2fPHsjlcjRv3rxCr1tj6cKd1MT/EQyAREREVsuiAbBLly64c+cOAMDDwwNeXl4AgMzMTHTp0qVczxUXF4dx48bhnXfewZEjR9C+fXv06tULSUlJZR6XkZGBgQMHomvXrhV6DzUaF4EQERHZJIsGwB07dqCwsNCoPD8/3+zeO50vvvgCw4YNw/DhwxEeHo7Zs2cjICAAc+fOLfO4V199FS+99BKio6PL9XqEBwwBcw4gERGRtbLIHMDjx4/rPz99+jRSUlL099VqNTZu3Ah/f3+zn6+wsBCHDh3CpEmTDMp79OiBvXv3lnrcokWL8O+//+Lnn3/G9OnTH/g6BQUFKCgo0N/PzMw0u43VEi8FR0REZJMsEgCbN28OiUQCiURicqjX3t4e33zzjdnPl5aWBrVaDW9vb4Nyb29vg3BZ0vnz5zFp0iTs2rULcrl5p2HGjBmYOnWq2e2q9rgIhIiIyCZZJABeunQJQgiEhoZi//798PT01D9mZ2cHLy8vgyuDmEsikRjcF0IYlQHaXsaXXnoJU6dORVhYmNnPP3nyZMTGxurvZ2ZmIiAgoNztrDY4B5CIiMgmWSQABgUFAQA0Gs1DeT4PDw/IZDKj3r7U1FSjXkEAyMrKwsGDB3HkyBG8/vrr+rYIISCXy7F582aTPZNKpRJKpfKhtLlaMGsOIAMgERGRtbHoPoAAcO7cOezYsQOpqalGgfD999836zns7OwQFRWF+Ph4PPXUU/ry+Ph49O/f36i+i4uL0bWGv/vuO2zbtg0rV65ESEhIBd5JDWRWDyAXgRAREVkbiwbA77//Hq+99ho8PDzg4+NjMFwrkUjMDoAAEBsbiwEDBqBly5aIjo7GggULkJSUhJEjRwLQDt9eu3YNS5YsgVQqRUREhMHxXl5eUKlURuVUBn0PIBeBEBER2RKLBsDp06fjo48+wttvv13p53rhhReQnp6OadOmITk5GREREVi/fr1+uDk5OfmBewJSOelXAXMOIBERkS2RCCGEpV7cxcUFR48eRWhoqKWaUCmZmZlwdXVFRkYGXFxcLN2cqvfXXGDjJCDiGeDZhYaP/fE6cOR/QNf3gfYTLNM+IiIiE2r8329YeCPo5557Dps3b7ZkE6gy9JeCUxg/xjmAREREVsuiQ8D16tXDe++9h7/++gtNmjSBQmEYJMaMGWOhlpFZeC1gIiIim2TRALhgwQI4OTkhISEBCQkJBo9JJBIGQGunD4CcA0hERGRLLBoAL126ZMmXp8pSl9UDyH0AiYiIrJVF5wCSjdOFOxnnABIREdmSKu8BjI2NxYcffghHR0eDy6qZ8sUXX1RRq6hCOAeQiIjIJlV5ADxy5AiKior0n5fG1DV8ycpwDiAREZFNqvIAuH37dpOfkw0ypwdQXVR17SEiIiKzcA4gVVyZ+wDqFoFwDiAREZG1YQCkiuMcQCIiIpvEAEgVxzmARERENokBkCquzH0AGQCJiIisFQMgVVyZ+wByI2giIiJrxQBIFWfWHEAuAiEiIrI2DIBUcWXNAdT1CrIHkIiIyOowAFLFcRUwERGRTWIApIozax9ABkAiIiJrwwBIFcc5gERERDaJAZAqThfuuA8gERGRTWEApIrTXeeXcwCJiIhsCgMgVRz3ASQiIrJJDIBUcZwDSEREZJMYAKniOAeQiIjIJjEAUsVpOAeQiIjIFjEAUsWVuQ8gAyAREZG1YgCkiitzDqBuEQjnABIREVkbBkCqOM4BJCIiskkMgFRx3AeQiIjIJjEAUsWVuQ+gLgAWVV17iIiIyCwMgFRxZc0B1IVCNQMgERGRtWEApIoraw6gTKn9WFxQde0hIiIiszAAUsWVtQ+g/G4AFGquBCYiIrIyDIBUcWXtA1hyXqC6sGraQ0RERGZhAKSKEeIBcwCV9z7nMDAREZFVYQCkihGae5+bnAPIHkAiIiJrxQBIFVNyda+pHkCJBJDZ3a3LAEhERGRNGACpYkpu8GxqH0CAK4GJiIisFAMgVUzJAGiqBxAA5OwBJCIiskYMgFQxJQOgxMQcQIBDwERERFaKAZAqpuR1gKWlfBvpAmAxAyAREZE1YQCkilHfndenC3mmsAeQiIjIKjEAUsXoegDLCoC6q4GouQiEiIjImlSrAPjdd98hJCQEKpUKUVFR2LVrV6l1V61ahe7du8PT0xMuLi6Ijo7Gpk2bqrC1Nq64HD2AHAImIiKyKtUmAMbFxWHcuHF45513cOTIEbRv3x69evVCUlKSyfo7d+5E9+7dsX79ehw6dAidO3dGv379cOTIkSpuuY3SDetyCJiIiMjmVJsA+MUXX2DYsGEYPnw4wsPDMXv2bAQEBGDu3Lkm68+ePRtvvfUWHnvsMdSvXx8ff/wx6tevjzVr1lRxy22ULtTJyxoCZgAkIiKyRtUiABYWFuLQoUPo0aOHQXmPHj2wd+9es55Do9EgKysLbm5updYpKChAZmamwa3GMqsHkBtBExERWaNqEQDT0tKgVqvh7e1tUO7t7Y2UlBSznmPWrFnIycnB888/X2qdGTNmwNXVVX8LCAioVLttWjGHgImIiGxVtQiAOhKJxOC+EMKozJRly5bhgw8+QFxcHLy8vEqtN3nyZGRkZOhvV65cqXSbbZY5PYAcAiYiIrJKpVzDy7Z4eHhAJpMZ9falpqYa9QreLy4uDsOGDcOKFSvQrVu3MusqlUoolcpKt7da0M8BLON8cAiYiIjIKlWLHkA7OztERUUhPj7eoDw+Ph5t2rQp9bhly5Zh8ODB+OWXX9CnT59H3czqRd8DqCi9ju4x9gASERFZlWrRAwgAsbGxGDBgAFq2bIno6GgsWLAASUlJGDlyJADt8O21a9ewZMkSANrwN3DgQHz11Vdo3bq1vvfQ3t4erq6uFnsfNkMfAMvoAdRvBM0ASEREZE2qTQB84YUXkJ6ejmnTpiE5ORkRERFYv349goKCAADJyckGewLOnz8fxcXFGD16NEaPHq0vHzRoEBYvXlzVzbc9+o2gy+oBtDOsS0RERFah2gRAABg1ahRGjRpl8rH7Q92OHTsefYOqM3MuBadfBVz06NtDREREZqsWcwDJAnTX9y1rEQivBUxERGSVGACpYsxZBCJXaT8W5T/69hAREZHZGACpYorNWASicNB+LMp99O0hIiIiszEAUsXohnXLmgOosNd+LMp79O0hIiIiszEAUsXohnUVqtLrsAeQiIjIKjEAUsUU3+3Vk9uXXoc9gERERFaJAZAqRt8DyABokzRqQAigIMvSLSEiIguoVvsAUhXS9QByCNh6FRcAW6cBmdeAFgOBf9YDty8D/24FhMaw7hPfArUCgWPLgYJMILQT0PQFQOViiZYTEdEjxgBIFaPrAeQQsHUpLgBOrAD+GG1Yfur3so/783XD+/+sBda/Cbx+EPCo/3DbSEREFscASBVTzEUgViP3ljawHf8VuLzLvGOc/bTDv4UPGAL+tiUQ/gTQa6b2dbwbAxJJ5dtMREQWxQBIFVPERSBWY9M7wLFfTD9WKwjo+yXgXg9wcAOUzsZ1hAD+eB24uh9oMQho2Bv4dxuwboL28TN/am86Dfpog2O78UDdLg///RAR0SPHAEgVU1SOOYDqAu2iA6ns0berJtFogF8HaHv/dDzDgXpdgfPxwLMLAZ+IBz+PRAI8OcewzC0UCIwG5rUHhNrwsbPrtB+vHACe+BpI3APUj9EGRyIisgkMgFQx5dkGBtAGRqXTo21TTaEuBtaOBY78bFg+fCtQp6X285iPKv863o2B99OBGye1cz7P/AEc+PHekH5xHrBqhPbzY3HAhDOAqpZ2qNjRvfKvT0REjwwDIFWMORtBy0s8xgD48Pw2DDi9+t59lzrAKysBr/CH/1oSCeDTRPt5wGNAj+naz+9cAWaX6F0szgNmBt+7798SeGoeF5AQEVkpBkCqGHN6AKVS7ePFeVwIUlkF2UDaWeC3EcCtf++V95gOtB6tPddVqVYAEDMD+Hse0ORZYNcsw8evHdQuIJHZAQ37AC2HAiEdqraNtuhiApB8VDsvs2Ff7WKrtHPa3liPsHsLcG4naudzOrhZtLlEZLsYAKlizOkBBLTDwMV5XAhSGYU5wNeRQE7qvTJnP2DsUUCutFizED1KewMAlSsQ/75xHXWhdguaktvQPL9Eu7K4pq0mLsoHdswALu8G/JoDZ9YCtYOBK3+Zrr9lSvme3yMMiBqinWvrHaH92awVDFzYog2LYTGch0tEegyAVH4a9b0eQLsHDOsqHIC8W+wBrKjUM8Cq/zMMf3UeAwb+Ydnwd7+2Y1H8+GgUHl2JXAdfaJJPwGvXO6br/joQAHDDuTH+rdUWe3xeQa5GjoJiDdRqgWKNgEYIqDUCaiGg0dz9/O59dYnHNUL7lBJo86QEEu3HEp8DgEQiKVFHe18mlUAhk0AmlUIh1d6Xy6SQSyWQyyR3P969L5UalSlRDLmdAkqFAnZyKezkUoT+8z2CjnwKtcIRGY0HAC5+0Pg0h336aThunXTvHFw7qP2YnfLwvgZp54BNk8uuE/MxENZTO1fTwQ0ozNb+jDIYEtU4DIBUfiXDnG6lb2n0W8EwAJaLEMDvI4Hjy++VNXsJ6P/tI/tjrdEIZOUX43ZuIe7kFeFObiEy8opwO0d3vwgZd8uz8ouRU6hGTkExcgqKkV1QjIJiDQBnANkAQgD8AkDAGXn4ye4TtJBeMHg976xT8M46hTZXFuCyxhs34YrDmvrYronEX5pGCJVcR7JwQ7DkBv4RARAWunKlN27hcekZ1JVexx5NOJKEF36z+wDekjsAgEOa+oiSnjc4RlaUA7ej88x6/mJIAUiQJAvAP3YR2O3cC7ftg9G6YDcic/bgunMEXEUmvPITUaswGflKdxSp3KGAGv7XNyE1qC+KXEPgf/ybB7/Ypv9qb/erFQhEPKudtxv4OODsC5zbCNTrDng21NY5+CPg2QBwcNcOSRORTZMIIYSlG2GrMjMz4erqioyMDLi41KBLZmXdAGaFAZAAU26XPZT3fRfg2iHgP8u4TYi5sm4Ai3sD6SUCU7tYoMt7FZrrl1+kRnJGPm5mFSA1S/tRf8u+93l6TiHUmsr/OrCTSeGglMHRTg5HpQxKuQxKuRRKhRQqGdAhdysaFh5H4+y/4KS+Y/bzZjkEIMspFH6pCQCAdPcoXK77EjRSFW54d4BGKocQAo7ZlyErykW+yhP5Kg+oclNQ58oapLlHIVfpjRwHP/glb0PYxcXQQAqZOg9Xaz8OrzvH4JbzL+yLzW9TeZ3QBOOJwukIlyThvKiDoof4P7gP0tFPtg+/qTvgMek/aCRNQmvpaWwSrSGXyfBf/PjQXktIpJAIjXaOp7oQcA0EMpK0+00+9xPg6Km9VfXcVCIz1di/3yWwB5DKrzBb+9HO6cHzuFSu2o/5GY+2TdWFEMDq1+6FP2c/YPTfpV6TVwiBWzmFuHYnD9fv5OHanXxcu639/HqG9mNadmG5muBoJ0MtBzu42itQy0GB2g52cHVQoJb93c/tFXBWyeGo1N20Yc/p7n07+YP+6Le+9+nJ34CVQ81ql3PuFTjnXtHfd08/BPf0Q+V6b6XxzDxV/oOkCiC4LZB3R7tww6UO4OoPPDVfO7cvNx24uAM4sRKa0E4oCu6MQJdQ/K1Wo6BIg0K1BoXFGhQUa1BQpEZBsQZ5RWrk373lFaqRV2Sq7O7nd+/nF2nu3ldhRdFTyCtUY1NxK2zStLrX1iLgd0RhuHwdsoU9bsEFbaQnoYYMcqjRW7a/XG9doruWtPru91ZGkvZj+gVgXlt9vTSFHyRSKTKVPnApvgWlOgfptZuiTuoOyDRFuNRsAop8mkPiXh9K59pQOdWCo50c9goZpFIJkHEVcPGvefNFiaoAAyCVX2GO9qOd44PrMgCa79ZFYOuHwL9btfe9GgEDVkMonXEruwCX03NwOS0Xl9NzcCktB5fTc5CYlousguIHPrW9QgZvFyU8ne/enEp87qyEl7MKHk5K1HZUQCmvwvlgEc9ob0V52pXOp34Hzq4HLm4HIgdohxv3zNbW9QwHbp6pura51QUggOYvAY+/pg075zYCV/YD4X2Bet3KPt7RQ7tCusmzkAJQ3r0Bikfdcmg0Qh8o7wVFNfKLeiG3UI3cQjXyioqRU6B9bH5OOvxTd+CEYzRcsy7ALedf+OWdxR3hBIk6H+cRiG2aKPgVXUL94n/xquxPuEhycUwTimbSi6W2w6PoOgDAveCqvswpJV7/ecixWcCxB7+fv+Utkarww3VlPZx3boXOuZsglStwtdZjaJSzH9nOIbjp1Q72dnJ45V8EXOpAVssfTiIbKntH2Ds6w8FOBgeFDKq/voREKgXajAVkJv4EajTa8O7kaf4JJ7JBHAKuhBrbhZy4D1jUU/sHcszhsuuuGQscWgx0+i/Q6e0qaZ5N2jfHYG7WnrBJWK3ojXOp2bh4MxtZ+WWHPC9nJfxr28Ovlj38a9nDz1Wl/by29r6rvQISW+1FyUkH8u8A7nW1f5wzrgC1gwB1EQCJdvHDol7aOgDQdzaQdl4bIpUuwOOvAnU7a7dO+fMN7WNNngG6fnDvj7wQ2l4mIbR//B3c2etUhsJiDfIK1cgpLNaGyYIi5BRpkJ9fAEXqMbhe340ijYBX2t/wv3PQ6PgsqQucNZlV1t616sfRSJKIUKnxopsbEi+kyz2RbBeEY84d8Ur6N/Aq0gbWLSFv4aZ7FOpm7sdN/27Q1ApGLXU6FI61YO/gjFpZ52DnWAtKj2A42GmnOtjsz1kNU2P/fpfAAFgJNfYb6PwWYOkzgE9TYOSusuvGvw/s+Uq7V13Pj6umfTYgu6AYp69n4vTVNIQdnYE26asAAOnCGe8UDcPGksN3d/m5qhDs4ai9uTsg2N0RIR6OCHBzgEpRw1dxFmQBEql5vdJUtTQa4NQqwC9SG+JLll/aoQ3dGVeAEyuBy9rfJxpVLUh1gd4GbFc3Q5j0Ki4LH9hLihEiScZf8pZYb/8EOqv34rJDY+QqvaBQ2CHDJQwOCikclArYK2RwUmigUtnDwU4OBzsZ7O1k2t7Ku/d1ZXYyhsuHqcb+/S6BQ8BUfkW6IWAzruyhqqX9aEO/zB+2jLwinLqWgZPXM3DyWiZOXs/ApbQc2It8rLSbikbSRADAbnVjDFK/gxAPJ/T2dkJ9L2c08HFGXU8nBLkz5JVJ6WzpFlBppFLtULip8rpd7t2PGnzvofvrCqGdeiKVA+c3AUFttUPyJ1cBzf4DXD0AHPgBqNtVu2WSkw9wPE77useWAynH9U+V2etbKA/Oh/LmCZPNveLWBgG39pbrLXaWacex/SXp+rJexdvQK2ub9s4DNkHIFwqoJEUAgBuiFk5oQnBKBGNpcTfkQAUX5CJUdgP9FPtxU+aN03ZNkahsCAelHE4KDcLEZaQ7hcFOqYJKIYO97mYnu3ffTvtRZfC5VPvx7n2FjIt2ahIGQCo/zgEsVWGxBmeSM3E46TYOJd7G8asZSLpl/Nt/onw5Rsv/1N9P9WoDnx6zcTq4XtXOwSOyBRLJvUtJNup/r7zN69qPDXppbyW1Hqn9GD1ae31qpTMgU8AFAJo/CWQmA24hwOk/tJc73DEDcK2DgO4fal8v95Z29CI3XbvB9rYPtdMKGvQB2k8AUk8Bf80FUk/rX1LIlChyCYTdbcNtgR5EF/4AwFtyB96yI+iGIxgr/924shpAHpCZaw8XieEG+7OLn0a6cMFl4YLm0n+xQd0SxZBhjPx3bNc0xwp1R/hIbiFReEO7I+Y9ChTDRVqAQoWrPhDeC4dS40BpRsDUlkv1dVR3bzIpezKtAYeAK6HGdiH/PR/Y8BbQ6Eng+Z/KrntipfbatcHtgcFrq6R5VSk1Kx+HE+/gSNJtHE7SBj7tfniGAtzs0czXAW+nvwe/rBOQqe/+4lY4AH2/1PZiEJHtybgGOPsY78958jdtiIwcAGRe0/7jfO0QcOBH7dxTIbTXynZw14ZPnTqPAVcPAnj0f5r3iQgcUNfHIU0YXpf/jsek57BK3Q7x6ig8K9uJ79V9cEgThjqSm7gkfAEAEmggIIEdilEIOe4Pkuawk0uNQqRKIYVKfrdX0k4GlVwG5d06HcI80KmB10N97zX273cJ7AGk8su7rf1oznVIq9kQ8PU7efjrYvrd2y2TvXu1HBSIDKiFFoG1ERlYGxH+LqilUAPzOwB3zt2r6OQDjDtuXVf0IKLycfU3XR7xzL3PdXMffZsCLYcY1+00CcjP1PZS6ub5FWRrh7s9wrQbdNs5Ava1tSvm084DR5cChx/wD/gDREtOIlp+0qDsadluPC3bDQDoKjvywOe4qmqAJGU9SIvz0Sx3HzKkLtik6I6D0sZoV7ALpzTBWFHcFnl3OzldkIPMYkcUFmuQkVdU9pPf5WIvf+gBkBgAqSJ0AdC+9oPr2vgQcHLG3cD37y38dSkdiemGgU8iAcK8nNEiqDZaBNZCi6DaCPVwvDdZu7gA+N9TQOLuewfV6w50fAvwb8mNcolI6/69PpVOhiFSR2GvvVpL4OPAE19rA6FcdXdqjgCyUwFNsXZT7oyr2t/B149oeyEDo7VXZTrwA3DjlHYPS6UzcP2wdhGVez3tqvpyqJN/FnXyz+rv26tzMUj9PwwqUWeabA4gAzS1giC9k4gij0bI82iCAqU7RN4dZDmFIF+iwg3XpnC4dQZFag0u1orGHeGM/GI1Hgs2o7OByo0BkMqvPAFQ10uYk152PSuRlV+EPRfSsfP8Tey9kIbL9wU+qQRoUqcWWoe6oXWoO6KCasNFZWJftzNrtHv6pZ01LG/2EvDU3Ef4DoioRtFdblM3R7LkgqjaQdqPdTsbHtPvK8P7BVlAYS7g7A2k/qMNgXW7aAPkmT+BkA7abZe2TtUOeddpqQ2Smde1V4MpyAJu/fvApkrvaBe8KdJOQ5F2b+6krm+v5AUG2wOA7O7oSKu/AXg88PmpfBgAqfzKEwCdvLUfi3K0vySsbLWmRiNw8noGdp67iZ3n0nAo6bbB5dCkEqCJvytah7qjdag7WgbXhrOpwKeTdxvY9I52eKakZi8BEU8DoZ0ezRshIqoopfO9381eDbW3+z8HgOFbzHu+wlxtiPRtpg2OGydpryUd8Li2F/JOknZBje5vSWnUBdqPO2YATy8o33uiB2IApPLT/dDq5veVRemk3Yy3IBPISrGKAJieXYAdZ29i5/mb2HU+DbdyDC+VFurhiA5hnmhf3wOtQtzKDnw6u2Zpr2KRfvHeNjkA4NUY6DUTCGn/kN8FEZGVsnMA/JprP5fbAX2/0N7uV5irHcJ2dNcuislO1fZC5mdqh6mP/qLdP7Lzf42PpUpjAKTyK08PIKBdIVeQCWQla1e9VTEhBP69mY3406nYcuYGDifdRsm1705KOdrUdUeHME90DPNEgJuDeU+cdweIfw84vMSwXOGg3ZLiqQWmLzVFRETaoGh39/etRKINf4B2PmT7WO2NHhn+daLyq0gATDun3XerihSrNThw+Ta2nrmBLWduGM3la+zngk4NPNExzAuRgbXM2wA19Qxw/Siw8zPtf6qFWYaPuwYA/ecAwe2Mt4QgIiKyIgyAVD4aTQUCoHb/KGQ92gCYW1iM7f/cRPzpFGw/e9NgiwE7mRTRdd3RrZE3ujb0gl8t+wc/YVEecHAhcGGrdv+u0ray8W0G9PwECGrzcN4IERHRI8YASOVTkAGIuxsdlzcAZlx96M3JLijG1jM3sOFECnacS0V+0b1NmGs7KNCloTe6hXuhfZgnnJQP+HbPuwPcuggs+492G4X8TEBTyj5V7vWABr2Bx4bfW2lHRERkIxgAqXxua5fxw9ETUKjMO8b77uL+5KMPpQmZ+UXYeuYG1p9IQcK5mygsceWNQDcH9IzwQfdG3mgRWLv0Sw7dTgRc/LQ79a+LBZL+AnLTSn9R3+ZAl/fuXrtUcIiXiIhsGgMglc+ti9qPtUPMP8Y/Svsx+Zh2Y+QKXPkiI7cI8WduYP2JZOw+n4ZC9b3QF+4uRZemIegV4YvGfi73NmEGtMO4EhlwKQE4v1m7+fLuL4Cb/zz4RRv21W7EGvF0udtLRERkzRgAqXxuX9J+dAs1/xi3UMDeDci7pd2RPrC1WYflFBQj4dg57Dx2DgcvpaM+EjFNsRTZMns0VFwpURHAST/gkod2cUZ+hnbrAXWRdrNSA6XsJRU1GGg7FpDbAy6+5r83IiIiG8QASOWj6wEsTwCUSLRDpydXAv+sLTMAFhZr8PeRY8j6axE6pS1Hb0kBegOAXcnnM3Fg1nXtTac4r/T2KByA9hO0G5Leugh4N7rXS0lERFQDMABS+dw4pf2ou7i5uRr11wbAIz8DkQMBzzBtuUYDTfJxnDt3Bpkn1qHVrTXQb5lcIuhpZEpIawVorywS0gG4vFt7cfSwGO2CjKI8IGmfdoj5yn7tHL3gdtrgqS4CHD20mzILjeHefMFtK3omiIiIbBYDIJkvJ127Dx4ABJUzOIXFaLdLST4GzHkMwN1Qpy6AFEDD+6rfVAVD7t8MtcLaQhLSEdLaQfeueVnWazyQGfv9ERERVXMMgGS+cxsBCG1PWnnnycmVwCurUPhjb9jdOgsAkOqu83hXml0daOq0gnvn0fAMaPmQGk1ERET3q1bdId999x1CQkKgUqkQFRWFXbt2lVk/ISEBUVFRUKlUCA0Nxbx586qopTYo9xawdZr283Kuir2ZVYCFuy/hiUX/oMn1yRhWOAFTigZhkPodLPCdhm1P7EPBm5fg8d9T8Bq4CDKGPyIiokeq2vQAxsXFYdy4cfjuu+/Qtm1bzJ8/H7169cLp06cRGBhoVP/SpUvo3bs3RowYgZ9//hl79uzBqFGj4OnpiWeeecYC78CKpf8L/DYcyE4BPMKA6NEPPCSvUI3Np1Pw+5Fr2HU+DWqN9uK7MqkSxfV6ollzP0xs7PPgzZmJiIjooZMIIYSlG/EwPP7442jRogXmzp2rLwsPD8eTTz6JGTNmGNV/++238eeff+LMmTP6spEjR+LYsWPYt2+fWa+ZmZkJV1dXZGRkwMXFpfJvoqoJARTmaG9SOVCcr71aR1GOdmPkrGQg7QJw9YD2ihgKR2DIesCvucmnU2sE9v6bht+PXMOmkynIKVTrH2sWUAtPNfdD32Z+8HAq/z6ARERED4vN//1+CKpF90thYSEOHTqESZMmGZT36NEDe/fuNXnMvn370KNHD4OymJgY/PjjjygqKoJCoXhk7X2gf9Zpr0Gbn6HdskRdqF3dqi4EZHbasGbnABTlAwWZ2iAnkwPFhYC6AJAp726DItGuetWotQFOXaRdHasu0l7qTGi0oc8cQW2BJ+caXfZMCIHTyZlYfeQa/jh6HalZ9+b1Bbo54MlIfzzZ3A+hnk4P8QQRERFRZVSLAJiWlga1Wg1vb2+Dcm9vb6SkpJg8JiUlxWT94uJipKWlwdfXeJFDQUEBCgruBZzMzMyH0HoTrh0GLmx5NM9dFolMu82K3A4IeBxwraO9XFpQO8CzgXY/v7uu38nDH0ev4/cjV3HuRra+3NVegb5NffF0C3+0CKxteFUOIiIisgrVIgDq3B82hBBlBhBT9U2V68yYMQNTp06tZCvN0Pwl7bCsZxhg56Tt9ZMrtQGtMFsbxNRF2jI7R22PoPpuj55QAxKp9sobQg1IFYBUqv0oU9ztBZRr68iVgH0tbY+hVKZ9fmnp64Iy84uw8UQKVh25ir8v3YJu8oCdTIqu4V54KtIfnRp4wU5erdYWERERVTvVIgB6eHhAJpMZ9falpqYa9fLp+Pj4mKwvl8vh7u5u8pjJkycjNjZWfz8zMxMBAQGVbL0J7nWBXp88/OetgMJiDXaeu4nfj17DltM3UFB87xq8rULc8HSkP3o18YWrvQWHzImIiKhcqkUAtLOzQ1RUFOLj4/HUU0/py+Pj49G/f3+Tx0RHR2PNmjUGZZs3b0bLli1Lnf+nVCqhVFb/BQxCCBy5cgerj1zDmmPXcTu3SP9YPS8nPBXpj/7N/VCntoMFW0lEREQVVS0CIADExsZiwIABaNmyJaKjo7FgwQIkJSVh5MiRALS9d9euXcOSJUsAaFf8fvvtt4iNjcWIESOwb98+/Pjjj1i2bJkl34ZFXUjNwp/HkvHn0Wu4nJ6rL/dwUqJ/cz88FemPxn4unNdHRERk46pNAHzhhReQnp6OadOmITk5GREREVi/fj2CgrSrVpOTk5GUlKSvHxISgvXr12P8+PGYM2cO/Pz88PXXX9e4PQCv3s7FmmPJ+PPYdZxJvreoxV4hQ88IHzwZ6Y+2dd0hl3FeHxERUXVRbfYBtARb3UfoZlYB1p/Qhr5Dibf15XKpBB3CPNGvmS96NPKBIzdpJiKiashW/34/TPwLX0Nk5BVh08kUrDl+HXsupOHuhTkgkQCPh7jhiWb+6BXhg9qOdpZtKBERET1yDIDVWFZ+Ebb9k4q1x5ORcPYmCtX3VvA2C6iFJ5r5oW9TX3i7qCzYSiIiIqpqDIDVTEZuEeLP3MCGE8nYdT7NIPSFeTvhiWZ+6NfMD0HujhZsJREREVkSA2A1kJ5dgPjTN7D+ZAr2XkhDsebetM5QT0f0jvBF32a+aOhTM+c5EBERkSEGQBuVnJGHLadvYMPJFPx1MR0lMh8a+jijZ4QPejfxRX0vJ27bQkRERAYYAG2EEAKnrmdiy5kb2HLmBk5eM7wOcYS/C3pF+KJnhA/qejpZqJVERERkCxgArVh+kRr7LqZj65kb2HomFckZ+frHJBIgMqAWekb4oGdjXwS686ocREREZB4GQCu09cwNrDh4FTvP30RuoVpfbq+QoX19D3Rr5I0uDb3g4VT9L0tHREREDx8DoBU6knQHG0+lAAC8XZToGu6N7uHeiK7rDpVCZuHWERERka1jALRCfZv5QiaVoFu4NyL8ee1dIiIiergYAK1QQx8XbtlCREREj4zU0g0gIiIioqrFAEhERERUwzAAEhEREdUwDIBERERENQwDIBEREVENwwBIREREVMMwABIRERHVMAyARERERDUMAyARERFRDcMASERERFTDMAASERER1TAMgEREREQ1DAMgERERUQ0jt3QDbJkQAgCQmZlp4ZYQERGRuXR/t3V/x2siBsBKyMrKAgAEBARYuCVERERUXllZWXB1dbV0MyxCImpy/K0kjUaD69evw9nZGRKJxNLNsajMzEwEBATgypUrcHFxsXRzqh2e30eL5/fR4vl9tHh+y08IgaysLPj5+UEqrZmz4dgDWAlSqRR16tSxdDOsiouLC38BPUI8v48Wz++jxfP7aPH8lk9N7fnTqZmxl4iIiKgGYwAkIiIiqmEYAOmhUCqVmDJlCpRKpaWbUi3x/D5aPL+PFs/vo8XzSxXBRSBERERENQx7AImIiIhqGAZAIiIiohqGAZCIiIiohmEAJCIiIqphGACp0r777juEhIRApVIhKioKu3btsnSTbNKMGTPw2GOPwdnZGV5eXnjyySdx9uxZgzpCCHzwwQfw8/ODvb09OnXqhFOnTlmoxbZtxowZkEgkGDdunL6M57dyrl27hldeeQXu7u5wcHBA8+bNcejQIf3jPL8VV1xcjHfffRchISGwt7dHaGgopk2bBo1Go6/D80vlIogqYfny5UKhUIjvv/9enD59WowdO1Y4OjqKxMRESzfN5sTExIhFixaJkydPiqNHj4o+ffqIwMBAkZ2dra/zySefCGdnZ/Hbb7+JEydOiBdeeEH4+vqKzMxMC7bc9uzfv18EBweLpk2birFjx+rLeX4r7tatWyIoKEgMHjxY/P333+LSpUtiy5Yt4sKFC/o6PL8VN336dOHu7i7Wrl0rLl26JFasWCGcnJzE7Nmz9XV4fqk8GACpUlq1aiVGjhxpUNawYUMxadIkC7Wo+khNTRUAREJCghBCCI1GI3x8fMQnn3yir5Ofny9cXV3FvHnzLNVMm5OVlSXq168v4uPjRceOHfUBkOe3ct5++23Rrl27Uh/n+a2cPn36iKFDhxqUPf300+KVV14RQvD8UvlxCJgqrLCwEIcOHUKPHj0Mynv06IG9e/daqFXVR0ZGBgDAzc0NAHDp0iWkpKQYnG+lUomOHTvyfJfD6NGj0adPH3Tr1s2gnOe3cv7880+0bNkSzz33HLy8vBAZGYnvv/9e/zjPb+W0a9cOW7duxblz5wAAx44dw+7du9G7d28APL9UfnJLN4BsV1paGtRqNby9vQ3Kvb29kZKSYqFWVQ9CCMTGxqJdu3aIiIgAAP05NXW+ExMTq7yNtmj58uU4fPgwDhw4YPQYz2/lXLx4EXPnzkVsbCz++9//Yv/+/RgzZgyUSiUGDhzI81tJb7/9NjIyMtCwYUPIZDKo1Wp89NFHePHFFwHw+5fKjwGQKk0ikRjcF0IYlVH5vP766zh+/Dh2795t9BjPd8VcuXIFY8eOxebNm6FSqUqtx/NbMRqNBi1btsTHH38MAIiMjMSpU6cwd+5cDBw4UF+P57di4uLi8PPPP+OXX35B48aNcfToUYwbNw5+fn4YNGiQvh7PL5mLQ8BUYR4eHpDJZEa9fampqUb/hZL53njjDfz555/Yvn076tSpoy/38fEBAJ7vCjp06BBSU1MRFRUFuVwOuVyOhIQEfP3115DL5fpzyPNbMb6+vmjUqJFBWXh4OJKSkgDw+7eyJk6ciEmTJuE///kPmjRpggEDBmD8+PGYMWMGAJ5fKj8GQKowOzs7REVFIT4+3qA8Pj4ebdq0sVCrbJcQAq+//jpWrVqFbdu2ISQkxODxkJAQ+Pj4GJzvwsJCJCQk8HyboWvXrjhx4gSOHj2qv7Vs2RIvv/wyjh49itDQUJ7fSmjbtq3RtkXnzp1DUFAQAH7/VlZubi6kUsM/2TKZTL8NDM8vlZsFF6BQNaDbBubHH38Up0+fFuPGjROOjo7i8uXLlm6azXnttdeEq6ur2LFjh0hOTtbfcnNz9XU++eQT4erqKlatWiVOnDghXnzxRW7zUAklVwELwfNbGfv37xdyuVx89NFH4vz582Lp0qXCwcFB/Pzzz/o6PL8VN2jQIOHv76/fBmbVqlXCw8NDvPXWW/o6PL9UHgyAVGlz5swRQUFBws7OTrRo0UK/bQmVDwCTt0WLFunraDQaMWXKFOHj4yOUSqXo0KGDOHHihOUabePuD4A8v5WzZs0aERERIZRKpWjYsKFYsGCBweM8vxWXmZkpxo4dKwIDA4VKpRKhoaHinXfeEQUFBfo6PL9UHhIhhLBkDyQRERERVS3OASQiIiKqYRgAiYiIiGoYBkAiIiKiGoYBkIiIiKiGYQAkIiIiqmEYAImIiIhqGAZAIiIiohqGAZCI6D6dOnXCuHHjLPb66enp8PLywuXLlx/q8544cQJ16tRBTk7OQ31eIrI9DIBERFZmxowZ6NevH4KDg82q369fP3Tr1s3kY/v27YNEIsHhw4fRpEkTtGrVCl9++eVDbC0R2SIGQCKySUVFRZZuwiORl5eHH3/8EcOHDzf7mGHDhmHbtm1ITEw0emzhwoVo3rw5WrRoAQAYMmQI5s6dC7Va/dDaTES2hwGQiCpFCIFPP/0UoaGhsLe3R7NmzbBy5Ur94zt27IBEIsHWrVvRsmVLODg4oE2bNjh79qzB86xZswZRUVFQqVQIDQ3F1KlTUVxcrH9cIpFg3rx56N+/PxwdHTF9+nQAwPTp0+Hl5QVnZ2cMHz4ckyZNQvPmzQEAO3fuhEKhQEpKisFrTZgwAR06dDD7Pd6+fRsDBw5E7dq14eDggF69euH8+fP6xxMTE9GvXz/Url0bjo6OaNy4MdavX68/9uWXX4anpyfs7e1Rv359LFq0qNTX2rBhA+RyOaKjow3KT58+jd69e8PJyQne3t4YMGAA0tLSAAB9+/aFl5cXFi9ebHBMbm4u4uLiMGzYMH1ZTEwM0tPTkZCQYPb7J6LqhwGQiCrl3XffxaJFizB37lycOnUK48ePxyuvvGIUMN555x3MmjULBw8ehFwux9ChQ/WPbdq0Ca+88grGjBmD06dPY/78+Vi8eDE++ugjg+eYMmUK+vfvjxMnTmDo0KFYunQpPvroI8ycOROHDh1CYGAg5s6dq6/foUMHhIaG4n//+5++rLi4GD///DOGDBli9nscPHgwDh48iD///BP79u2DEAK9e/fW90KOHj0aBQUF2LlzJ06cOIGZM2fCyckJAPDee+/h9OnT2LBhA86cOYO5c+fCw8Oj1NfauXMnWrZsaVCWnJyMjh07onnz5jh48CA2btyIGzdu4PnnnwcAyOVyDBw4EIsXL0bJy7uvWLEChYWFePnll/VldnZ2aNasGXbt2mX2+yeiakgQEVVQdna2UKlUYu/evQblw4YNEy+++KIQQojt27cLAGLLli36x9etWycAiLy8PCGEEO3btxcff/yxwXP873//E76+vvr7AMS4ceMM6jz++ONi9OjRBmVt27YVzZo109+fOXOmCA8P199fvXq1cHJyEtnZ2aW+r44dO4qxY8cKIYQ4d+6cACD27NmjfzwtLU3Y29uLX3/9VQghRJMmTcQHH3xg8rn69esnhgwZUupr3a9///5i6NChBmXvvfee6NGjh0HZlStXBABx9uxZIYQQZ86cEQDEtm3b9HU6dOig/zqU9NRTT4nBgweb3SYiqn7YA0hEFXb69Gnk5+eje/fucHJy0t+WLFmCf//916Bu06ZN9Z/7+voCAFJTUwEAhw4dwrRp0wyeY8SIEUhOTkZubq7+uPt7xs6ePYtWrVoZlN1/f/Dgwbhw4QL++usvANo5cc8//zwcHR2xa9cug9dcunSp0Xs8c+YM5HI5Hn/8cX2Zu7s7GjRogDNnzgAAxowZg+nTp6Nt27aYMmUKjh8/rq/72muvYfny5WjevDneeust7N27t8xzmpeXB5VKZVB26NAhbN++3aCtDRs2BAD9eW7YsCHatGmDhQsX6st37dpl0NOqY29vb3BeiajmkVu6AURkuzQaDQBg3bp18Pf3N3hMqVQa3FcoFPrPJRKJwfEajQZTp07F008/bfQaJcOQo6Oj0eO659IRJYZAAcDLywv9+vXDokWLEBoaivXr12PHjh0AtIHy6NGj+rre3t5Gz3//85Us17328OHDERMTg3Xr1mHz5s2YMWMGZs2ahTfeeAO9evVCYmIi1q1bhy1btqBr164YPXo0Pv/8c5PP6+Hhgdu3bxuUaTQa9OvXDzNnzjSqrwvTgHYxyOuvv445c+Zg0aJFCAoKQteuXY2OuXXrFurWrWvy9YmoZmAPIBFVWKNGjaBUKpGUlIR69eoZ3AICAsx+nhYtWuDs2bNGz1GvXj1IpaX/mmrQoAH2799vUHbw4EGjesOHD8fy5csxf/581K1bF23btgWg7Qkr+VrOzs4m32NxcTH+/vtvfVl6ejrOnTuH8PBwfVlAQABGjhyJVatWYcKECfj+++/1j3l6emLw4MH4+eefMXv2bCxYsKDU9xQZGYnTp08bnZ9Tp04hODjY6PyUDMXPP/88ZDIZfvnlF/z0008YMmSIUUAGgJMnTyIyMrLUNhBR9cceQCKqMGdnZ7z55psYP348NBoN2rVrh8zMTOzduxdOTk4YNGiQWc/z/vvvo2/fvggICMBzzz0HqVSK48eP48SJE/rVvqa88cYbGDFiBFq2bIk2bdogLi4Ox48fR2hoqEG9mJgYuLq6Yvr06Zg2bVq53mP9+vXRv39/jBgxAvPnz4ezszMmTZoEf39/9O/fHwAwbtw49OrVC2FhYbh9+za2bdumD4fvv/8+oqKi0LhxYxQUFGDt2rUGwfF+MTExmDx5Mm7fvo3atWsD0C4y+f777/Hiiy9i4sSJ8PDwwIULF7B8+XJ8//33kMlkAAAnJye88MIL+O9//4uMjAwMHjzY6PkvX76Ma9eulbpvIBHVDOwBJKJK+fDDD/H+++9jxowZCA8PR0xMDNasWYOQkBCznyMmJgZr165FfHw8HnvsMbRu3RpffPEFgoKCyjzu5ZdfxuTJk/Hmm2+iRYsWuHTpEgYPHmw0h04qlWLw4MFQq9UYOHBgud/jokWLEBUVhb59+yI6OhpCCKxfv14/rK1WqzF69GiEh4ejZ8+eaNCgAb777jsA2lW3kydPRtOmTdGhQwfIZDIsX7681Ndq0qQJWrZsiV9//VVf5ufnhz179kCtViMmJgYREREYO3YsXF1djXpIhw0bhtu3b6Nbt24IDAw0ev5ly5ahR48eDzy3RFS9SURpE1yIiGxQ9+7d4ePjY7D1CwCMGDECN27cwJ9//mmhlplv/fr1ePPNN3Hy5Mkyh8DLq6CgAPXr18eyZcv0w+BEVDNxCJiIbFZubi7mzZuHmJgYyGQyLFu2DFu2bEF8fLy+TkZGBg4cOIClS5fijz/+sGBrzde7d2+cP38e165dK9dcygdJTEzEO++8w/BHROwBJCLblZeXh379+uHw4cMoKChAgwYN8O677xqsJu7UqRP279+PV199ldfAJSK6iwGQiIiIqIbhIhAiIiKiGoYBkIiIiKiGYQAkIiIiqmEYAImIiIhqGAZAIiIiohqGAZCIiIiohmEAJCIiIqphGACJiIiIahgGQCIiIqIa5v8Bnd0PEzeoOX8AAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sp = infoWidget.spectrum\n", - "sp.data_type = 'spectrum'\n", - "gg = eels_tools.fit_plasmon(sp, 20, 30)\n", - "\n", - "gg.plot()\n", - "gg.view.axis.plot(sp.energy_loss, sp)\n", - "gg.metadata" - ] - }, { "cell_type": "code", "execution_count": null, @@ -629,166 +350,6 @@ " return ssd # /np.pi" ] }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 96, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "spectrum = infoWidget.get_spectrum()\n", - "\n", - "res = infoWidget.datasets['resolution_function']\n", - "infoWidget.axis.plot(infoWidget.energy_scale,spectrum)\n", - "\n", - "infoWidget.axis.plot(infoWidget.energy_scale,res)\n", - "infoWidget.axis.plot(infoWidget.energy_scale,spectrum-res)\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(dict_keys(['Channel_000', 'Channel_001', 'Channel_002', '_relationship', 'resolution_function']),\n", - " {'main_dataset': 'Channel_000',\n", - " 'image': 'Channel_001',\n", - " 'low_loss': 'Channel_002',\n", - " 'survey_image': 'Channel_000: HAADF Image (SI Survey)',\n", - " 'resolution_function': 'resolution_function'})" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "infoWidget.datasets.keys(), infoWidget.datasets['_relationship']" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "infoWidget.status_message('what')" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "infoWidget.low_loss.get_resolution_function(1)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'beamkV' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[21], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m infoWidget\u001b[38;5;241m.\u001b[39mcore_loss\u001b[38;5;241m.\u001b[39mdo_fit()\n", - "File \u001b[1;32m~\\Documents\\Github\\pyTEMlib\\notebooks\\Spectroscopy\\../..\\pyTEMlib\\core_loss_widget.py:482\u001b[0m, in \u001b[0;36mCoreLoss.do_fit\u001b[1;34m(self, value)\u001b[0m\n\u001b[0;32m 0\u001b[0m \n", - "\u001b[1;31mNameError\u001b[0m: name 'beamkV' is not defined" - ] - } - ], - "source": [ - "infoWidget.core_loss.do_fit()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "infoWidget.info.update_sidebar()" - ] - }, - { - "cell_type": "code", - "execution_count": 259, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9" - ] - }, - "execution_count": 259, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spectrum = spectrum1.view.get_spectrum()\n", - "spectrum1.view.x\n" - ] - }, - { - "cell_type": "code", - "execution_count": 260, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8b4b5f480b5444a3b6721c9e61ce50ae", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrvElEQVR4nO3ddXhTVwMG8DfSpl7q3tJiRYoWZ1DcxwwmMHQCg+EbYxswGKzAXLENmDBk+zYYLkPGkGHDZUiBIqVQoG5JzvdHySUhaalBbsj7e54+kHNvkpPbNH17VCGEECAiIiIiu6G0dgWIiIiI6OFiACQiIiKyMwyARERERHaGAZCIiIjIzjAAEhEREdkZBkAiIiIiO8MASERERGRnGACJiIiI7AwDIBEREZGdYQAkIiIisjMMgERERER2hgGQiIiIyM4wABIRERHZGQZAIiIiIjvDAEhERERkZxgAiYiIiOwMAyARERGRnWEAJCIiIrIzDIBEREREdoYBkIiIiMjOMAASERER2RkGQCIiIiI7wwBIREREZGcYAImIiIjsDAOgDPzzzz948sknER4eDo1Gg4CAADRt2hRjxoyxdtVkaevWrVAoFNi6dau1q0Iy9sEHH2D58uUP9Dn69+8PhUJR6JfB+fPnizzvvffeM3lMNze3+z53WT831q9fjw4dOiA4OBgajQbBwcGIi4vD9OnTS3wdHoSH8f0rbwsXLoRCocC+ffusXRWi+1JbuwL2bvXq1Xj88ccRFxeHmTNnIigoCFevXsW+ffuwZMkSfPzxx9auIpFN+uCDD/DMM8/giSeeeKDP4+zsjM2bNxfr3Ndffx0vvPCCWXloaGiJnrOsnxuzZ8/GkCFD8PTTT+Orr76Ct7c3EhMTsXPnTvz666946623SlSfB+Fhff+I7BUDoJXNnDkTkZGRWL9+PdTqu9+O5557DjNnzrRizYhKLysrCy4uLtauxkOhVCrRpEmTYp0bHh5e7HOLUtbPjfj4eLRs2RK//vqrSfmLL74IvV5f5vo9bNnZ2XBycjJpdSWiorEL2MpSUlLg6+tr8iFuoFSafnvy8/Px5ptvIjAwEC4uLmjRogX27NmDihUron///tJ57733nsUPQkP3xPnz503Kly5diqZNm8LV1RVubm7o2LEj/v33X7P779u3D48//ji8vb3h5OSEevXqYdmyZSbnVKxYsdBuLuMu29OnT+OFF16Av78/NBoNqlevjq+//trsOU+ePIlOnTrBxcUFvr6+GDx4MNLT0y1dyiIZXvvmzZvx8ssvw8fHBx4eHujbty8yMzORlJSEXr16oUKFCggKCsLYsWORn59v8hh5eXmYOnUqoqOjodFo4OfnhwEDBuD69etm17NDhw4ICgqCs7MzqlevjrfeeguZmZkm5xm6+s6cOYMuXbrAzc0NYWFhGDNmDHJzc0v0+jZu3IgePXogNDQUTk5OqFy5Ml599VXcuHHD7NwVK1agdu3a0Gg0iIqKwueff27xPXP79m0MGjQI3t7ecHNzQ9euXXHu3DmzLkvDfQ8cOIBnnnkGXl5eqFSpEgBACIFvvvkGdevWhbOzM7y8vPDMM8/g3LlzJs8lhMAHH3yAiIgIODk5ITY2Fhs3bkRcXBzi4uKk83JycjBmzBjUrVsXnp6e8Pb2RtOmTbFixQqTx1MoFMjMzMT3338vvf+MHycpKQmvvvoqQkND4ejoiMjISEyePBlarbZE191aSvK5Udj9g4KCLB679/4KhQLDhg3DnDlzULVqVWg0GtSoUQNLliwxu29xr2tubi6mTJmC6tWrw8nJCT4+PmjdujV27twpPWdh3z/Dz/KGDRswcOBA+Pn5wcXFBbm5uejfvz8qVqxoVi9L72/D61qwYAGqVasGZ2dnxMbGYvfu3RBC4MMPP0RkZCTc3NzQpk0bnDlz5r7X1RLDz/nJkyfRsWNHuLq6IigoSOpq3717N1q0aAFXV1dUrVoV33//vcn9r1+/jtdeew01atSAm5sb/P390aZNG2zfvt3suS5duoRnnnkG7u7uqFChAnr37o29e/dCoVBg4cKFJucW5/O8OAzX8ccff0T16tXh4uKCOnXqYNWqVWbn3u9zXwiBgIAADB06VCrT6XTw8vKCUqnEtWvXpPJPPvkEarUat2/fLnGd6Q5BVvXSSy8JAOL1118Xu3fvFnl5eYWe269fP6FQKMQbb7whNmzYID755BMREhIiPDw8RL9+/aTzJk2aJCx9axcsWCAAiISEBKls2rRpQqFQiIEDB4pVq1aJ3377TTRt2lS4urqKY8eOSedt3rxZODo6iscee0wsXbpUrFu3TvTv318AEAsWLJDOO3DggNi1a5f0tWPHDhETEyNcXV3F2bNnhRBCHDt2THh6eoqYmBjxww8/iA0bNogxY8YIpVIp3nvvPemxkpKShL+/vwgJCRELFiwQa9asEb179xbh4eECgNiyZUuxr7PhtUdGRooxY8aIDRs2iBkzZgiVSiWef/55Ub9+fTF16lSxceNGMW7cOAFAfPzxx9L9dTqd6NSpk3B1dRWTJ08WGzduFN9++60ICQkRNWrUEFlZWdK577//vvj000/F6tWrxdatW8Xs2bNFZGSkaN26tdn309HRUVSvXl189NFHYtOmTWLixIlCoVCIyZMnF/u1CSHErFmzRHx8vPjjjz/Etm3bxPfffy/q1KkjqlWrZvKeWrt2rVAqlSIuLk78/vvv4pdffhGNGzcWFStWNHnP6HQ60aJFC+Hk5CSmT58uNmzYICZPniyqVKkiAIhJkyZJ5xrebxEREWLcuHFi48aNYvny5UIIIV5++WXh4OAgxowZI9atWyd+/vlnER0dLQICAkRSUpL0GOPHjxcAxCuvvCLWrVsn5s2bJ8LDw0VQUJBo1aqVdN7t27dF//79xY8//ig2b94s1q1bJ8aOHSuUSqX4/vvvpfN27dolnJ2dRZcuXaT3ouH9fPXqVREWFiYiIiLEnDlzxKZNm8T7778vNBqN6N+/f4mue79+/YSrq6vIz883+9LpdNJ5CQkJAoCYMWOGxXMtPWZRSvK5YUm7du2EWq0WkyZNEgcPHhRarbbQcwGIsLAwUaNGDbF48WLxxx9/iE6dOgkA4pdffpHOK+51zc/PF61btxZqtVqMHTtWrFmzRvzxxx/i7bffFosXLxZCFP39M/wsh4SEiFdeeUWsXbtW/Prrr0Kr1Yp+/fqJiIgIs9dg6TPR8J5t1qyZ+O2338Tvv/8uqlatKry9vcWoUaNEjx49xKpVq8SiRYtEQECAqF27ttDr9UVeV0Pd9u7dK5UZ/5x//vnnYuPGjWLAgAECgBg/fryoWrWq+O6778T69etFt27dBACxb98+6f4nT54UQ4YMEUuWLBFbt24Vq1atEoMGDRJKpdLkMzAjI0NUrlxZeHt7i6+//lqsX79ejBo1SkRGRpp9Thf387w4AIiKFSuKRo0aiWXLlok1a9aIuLg4oVarpc98IYr/uf/cc8+JqlWrSrd3794tAAhnZ2exaNEiqbxz586iUaNGJaormWIAtLIbN26IFi1aCAACgHBwcBDNmjUT8fHxIj09XTrvxIkTAoAYNWqUyf0XLVokAJQqAF68eFGo1Wrx+uuvm5yXnp4uAgMDRa9evaSy6OhoUa9ePbNfVt26dRNBQUEmv+yMDRs2TKjVarFmzRqprGPHjiI0NFSkpqaanevk5CRu3rwphBBi3LhxQqFQiIMHD5qc1759+1IHwHtf6xNPPCEAiE8++cSkvG7duqJ+/frS7cWLFwsA4n//+5/JeXv37hUAxDfffGPxefV6vcjPzxfbtm0TAMShQ4ekY/369RMAxLJly0zu06VLF1GtWrViv7bCnvPChQsCgFixYoV0rGHDhiIsLEzk5uZKZenp6cLHx8fkPbN69WoBQMyaNcvksePj4wsNgBMnTjQ5d9euXWZBWgghEhMThbOzs3jzzTeFEELcvHlTaDQa8eyzz1q8v3EAvJdWqxX5+fli0KBBol69eibHXF1dTX4uDF599VXh5uYmLly4YFL+0UcfCQAmf/jcj+F7aOmrbdu20nmGAFjY1/bt200e834BsLifG4U5c+aMqFWrlnR/Z2dn0bZtW/HVV1+ZhUnDcePArtVqRXR0tKhcubJUVtzr+sMPPwgAYt68eUXWsbDvn+FnuW/fvmbHShoAAwMDRUZGhlS2fPlyAUDUrVvXJOx99tlnAoA4fPhwkXUuLADe+9mRn58v/Pz8BABx4MABqTwlJUWoVCoxevToQp/D8J5v27atePLJJ6Xyr7/+WgAQa9euNTn/1VdfNQt2pf08twSACAgIEGlpaVJZUlKSUCqVIj4+Xior7uf+t99+KwCIixcvCiGEmDp1qoiOjhaPP/64GDBggBBCiLy8POHq6irefvvtYteTzLEL2Mp8fHywfft27N27F9OnT0ePHj3w33//Yfz48YiJiZG68LZs2QIA6N27t8n9e/XqZbEbqDjWr18PrVaLvn37QqvVSl9OTk5o1aqV1GV75swZnDx5Unpu43O7dOmCq1ev4tSpU2aPP336dHz11VeYPXs2OnfuDKCgC+/PP//Ek08+CRcXF7PHysnJwe7du6XXXLNmTdSpU8fkcS0Noi+ubt26mdyuXr06AKBr165m5RcuXJBur1q1ChUqVED37t1N6ly3bl0EBgaadG+fO3cOL7zwAgIDA6FSqeDg4IBWrVoBAE6cOGHyPAqFAt27dzcpq127tslzF0dycjIGDx6MsLAwqNVqODg4ICIiwuQ5MzMzsW/fPjzxxBNwdHSU7uvm5mZWh23btgEoeH8Ze/755wutw9NPP21ye9WqVVAoFOjTp4/JNQsMDESdOnWka7Z7927k5uaaPVeTJk0sduf98ssvaN68Odzc3KTX+t1335ld28KsWrUKrVu3RnBwsEm9DO9Rw2svLmdnZ+zdu9fs65tvvjE7d8SIERbPrVu3bomes7ifG4WpVKkSDh06hG3btmHy5Mlo164d9u7di2HDhqFp06bIyckxOb9t27YICAiQbqtUKjz77LM4c+YMLl26BKD413Xt2rVwcnLCwIEDS/Sa73Xv+600WrduDVdXV+m24fOgc+fOJl3GhvKS/lwaKBQKdOnSRbqtVqtRuXJlBAUFoV69elK5t7c3/P39zZ5n9uzZqF+/PpycnKT3/J9//mnynt+2bRvc3d3RqVMnk/ve+zNb2s/zorRu3Rru7u7S7YCAAJPXUZLP/Xbt2gEANm3aBKBgeEv79u3Rrl07bNy4EQCwa9cuZGZmSudS6XASiEzExsYiNjYWQMFYv3HjxuHTTz/FzJkzMXPmTKSkpAAAAgMDTe6nVqvh4+NTquc0jKdo2LChxeOGsUCG88aOHYuxY8daPPfeXzg//fQT3n77bUycOBGDBg2SylNSUqDVavHll1/iyy+/LPKxUlJSEBkZaXb83mtQEt7e3ia3DUHIUrnxL8Fr167h9u3bJsHJUp0zMjLw2GOPwcnJCVOnTkXVqlXh4uKCxMREPPXUU8jOzja5n4uLC5ycnEzKNBqN2S/gouj1enTo0AFXrlzBhAkTEBMTA1dXV+j1ejRp0kR6zlu3bkljbO51b1lKSgrUarXZdbF0X4N7x5Rdu3at0OcDgKioKOm5Cnvse8t+++039OrVCz179sQbb7yBwMBAqNVqzJo1C/Pnzy+0bvfWa+XKlXBwcLB4/H7h6V5KpVL62b2f0NDQYp9bHPf73CiKUqlEy5Yt0bJlSwAFfyAMGjQIS5cuxfz58/Haa69J51r6mTOUpaSkIDQ0tNjX9fr16wgODi7WWMWiFDaGsSRK8nkAoEQ/l8Ys/Zw7OjqaPY+h3Ph5PvnkE4wZMwaDBw/G+++/D19fX6hUKkyYMMEkAKakpBTrZ6g0n+f3Y+l3kEajkT57SvK5HxERgUqVKmHTpk149tlnsWvXLowZMwaVK1fG8OHDcerUKWzatAnOzs5o1qxZiepJphgAZcjBwQGTJk3Cp59+iqNHjwK4+wOWlJSEkJAQ6VytViv9AjUwfNDk5uZCo9FI5ff+UPv6+gIAfv31V6m1yBLDeePHj8dTTz1l8Zxq1apJ/9+4cSMGDhyI/v37Y/LkySbneXl5QaVS4cUXXzQZ6GvMEPp8fHyQlJRkdtxS2YPm6+sLHx8frFu3zuJxw1+/mzdvxpUrV7B161ap1Q/AAx2ofPToURw6dAgLFy5Ev379pPJ7B617eXlBoVCYDKQ2uPea+vj4QKvV4ubNmya/pIq69vcOsvf19YVCocD27dtN3ocGhjLDe7uwehm3Av7000+IjIzE0qVLTZ6vJJNmfH19Ubt2bUybNs3i8eDg4GI/lpxY+twoCVdXV4wfPx5Lly41u39RP4eG719xr6ufnx/+/vtv6PX6MoVASxPdnJycLL4XShpo5OSnn35CXFwcZs2aZVJ+72Q4Hx8f7Nmzx+z+937vSvp5Xh5K8rkPFLQ4r1ixAtu2bYNer0dcXBzc3d0RHByMjRs3YtOmTXjssccsfq5Q8TEAWtnVq1ct/iVr+MvO8KFpmAG3aNEiNGjQQDpv2bJlZjPsDL8wDx8+bNK6t3LlSpPzOnbsCLVajbNnzxbZnVKtWjVUqVIFhw4dwgcffFDk6zl48CCefvpptGnTBnPnzjU77uLigtatW+Pff/9F7dq1C21RAwq6FWbOnIlDhw6ZdAP//PPPRdbhQejWrRuWLFkCnU6Hxo0bF3qe4ZfSvR9Mc+bMeWB1K+5zurq6IjY2FsuXL8dHH30kXfuMjAyzGXutWrXCzJkzsXTpUgwZMkQqtzTzszDdunXD9OnTcfnyZbPuXWONGzeGRqPB0qVLTX4h7d69GxcuXDAJgAqFAo6Ojia//JOSksxmAQOmLRD31mvNmjWoVKkSvLy8iv165KS4nxvldf8///wT165dk1qTdDodli5dikqVKklrGBb3unbu3BmLFy/GwoULi+wGLuz7V5SKFSsiOTnZpK55eXlYv359iR5HThQKhdnP9uHDh7Fr1y6EhYVJZa1atcKyZcuwdu1aqdsdMP+ZLcnneXkpyec+UNANPHfuXHz22Wdo0qSJ9Ad227Zt8fvvv2Pv3r0Pre6PMgZAK+vYsSNCQ0PRvXt3REdHQ6/X4+DBg/j444/h5uaGESNGACgYg9KnTx989tlncHBwQLt27XD06FF89NFH8PDwMHnMLl26wNvbG4MGDcKUKVOgVquxcOFCJCYmmpxXsWJFTJkyBe+88w7OnTuHTp06wcvLC9euXcOePXvg6uoqteDNmTMHnTt3RseOHdG/f3+EhITg5s2bOHHiBA4cOIBffvkFaWlp6NKlC5ydnTF27Fiz1fBr1KgBDw8PfP7552jRogUee+wxDBkyBBUrVkR6ejrOnDmDlStXSovqjhw5EvPnz0fXrl0xdepUBAQEYNGiRTh58uSD+nYU6rnnnsOiRYvQpUsXjBgxAo0aNYKDgwMuXbqELVu2oEePHnjyySfRrFkzeHl5YfDgwZg0aRIcHBywaNEiHDp06IHVLTo6GpUqVcJbb70FIQS8vb2xcuVKabyMsSlTpqBr167o2LEjRowYAZ1Ohw8//BBubm64efOmdF6nTp3QvHlzjBkzBmlpaWjQoAF27dqFH374AUDxlhpp3rw5XnnlFQwYMAD79u1Dy5Yt4erqiqtXr+Lvv/9GTEwMhgwZAm9vb4wePRrx8fHw8vLCk08+iUuXLmHy5MkICgoyea5u3brht99+w2uvvYZnnnkGiYmJeP/99xEUFITTp0+bPH9MTAy2bt2KlStXIigoCO7u7qhWrRqmTJmCjRs3olmzZhg+fDiqVauGnJwcnD9/HmvWrMHs2bNLtDCzXq+Xxi/dq169eia/vC9evGjxXD8/P2npHKAgYN27Rh9QEOINP4fF+dwoTM2aNdG2bVt07twZlSpVQk5ODv755x98/PHHCAgIMBm2ARS0GrVp0wYTJkyAq6srvvnmG5w8edIkXBT3uj7//PNYsGABBg8ejFOnTqF169bQ6/X4559/UL16dTz33HMACv/+FeXZZ5/FxIkT8dxzz+GNN95ATk4OvvjiC+h0uiLvJ2fdunXD+++/j0mTJqFVq1Y4deoUpkyZgsjISJM//vv164dPP/0Uffr0wdSpU1G5cmWsXbtWCr/GP0fF+Twvb8X93AeANm3aSEv9GPcitWvXTurl4Pi/cmDlSSh2b+nSpeKFF14QVapUEW5ubsLBwUGEh4eLF198URw/ftzk3NzcXDFmzBjh7+8vnJycRJMmTcSuXbtERESE2Wy5PXv2iGbNmglXV1cREhIiJk2aJM2uMl4GRoiCmW+tW7cWHh4eQqPRiIiICPHMM8+ITZs2mZx36NAh0atXL+Hv7y8cHBxEYGCgaNOmjZg9e7YQ4v4zHY1n7SYkJIiBAweKkJAQ4eDgIPz8/ESzZs3E1KlTTZ7z+PHjon379sLJyUl4e3uLQYMGiRUrVpR6FrDx7Dwh7s4OvH79ukm5pZmY+fn54qOPPhJ16tQRTk5Ows3NTURHR4tXX31VnD59Wjpv586domnTpsLFxUX4+fmJl156SRw4cMBsJl5hsz0Lm8VdFMN1cnd3F15eXqJnz57i4sWLZjN2hRDi999/FzExMcLR0VGEh4eL6dOni+HDhwsvLy+T827evCkGDBggKlSoIFxcXET79u2lJRk+//zz+15Dg/nz54vGjRsLV1dX4ezsLCpVqiT69u1rstSFXq8XU6dOFaGhocLR0VHUrl1brFq1StSpU8dkpqMQQkyfPl1UrFhRaDQaUb16dTFv3jyL1+zgwYOiefPmwsXFxWw28fXr18Xw4cNFZGSkcHBwEN7e3qJBgwbinXfeMZkVej9FzQIGIL0v7vez0bt372I9pmGGa0k+NyyZM2eOeOqpp0RUVJRwcXERjo6OolKlSmLw4MEiMTHR5FwAYujQoeKbb74RlSpVEg4ODiI6OtpkSY6SXtfs7GwxceJEUaVKFeHo6Ch8fHxEmzZtxM6dO6VzCvv+FfazbLBmzRpRt25d4ezsLKKiosRXX31V6CzgoUOHmpQZvk8ffvihSfmWLVvMlr2xpLBZwJZ+zlu1aiVq1qxpVh4RESG6du0q3c7NzRVjx44VISEhwsnJSdSvX18sX77c4oznixcviqeeekq4ubkJd3d38fTTT4s1a9aYrQYgxP0/z4vL0nU0vI57fy8V93NfCCHq1asnAIgdO3ZIZZcvXxYAhI+Pz32X5KH7UwghRHmHSnq4KlasiLi4OLOFPomKIz8/H3Xr1kVISAg2bNhQ5Lk///wzevfujR07djzwAdgJCQmIjo7GpEmT8Pbbbz/Q56LCKRQKDB06FF999ZW1q0Kl8MEHH+Ddd9/FxYsXS7zlID3a2AVMZGcGDRqE9u3bIygoCElJSZg9ezZOnDiBzz//3OS8xYsX4/Lly4iJiYFSqcTu3bvx4YcfomXLluUe/g4dOoTFixejWbNm8PDwwKlTpzBz5kx4eHiYdUcSkWWGkB4dHY38/Hxs3rwZX3zxBfr06cPwR2YYAMmmCSHuO75HpVLZ7B6hOp0ORTXSKxQKqFSqEj1meno6xo4di+vXr8PBwQH169fHmjVrzMbUuLu7Y8mSJZg6dSoyMzMRFBSE/v37Y+rUqaV6LUVxdXXFvn378N133+H27dvw9PREXFwcpk2bVuTSMw/Kg7juRA+ai4sLPv30U5w/fx65ubkIDw/HuHHj8O6775b4se63LaJSqSzzUj5kXewCJpu2cOFCDBgwoMhztmzZYrIPrC2Ji4srcmHiiIgIs72dqex43cne3e+P5n79+nHYkY1jACSblpKSgoSEhCLPqVatmskq9bbk1KlTZut9GdNoNIiJiXmINbIPvO5k7+5dxeFevr6+FnfqIdvBAEhERERkZ9iBX07++usvdO/eHcHBwVAoFFi+fHmJ7n/+/HkoFAqzr8J2niAiIiIqLU4CKSeZmZmoU6cOBgwYUKZNyjdt2oSaNWtKty3tFUlERERUFgyA5aRz584m2+/cKy8vD++++y4WLVqE27dvo1atWpgxY4bZ5AQfHx+LG68TERERlRd2AT8kAwYMwI4dO7BkyRIcPnwYPXv2RKdOncy2r3r88cfh7++P5s2bW9wKioiIiKisOAnkAVAoFPj999/xxBNPAADOnj2LKlWq4NKlSyabrLdr1w6NGjXCBx98gBs3buDHH39E8+bNoVQq8ccff2DatGn4/vvv0adPHyu9EiIiInoUsQv4IThw4ACEEKhatapJeW5uLnx8fAAUTKkfNWqUdCw2Nha3bt3CzJkzGQCJiIioXDEAPgR6vR4qlQr79+832z3Azc2t0Ps1adIE33777YOuHhEREdkZBsCHoF69etDpdEhOTsZjjz1W7Pv9+++/CAoKeoA1IyIiInvEAFhOMjIycObMGel2QkICDh48CG9vb1StWhW9e/dG37598fHHH6NevXq4ceMGNm/ejJiYGHTp0gXff/89HBwcUK9ePSiVSqxcuRJffPEFZsyYYcVXRURERI8iTgIpJ1u3bkXr1q3Nyg37Jebn52Pq1Kn44YcfcPnyZfj4+KBp06aYPHkyYmJi8P3332PGjBm4cOECVCoVqlatipEjR3L8HxEREZU7BkAiIiIiO8N1AImIiIjsDAMgERERkZ1hACQiIiKyM5wFXAZ6vR5XrlyBu7s7FAqFtatDRERExSCEQHp6OoKDg6FU2mdbGANgGVy5cgVhYWHWrgYRERGVQmJiIkJDQ61dDatgACwDd3d3AAVvIA8PDyvXhoiIiIojLS0NYWFh0u9xe8QAWAaGbl8PDw8GQCIiIhtjz8O37LPjm4iIiMiOMQASERER2RkGQCIiIiI7wwBIREREZGcYAImIiIjsDAMgERERkZ1hACQiIiKyMwyARERERHaGAZCIiIjIzjAAEhEREdkZBkAiIiIiO8MASERERGRnGACp3Gw4loQv/zwNIYS1q0JERERFUFu7AvRoyNPq8cqP+wEAcdX8ERPqaeUaERERUWHYAkjl4srtbOn/2fk6K9aEiIiI7ocBkMpFZp5W+n+W0f+JiIhIfhgAqVxk5t5t9cvKYwsgERGRnDEAUrkwbgHMzGULIBERkZwxAN4RHx8PhUKBkSNHWrsqNimLLYBEREQ2gwEQwN69ezF37lzUrl3b2lWxWbnau6Evgy2AREREsmb3ATAjIwO9e/fGvHnz4OXlZe3q2Kw8rV76PyeBEBERyZvdB8ChQ4eia9euaNeunbWrYtPydHcDoPGEECIiIpIfu14IesmSJThw4AD27t1brPNzc3ORm5sr3U5LS3tQVbM5bAEkIiKyHXbbApiYmIgRI0bgp59+gpOTU7HuEx8fD09PT+krLCzsAdfSduQaBUCtjlvBERERyZndBsD9+/cjOTkZDRo0gFqthlqtxrZt2/DFF19ArVZDpzPvxhw/fjxSU1Olr8TERCvUXJ7yjbqAtXoGQCIiIjmz2y7gtm3b4siRIyZlAwYMQHR0NMaNGweVSmV2H41GA41G87CqaFOMu4B1DIBERESyZrcB0N3dHbVq1TIpc3V1hY+Pj1k53Z9xANTq9UWcSURERNZmt13AVL6MZwGzBZCIiEje7LYF0JKtW7dauwo2i2MAiYiIbAdbAKlc5HIMIBERkc1gAKRywUkgREREtoMBkMqF6SQQBkAiIiI5YwCkcsFJIERERLaDAZDKBSeBEBER2Q4GQCoXxl3AegZAIiIiWWMApHKRZ7T/L1sAiYiI5I0BkMqFTq+3+H8iIiKSHwZAKhdGQwDZAkhERCRzDIBULkxbABkAiYiI5IwBkMqFcaufVscASEREJGcMgFQujGf+6gUDIBERkZwxAFK5MGkBZBcwERGRrDEAUrkwHvfHMYBERETyxgBI5UJnMgaQy8AQERHJGQMglQu2ABIREdkOBkAqFzqjiR86TgIhIiKSNQZAKhc6HVsAiYiIbAUDIJULzgImIiKyHQyAVC6Mu32FMF0XkIiIiOSFAZDKxb3dvmwFJCIiki8GQCozIYRZAOQ4QCIiIvliAKQys5T1OBOYiIhIvhgAqcy0evOFn41nBRMREZG8MABSmVnIfxZDIREREckDAyCVmcUWQI4BJCIiki0GQCoz4/ynUBT8y1nARERE8sUASGVm3ALoqCp4S7EFkIiISL4YAKnMDGFPoWAAJCIisgUMgFRmhiVf1EoFVKqCPmB2ARMREckXAyCVmfbOki9KhQJqZUEAZAsgERGRfDEAUpkZwp5aqYBSYWgB5DIwREREcsUASGVm6AJWKdkCSEREZAsYAKnMDGFPZTQGkAGQiIhIvhgAqczuBkAl1ErOAiYiIpI7BkAqs7sBsKAVEOAsYCIiIjljAKQy00qTQJRQKdgFTEREJHcMgFRmJmMA2QJIREQkewyAVGaWAqCeAZCIiEi2GACpzIwDoJLLwBAREckeAyCVmfFC0HdWgZHWBiQiIiL5YQCkMjPs+qFUsAuYiIjIFjAAUpnp77T2qVV3t4JjCyAREZF8MQBSmWl1BWHPuAWQYwCJiIjkiwGQykxqATSeBcwWQCIiItliAKQy0xrPApYWgrZmjYiIiKgoDIBUZlwHkIiIyLYwAFKZ6Sy1ALILmIiISLYYAKnMtCYtgAVlnARCREQkXwyAVGbGC0EbWgA5CYSIiEi+GACpzLgVHBERkW1hAKQyM5kEIrUAWrNGREREVBQGQCqzuwFQyVnARERENoABkMpMCoAKcBYwERGRDWAApDIzTPhQchYwERGRTWAApDIztPYZ7wXMLmAiIiL5YgCkMjP09qoUXAiaiIjIFjAAUpkZunuVSrAFkIiIyAYwAFKZSQGQLYBEREQ2gQGQykwI463gDAtBW7NGREREVBQGQCozi5NA2AJIREQkWwyAVGaG4X4mXcAcA0hERCRbDIBUZnppDGDBF8AASEREJGcMgFRmegtjANkFTEREJF8MgFRmhgkfCnYBExER2QQGQCqzuy2ARusAMv8RERHJFgMglZkUALkVHBERkU1gAKQyM3T3KrgQNBERkU1gAKQyMzT2FUwCuVPGFkAiIiLZYgCkMjNdBoYtgERERHLHAEhlJu0EYrIVHAMgERGRXNltAJw1axZq164NDw8PeHh4oGnTpli7dq21q2WT9NwKjoiIyKbYbQAMDQ3F9OnTsW/fPuzbtw9t2rRBjx49cOzYMWtXzeYYuoBVXAeQiIjIJqitXQFr6d69u8ntadOmYdasWdi9ezdq1qxppVrZJmkvYJMuYCtWiIiIiIpktwHQmE6nwy+//ILMzEw0bdrU2tWxOdIYQEVBKyDALmAiIiI5s+sAeOTIETRt2hQ5OTlwc3PD77//jho1ahR6fm5uLnJzc6XbaWlpD6OasieM9gK+k//YBUxERCRjdjsGEACqVauGgwcPYvfu3RgyZAj69euH48ePF3p+fHw8PD09pa+wsLCHWFv5Ml4ImpNAiIiI5M+uA6CjoyMqV66M2NhYxMfHo06dOvj8888LPX/8+PFITU2VvhITEx9ibeXLMN7PeCs4tgASERHJl113Ad9LCGHSxXsvjUYDjUbzEGtkG4SwsBA0AyAREZFs2W0AfPvtt9G5c2eEhYUhPT0dS5YswdatW7Fu3TprV83mWFoImj3ARERE8mW3AfDatWt48cUXcfXqVXh6eqJ27dpYt24d2rdvb+2q2RxpL2DjdQCZAImIiGTLbgPgd999Z+0qPDKkvYCV4BhAIiIiG2DXk0CofJhuBWdaRkRERPLDAEhlZmjtU3IrOCIiIpvAAEhlpjdaCJpdwERERPLHAEhlJu0FzK3giIiIbAIDIJWZSRcwWwCJiIhkjwGQysx4L2Cl1AJozRoRERFRURgAqcx0FmYBswWQiIhIvhgAqcz0d/YCVio5C5iIiMgWMABSmemN9gI2zALmJBAiIiL5YgCkMjO09qm4DiAREZFNYACkMpNaAI3WAWQLIBERkXzZ3F7Aubm52LNnD86fP4+srCz4+fmhXr16iIyMtHbV7NbddQCNA6AVK0RERERFspkAuHPnTnz55ZdYvnw58vLyUKFCBTg7O+PmzZvIzc1FVFQUXnnlFQwePBju7u7Wrq5dubsTCNgFTEREZANsogu4R48eeOaZZxASEoL169cjPT0dKSkpuHTpErKysnD69Gm8++67+PPPP1G1alVs3LjR2lW2K4awpzBuAWQAJCIiki2baAHs0KEDfvnlFzg6Olo8HhUVhaioKPTr1w/Hjh3DlStXHnIN7ZthuJ9KoZC2gtNxDCAREZFs2UQAHDp0aLHPrVmzJmrWrPkAa0P3Mt0KzrSMiIiI5McmuoCNJSYm4tKlS9LtPXv2YOTIkZg7d64Va2XfpJ1AlFwHkIiIyBbYXAB84YUXsGXLFgBAUlIS2rdvjz179uDtt9/GlClTrFw7+2S8F7CKk0CIiIhkz+YC4NGjR9GoUSMAwLJly1CrVi3s3LkTP//8MxYuXGjdytkp4y5gheLuMjCCrYBERESyZHMBMD8/HxqNBgCwadMmPP744wCA6OhoXL161ZpVs1uW1gE0LiciIiJ5sbkAWLNmTcyePRvbt2/Hxo0b0alTJwDAlStX4OPjY+Xa2Se93mgvYMXdAMhuYCIiInmyuQA4Y8YMzJkzB3FxcXj++edRp04dAMAff/whdQ3Tw6U3GgOoVJqXExERkbzYxDIwxuLi4nDjxg2kpaXBy8tLKn/llVfg6upqxZrZL2kW8D1dwGwBJCIikiebawFs06YN0tPTTcIfAHh7e+PZZ5+1Uq3sm15f8K9SqZC2ggO4GDQREZFc2VwA3Lp1K/Ly8szKc3JysH37divUiKQu4HsngbAFkIiISJZspgv48OHD0v+PHz+OpKQk6bZOp8O6desQEhJijarZvbtdwJwEQkREZAtsJgDWrVsXijvrzLVp08bsuLOzM7788ksr1My+CSGkvYCVSgWUXAaGiIhI9mwmACYkJEAIgaioKOzZswd+fn7SMUdHR/j7+0OlUlmxhvbJOOQZxv+plAro9IKzgImIiGTKZgJgREQEAEBvmHFAsmDczWvo/lUpFNBBsAuYiIhIpmwmABr777//sHXrViQnJ5sFwokTJ1qpVvbJuJVPcWdKkVIJQMcxgERERHJlcwFw3rx5GDJkCHx9fREYGCjtPQsACoWCAfAhMw6Axi2A9x4jIiIi+bC5ADh16lRMmzYN48aNs3ZVCKZjAA1LwBjGArIFkIiISJ5sbh3AW7duoWfPntauBt1hHPIMjbGGmcBsASQiIpInmwuAPXv2xIYNG6xdDbpDWOoCVhpaAK1SJSIiIroPm+sCrly5MiZMmIDdu3cjJiYGDg4OJseHDx9upZrZJ+MWQEPXL7uAiYiI5M3mAuDcuXPh5uaGbdu2Ydu2bSbHFAoFA+BDZrzfr6HrV3WnXZldwERERPJkcwEwISHB2lUgI9IuIHcnY0tdwWwBJCIikiebGwNI8mIIeSqjBGhoCdSxBZCIiEiWbK4FcODAgUUenz9//kOqCQF3u3mVRusxGsKgni2AREREsmRzAfDWrVsmt/Pz83H06FHcvn0bbdq0sVKt7JdhIxaTAMguYCIiIlmzuQD4+++/m5Xp9Xq89tpriIqKskKN7JuhBdBSFzDzHxERkTw9EmMAlUolRo0ahU8//dTaVbE7hnF+CguTQDgLmIiISJ4eiQAIAGfPnoVWq7V2NeyOvqhJIGwCJCIikiWb6wIePXq0yW0hBK5evYrVq1ejX79+VqqV/TJkPJVRE6AhC3IWMBERkTzZXAD8999/TW4rlUr4+fnh448/vu8MYSp/hlY+BWcBExER2QybC4BbtmyxdhXIyN1JIHfLuBUcERGRvNlcADS4fv06Tp06BYVCgapVq8LPz8/aVbJLRa4DyC5gIiIiWbK5SSCZmZkYOHAggoKC0LJlSzz22GMIDg7GoEGDkJWVZe3q2R29tBWcpXUArVEjIiIiuh+bC4CjR4/Gtm3bsHLlSty+fRu3b9/GihUrsG3bNowZM8ba1bM7hm5epXEX8J3/cxIIERGRPNlcF/D//vc//Prrr4iLi5PKunTpAmdnZ/Tq1QuzZs2yXuXskDQGkJNAiIiIbIbNtQBmZWUhICDArNzf359dwFagl1oAjZeB4SQQIiIiObO5ANi0aVNMmjQJOTk5Ull2djYmT56Mpk2bWrFm9klXxCQQdgETERHJk811AX/++efo1KkTQkNDUadOHSgUChw8eBBOTk5Yv369tatnd4SFhaClreDYAkhERCRLNhcAa9WqhdOnT+Onn37CyZMnIYTAc889h969e8PZ2dna1bM7dxeCvlumZAsgERGRrNlcAAQAZ2dnvPzyy9auBsF4IWgLLYDMf0RERLJkc2MA4+PjMX/+fLPy+fPnY8aMGVaokX0rciFoJkAiIiJZsrkAOGfOHERHR5uV16xZE7Nnz7ZCjeybYbFn41nAhizIWcBERETyZHMBMCkpCUFBQWblfn5+uHr1qhVqZN/urgN4t4xbwREREcmbzQXAsLAw7Nixw6x8x44dCA4OtkKN7Ju0DqDFreAYAImIiOTI5iaBvPTSSxg5ciTy8/PRpk0bAMCff/6JN998k1vBWYG0F7DxQtCcBUxERCRrNhcA33zzTdy8eROvvfYa8vLyAABOTk4YN24cxo8fb+Xa2Z+7C0HfLeM6gERERPJmcwFQoVBgxowZmDBhAk6cOAFnZ2dUqVIFGo3G2lWzS8LCMjBSC6DeKlUiIiKi+7C5AGjg5uaGhg0bWrsadk9naQzgnZGl7AImIiKSJ5uYBDJ48GAkJiYW69ylS5di0aJFD7hGZGAxALILmIiISNZsogXQz88PtWrVQrNmzfD4448jNjYWwcHBcHJywq1bt3D8+HH8/fffWLJkCUJCQjB37lxrV9luSHsBcxIIERGRzbCJAPj+++/j9ddfx3fffYfZs2fj6NGjJsfd3d3Rrl07fPvtt+jQoYOVammfOAmEiIjI9thEAAQAf39/jB8/HuPHj8ft27dx4cIFZGdnw9fXF5UqVYLCqAuSHp6itoLjOoBERETyZDMB0FiFChVQoUIFa1eDYHkhaHYBExERyZtNTAIh+TK08hmPATR0ATP/ERERyRMDIJWJoZfXuAfekAXZBUxERCRPDIBUJvqiFoJmEyAREZEs2W0AjI+PR8OGDeHu7g5/f3888cQTOHXqlLWrZXOkAMh1AImIiGyGzQXA9957DxcuXCjz42zbtg1Dhw7F7t27sXHjRmi1WnTo0AGZmZnlUEv7YdjuzXgWtkrFWcBERERyZnMBcOXKlahUqRLatm2Ln3/+GTk5OaV6nHXr1qF///6oWbMm6tSpgwULFuDixYvYv39/Odf40Xa3C/humZrLwBAREcmazQXA/fv348CBA6hduzZGjRqFoKAgDBkyBHv37i3T46ampgIAvL29Cz0nNzcXaWlpJl/2ztIyMCplwdtKywBIREQkSzYXAAGgdu3a+PTTT3H58mXMnz8fly9fRvPmzRETE4PPP/9cCnPFJYTA6NGj0aJFC9SqVavQ8+Lj4+Hp6Sl9hYWFlfWl2DxpJxCTZWDuHGMAJCIikiWbDIAGer0eeXl5yM3NhRAC3t7emDVrFsLCwrB06dJiP86wYcNw+PBhLF68uMjzxo8fj9TUVOkrMTGxrC/B5hkynslWcHf6gxkAiYiI5MkmA+D+/fsxbNgwBAUFYdSoUahXrx5OnDiBbdu24eTJk5g0aRKGDx9erMd6/fXX8ccff2DLli0IDQ0t8lyNRgMPDw+TL3tn6AI2ngVsGAPILmAiIiJ5srkAWLt2bTRp0gQJCQn47rvvkJiYiOnTp6Ny5crSOX379sX169eLfBwhBIYNG4bffvsNmzdvRmRk5IOu+iNJb6kLWJoEordKnYiIiKhoNrcXcM+ePTFw4ECEhIQUeo6fnx/09wkfQ4cOxc8//4wVK1bA3d0dSUlJAABPT084OzuXa50fZdIYQAvrALIFkIiISJ5srgVQCAEvLy+z8uzsbEyZMqXYjzNr1iykpqYiLi4OQUFB0ldJxg6SURewUQug+s4sED13AiEiIpIlmwuAkydPRkZGhll5VlYWJk+eXOzHEUJY/Orfv3851vbRZ1gI2nQZmDstgDoGQCIiIjmyuQAohDDZdcLg0KFDRa7hRw+GpYWgDV3AnAVMREQkTzYzBtDLywsKhQIKhQJVq1Y1CYE6nQ4ZGRkYPHiwFWton3QWZgFLk0DYBUxERCRLNhMAP/vsMwghMHDgQEyePBmenp7SMUdHR1SsWBFNmza1Yg3tk6WFoNXcC5iIiEjWbCYA9uvXDwAQGRmJZs2awcHBwco1IsDyOoDSVnAcA0hERCRLNhEA09LSpEWX69Wrh+zsbGRnZ1s8l4szP1yGVj7TreDYAkhERCRnNhEAvby8cPXqVfj7+6NChQoWJ4EYJofodDor1NB+6YT5MjAcA0hERCRvNhEAN2/eLM3w3bJli5VrQ8YsbgXHMYBERESyZhMBsFWrVhb/T9ZnGOZnqQVQy63giIiIZMnm1gFct24d/v77b+n2119/jbp16+KFF17ArVu3rFgz+2RpJxBDayDzHxERkTzZXAB84403kJaWBgA4cuQIRo8ejS5duuDcuXMYPXq0lWtnfwytfEq2ABIREdkMm+gCNpaQkIAaNWoAAP73v/+he/fu+OCDD3DgwAF06dLFyrWzP4at4DgGkIiIyHbYXAugo6MjsrKyAACbNm1Chw4dAADe3t5SyyA9PJa2glNLLYAMgERERHJkcy2ALVq0wOjRo9G8eXPs2bMHS5cuBQD8999/CA0NtXLt7I+0DqBRC6CS6wASERHJms21AH711VdQq9X49ddfMWvWLISEhAAA1q5di06dOlm5dvZHb2EdQPWdnUAYAImIiOTJ5loAw8PDsWrVKrPyTz/91Aq1IZ2lWcAqdgETERHJmc0FQADQ6/U4c+YMkpOTob9npmnLli2tVCv7ZKkLmFvBERERyZvNBcDdu3fjhRdewIULFyDu2WqMW8E9fJa6gKWt4PRC2qKPiIiI5MPmAuDgwYMRGxuL1atXIygoiOHCyix1AauN/q8XgIrfIiIiIlmxuQB4+vRp/Prrr6hcubK1q0Iw2gpOYT4GEChYDFqlVD3sahEREVERbG4WcOPGjXHmzBlrV4PuKGoruILjD71KREREdB821wL4+uuvY8yYMUhKSkJMTAwcHBxMjteuXdtKNbNP0iQQC2MAAcN2cGwBJCIikhObC4BPP/00AGDgwIFSmUKhkCYbcBLIwyWNAVRYHgPImcBERETyY3MBMCEhwdpVICM6YWgBvFtm2gLIAEhERCQ3NhcAIyIirF0FMqK30AKoUCigVBTMANYzABIREcmOzU0CAYAff/wRzZs3R3BwMC5cuAAA+Oyzz7BixQor18z+6CysAwjc3Q6OLYBERETyY3MBcNasWRg9ejS6dOmC27dvS2P+KlSogM8++8y6lbNDliaBAKaLQRMREZG82FwA/PLLLzFv3jy88847UKnuzi6NjY3FkSNHrFgz+2To4lWbtQAyABIREcmVzQXAhIQE1KtXz6xco9EgMzPTCjWyb9IkkHt2ZDG0CLILmIiISH5sLgBGRkbi4MGDZuVr165FjRo1Hn6F7JzuzkLP5mMA2QJIREQkVzY3C/iNN97A0KFDkZOTAyEE9uzZg8WLFyM+Ph7ffvuttatnd/SFTAJRSS2A3AqEiIhIbmwuAA4YMABarRZvvvkmsrKy8MILLyAkJASff/45nnvuOWtXz+5Ik0AUllsAmf+IiIjkx+YCIAC8/PLLePnll3Hjxg3o9Xr4+/tbu0p2y9JewIDxGEAmQCIiIrmxuTGAbdq0we3btwEAvr6+UvhLS0tDmzZtrFgz+6S1sBA0wDGAREREcmZzAXDr1q3Iy8szK8/JycH27dutUCP7ZmkrOMB4DCADIBERkdzYTBfw4cOHpf8fP34cSUlJ0m2dTod169YhJCTEGlWza4V1AaukMYAMgERERHJjMwGwbt26UCgUUCgUFrt6nZ2d8eWXX1qhZvatsK3gVNwKjoiISLZsJgAmJCRACIGoqCjs2bMHfn5+0jFHR0f4+/ub7AxCD54QAnfyH8cAEhER2RCbCYAREREAAD1nlcqGcbgrrAuYAZCIiEh+bCYAGvvvv/+wdetWJCcnmwXCiRMnWqlW9sfQ/QvcXfbFgJNAiIiI5MvmAuC8efMwZMgQ+Pr6IjAwEAqjrkeFQsEA+BAZZ+97u4DZAkhERCRfNhcAp06dimnTpmHcuHHWrordM24BLGwvYC4ETUREJD82tw7grVu30LNnT2tXg2DaunfvVnDSMjCCLYBERERyY3MBsGfPntiwYYO1q0EwXeOvsEkgWh0DIBERkdzYXBdw5cqVMWHCBOzevRsxMTFwcHAwOT58+HAr1cz+aE1aAE2PcRkYIiIi+bK5ADh37ly4ublh27Zt2LZtm8kxhULBAPgQGbp3lQqYTMYBjCaBsAuYiIhIdmwuACYkJFi7CnSHoXVPfe9GwEZlbAEkIiKSH5sbA0jyYQh3FvKftC4gxwASERHJj020AI4ePRrvv/8+XF1dMXr06CLP/eSTTx5SrcjQBXzvGoAAxwASERHJmU0EwH///Rf5+fnS/wtz7zg0erDutgCaX3eOASQiIpIvmwiAW7Zssfh/si6pBdBSAFSwBZCIiEiuOAaQSk13Z5MPS13AKhXHABIREckVAyCVWlFdwHfHAHIrOCIiIrlhAKRSK2oSCMcAEhERyRcDIJWaoQWwqDGAWo4BJCIikh0GQCo1Q7hTqwofA6jjGEAiIiLZYQCkUiuqBVDNLmAiIiLZYgCkUtPemeChtrgOILeCIyIikisGQCo1wxIvKgt7wXEMIBERkXwxAFKpGVr3LLUAqjkGkIiISLYYAKnUtEXNAuYYQCIiItliAKRS0xUxBvDuQtAMgERERHLDAEilVlQLoJJjAImIiGSLAZBKzdC656AyfxsZxgDqGQCJiIhkhwGQSu3uLODCxwBquRcwERGR7DAAUqkVOQuYYwCJiIhkiwGQSq04YwDzuQwMERGR7DAAUqlJO4FY2AvYUa00OYeIiIjkgwGQSq2onUDUd8rYAkhERCQ/DIBUakWNAXRQGbqA2QJIREQkNwyAVGpFjQE0LA2jZQsgERGR7Nh1APzrr7/QvXt3BAcHQ6FQYPny5daukk0paicQQwBkCyAREZH82HUAzMzMRJ06dfDVV19Zuyo2qagWQDW7gImIiGRLbe0KWFPnzp3RuXNna1fDZhU9BpCTQIiIiOTKrlsAqWzutgCav40Mk0C0bAEkIiKSHbtuASyp3Nxc5ObmSrfT0tKsWBvrk1oALawDaFgGJo8tgERERLLDFsASiI+Ph6enp/QVFhZm7SpZVVF7ATuquRcwERGRXDEAlsD48eORmpoqfSUmJlq7SlalLWIWsKEFkMvAEBERyQ+7gEtAo9FAo9FYuxqyoZUmgVgYA6g2dAGzBZCIiEhu7DoAZmRk4MyZM9LthIQEHDx4EN7e3ggPD7dizWyDTlf4GEAHJSeBEBERyZVdB8B9+/ahdevW0u3Ro0cDAPr164eFCxdaqVa2ozg7gehFwWQRS+cQERGRddh1AIyLi4MQHKNWWoadQFSKwheCBgoWg1YpVQ+tXkRERFQ0TgKhUssvYhkYQwsgwN1AiIiI5IYBkErNML7POOwZGJdxJjAREZG8MABSqRm2eXOw0AKoUipg6BlmCyAREZG8MABSqeUX0QJoXG7oKiYiIiJ5YACkUjMEQHVhAfDOzN98LVsAiYiI5IQBkErNMLbPoZAlXgyLQXM7OCIiInlhAKRSM3TtFtYFbNghJE/LLmAiIiI5YQCkUjN07VpaBgYAHO+UswWQiIhIXhgAqdQMwc6xsBZAwyQQzgImIiKSFQZAKrV8aS/gwgKgwuQ8IiIikgcGQCq1u7OAC+sCZgsgERGRHDEAUqkZZgEX3gWsMDmPiIiI5IEBkErtfi2AhtnBeWwBJCIikhUGQCq1++4EcmcZGLYAEhERyQsDIJWa1rAOoLKQAKg2TAJhCyAREZGcMABSqbELmIiIyDYxAFKpCCGk5V0K6wJ2UqsAALn5uodWLyIiIro/BkAqFUP3LwA4FNIC6OxYEACzGQCJiIhkhQGQSsV4YkehLYAOBeU5+ewCJiIikhMGQCqVfKP9fQsbA+jkwBZAIiIiOWIApFLJ194NgIXNAjYEwBwGQCIiIllhAKRSMYwBVCkVUCoLGQMoBUB2ARMREckJAyCVirQETCHhDzAeA8gWQCIiIjlhAKRSyb/PPsCAcQsgA6AtOJOcgeNX0qxdDSIiegjU1q4A2SbtfRaBBgANJ4HInhAFQf5CShbaf7oNCgBD4iqhS0wQagZ7WrdyRET0wDAAUqnkSQGw8BZATgKRj93nUrDlZDL6NasItVKBedvPYd72BABAnVBPHLqUCgAQAL7echZfbzmL89O7WrHGRET0IDEAUqloS9QFzEkg1pSn1eO5ubsBAHP+Omd23BD+7jVl5XHM35GA4W2r4Jn6ofB1d4RWL3DldjaiAz0eaJ2JiOjBYgCkUtHq798FzEkg1rXmyFVMXHEMNzJyS3X/+TsKWgi/+PM0vvjztMmxn19ujGaVfMtcRyobQxe+QnH35/DSrSyMXHIQ7z1eE7VC2I1PRJZxEgiVSp626H2AAU4CsYa1R65i3l/ncDIpDa8tOmAW/rrXCZb+37CiF3aNbwOgYDb3hlEt4a4p3t+Ei/65iKw8rRRAqHiKc730Rtss5mp1WLLnIt745RA+2fgfAGDLqWT8dy0dqVn5aPnhFjw9ayeS03Kk+7SYsQX7LtxCty//hhACC3ck4OstZ6Tn3n0uBQ2nbcKkFUdxMzNPGs9LRPZFIfgJXmppaWnw9PREamoqPDzsq0ts++nrePG7PYgOdMe6kS0tnnP0ciq6ffk3Ajw0+Oftdg+5hvYn4UYmWn+0tdDjn/Sqg6fqh5qVH7mUisw8LZpE+SA7ryCs15myAXlaPR6r4ot/zt2UxnxaMrJdFYxsV7XM9X/U7Tx7Ay9+twcTulbHk/VCcTUtG2qlEuHeLnBUK6HTC7y/6jgW7jwPoCCUG++5fa83O1XDzHWnpNuvtoxC3bAKGLLoQKH36VE3GCsOXjErn9CtBgAgOtAdvb/9BwBQJ6wCFr3UGG7F/KOAyJbY8+9vAwbAMrDnN9CWk8kYsHAvaod64o9hLSyecyY5A+0+2QZPZwccmtThIdfQ/izZcxFv/XbEpOyNjtXQo24wHFRKBHg4FfuxhBC4kJKFMG8X5OTr4OygwtdbzuDjO61QhVkwoCEaRHjBXaM26Za0dyeT0tDps+3S7ZrBHjh2Z8mdNtH+GNamMp76Zqe1qleoZ2PDMP3pGCTezMbHG0+haoA7XB1V8HXX4HZWPjrVCsQbvxxCdJAH3uxYDVq9QPyak6jk74r64V6oFuBucaH4raeSkZyei2fqhxa6kDzRg2TPv78N+KcdlUoeF4KWFb1e4KMNd8NZTIgnesWGok+TiFIFMYVCgYq+rgAA1zstQK+1roynG4Qifu1JrDxk3ooEAAMW7JX+//lzdfH7v5fxSa+68HZ1LHEdbN3V1Gwcu5yGH3ZfwF//XTc5dsxovcXNJ5Ox+WRykY/VqWYg1h1LKvZzB3o4IcmoW9iYp7MD+jWNwBebz9z3cZbuS8TSfYmFHn93+VEAwJZT16FUAFtPXTd5bdWDPHDiahqiA93xUc86mP93AuqFV8CEFccAAP9evIX4p2rj9LV0eDo7wN/CHylnkjNwJjkdLar4wdVRhdVHriK4gjPqh3uZnZuTr8OFlCxUC3S/72sz0OkFcvJ10vucyF7wHU+lYgh1hqVeLDGMAczV6qHXC/6l/wAYutmNLXu1KRpFepf7c6mUCgRXcEb8UzF4vmEYmkT5IPFWFlp9uNXi+SOWHAQAfL3ljNTFeD09F24aNZwdC3/fPApytTq0+WhbqdbAdHZQSfeb1L0GbmbmYVS7qriRmYtG0/4EAET5ueLc9Uw4OSixfGhz/H36Bs6nZOJ2Vj6GtakMV0c1Ri49CF83R3zSqy4cVEo0jf8TKZl5+H5gI9QK9sDV1BzUDPZAhK8rBv+4H7lG+3v/NKgx+nz3T4nq/fWWs2ZlJ64WhMGTSenS+/S3fy9LxxfvScTiPXcD5rd9Y9GuRgBWHLyMX/dfwsh2VdBrzm7o7nSFP10/FP87cAlAwfJFWr3Aj4MaS39gTFl1HD//cxFNorwxpkM17Em4iVAvZ0T6uqJ2aAWkZuVj1LKDiA50R79mFeHp7IA6kzfAQaXE7681QyU/N5y6lo6PN/wHtVKBb3rXx/e7zuPHXRfwUa86qB/uBb1e4OLNLIR4OZuNgT5yKRX+HpoStbYTWQu7gMvAnpuQl+1LxJu/HkabaH/M79/Q4jmZuVrUnLQeAHBiSqdH/pe+NcRMWo/0XK10O8rXFZvHxj3UOuj0AikZufhx9wV8WUir0oynYxC/9iRuZ+UDAGb3qY9f9l1CoKcT3u9Ry+b+ODiZlAZnBxUifApaSY9eTkVadj7+TbyNa2k5+GHXBbP7uDqq8M877dBw6iZk5+vwXvcaiA7ykJboAYCPetZBm2h/fLj+JDrXCkLLqn4mj3Ew8TaS03LQoWYgdp9LgYNKiQYR5i1hpXH0cipGLzuI3o0j0K9ZRWkZIJVSIQUwuWpZ1Q8dagRILZKW1ArxwNHLJdvppn54BRy4eFu6fWBCe7ScuQUZuVrUCvFA1QB3hHm5YFT7qnjz10NYtq8gnK4d8RiqB1n+nXAw8TaW7UtEg3AvtK3uD4VCga2nktEm2h/uTg4lqh+Vnj3//jZgACwDe34D/bjrPCasOIbOtQIxq08Di+fo9AKV3l4DoOCD0x67AR+UXK0OKw5ewZu/HjYpX/RSYzSvbL3lWc5dz4CfuwYx720o0f12vNUGIRWcH1CtyibxZhb+On0dsRHeqBbojv0XbuHpWQXj9RpV9EadME9pUe3CTH8qBs80CIVapcTl29lYfzQJfZpEwFGtxMbj1zBt9XG80TEaXWsHPYyXVGJ6vcDuhBQcu5yGvs0isP/8LVQJcMfoZQdRL9wLc/86K633WcXfDaeTMxBSwRlODkqM6xSNfxJu4ru/716jV1tGWVyT8lEz7claqB/uhRsZuWhY0Rvj/nfY4iQcg2oB7ugZG4r+zSoiPUcLNyc1bmbmQaNWooJLweenTi/wx6HLaF7JF/4eThBC4NiVNHi5Osr2Z0iO7Pn3twEDYBnY8xvo2+3nMHX1CTxZLwSfPlu30POqvrMWeTo9dr7VBsH8cCo3E5YfxY+777Yy/TK4KUK9nBHkKY9r/MehK1j+72Vk5Wmx+9xNqdzXTVPouoTD21RGo0gf5Gp1iKvmD51ewEGlgEKhQEauFjqdgKdL+bWQrDuaBI1aiXAfF0T5ukIIQKlUIF+nx5ojVxEd6IGOn/0lne/nrsH8fg3R/au/i3hUU3+90RrOjir4uWvKrd5ydPxKGo5eTkX3OsFwUCnMdgjS6QWupmbDw9kBxy6noUmUN85ez0C7T/5CZX839GwQiupBHlj+72WTLmKD1cNboHqgB+LXnkDCjUy82LQiHFQKfLc9AX/eZ/zk/fRvVhFZeVqp9U6u1EoFBrWINAnOlf3dcCY5Q7r9ZL0QDGtTGZX83KSyLSeT8d3fCWhayQevtowy+d7k5OuKHMbzKLPn398GDIBlYM9voK82n8ZHG/7Dcw3DMP3p2oWeV/u99UjL0WLzmFaIMvpQotK5nZWHJ7/ZiYQbmVJZbIQXfh3SzIq1ur+dZ2/ATaNG7dAKeOn7fdh04lqx7tehRgCebhCKV3/cD0e1El+/UB/tawQgV6uDRq3CxZQsfLjhFJ5rGFZoy2eeVg9HtRLpOflYdzQJrar54dKtbLNZt14uDugVG1bqlqm+TSOkrt820f4Y3zkaVQKKPxnBHqXn5MNBpbQYQhbvuYiP1p/CwBaRGNq6cqGPkZOvw9HLqagR7IGcfD08nNQ4cTUdSWk5aF8jABm5WkxacQzh3i5oUcUXwRWckJuvh4NaiaTUbDSI8Ma1tByM/eUQHq8TjGcahCJXq8cXf57GN1vvjmt0VCuRp9UjNsILDSK8LL5PxneOxq2sfMzeZj4e8mEK8NBAqVDgZmaeydjOTjUD4eXqgNTsfPx78TauphZMFHo2NgxD4irBzUkNX7eCP1bytHocTLyNIE8nKBRAkKczVCUcqvHXf9exYEcCpj4ZI7vWSXv+/W3AAFgG9vwG+mj9KXy15Qz6N6uI9x6vWeh5jaZtQnJ6LlYPb4GawdyVoLR0eoEP1pzAf9fSsf30DQAF2/D1b14Rg1pE2tSg85x8HVKz8xHg4SQtFVRWQZ5OWPJKE5y+loHf/72M1Ueu4q3O0dDq9Cazow08nNRIy9FaeKTi6VwrEJ/0qovqE9cBAF5qEYl3u9VA4s0s/H3mBnrFhpX4lyXJj1anx6rDV9Gqqh+8XB2Rr9NLEz9y8nXQ6gUW/3MRT9YPMQlOw34+gEr+bjhyKRV/n7mByv5uuHgzCx1qBGBCtxpwcVTBTaNG/NqTOJR4Gx88FYPVhwtmN5+/kYmvttx/hvaD8manauhQIwDtPvnLpLxOWAX8NKgRLqRkYefZGzh6OQ1vdKwmLRX15q+H4eSgRPxTtaFSKnDkUqrUWm4YKnQ1NRsVnB3NxoNfvp2NnWduoEtM0EObjW3Pv78NGADLwJ7fQNNWH8e87Ql4tWUUxnepXuh5LWduwcWbWfjfkGblNljd3hiPpTT2z9ttbSr4FWb/hVt4Yd5uk5YKORnUIhLnrmdgy6mCpVze6FhN6ko7mHgbv+xLxLjO0fDgAH66h1anR2p2PnzcSjYE4MTVNFT0cYWzowr7L9xCcAUnfLbxNJbuS5TWXs3J1yErT4c8rR5erg7oN3+PyXALaxkSVwm/H7hstgzR6PZVpd1s+jQJx5j21eB1Z1z4c3N3Yfe5mxgSVwmDW1bCgp0J6BIThKoPsAXdnn9/GzAAloE9v4EMY9CGt62C0e0L3wWi46d/4dS1dKtPTrBVQgg8O3c39iSYfrA/ioH66OVUXEjJwrW0HDSI8EKuVo9ec3YBAH4d3BTPzN5V7s/5XMMwdKwZiOT0HIz73xEEeGiw66220qxkIYS0jmJqdj4upGSidmiFcq8H0f0IIbDh+DU0rOhd6IS6fJ0eG45dw99nriPUywUvPRaJtGwt/Nw1OH4lDS//sE/qij12JRXuTg5oHe2PdtX9seVUMn7affFhviR0qBGAUC8Xad9xS06+3+mBjFO059/fBlwHkEolV2tYB7Do7aS5GHTZbDqRbBb+BjSviPrhFaxToQeoVognaoWYDhM4P72r9P8977TF+RtZcNWoIATw7JxdeKZBKN7oFI2nv9mJU9fS0byyD3acSTF5jPe610D/5pEACn6JpmTm4fyNTGjUKsSE3n2+ZxuGm9XJeBFtT2cHhj+yGoVCgY41A4s8x0GlRNfaQSazyf3cC8JTjWAP7HirTaH3bVs9APXDvTB62SGpbN3Ix/DR+lMY3KqS9AeYg0qBD5+pg5FLD0rnadRKzO/fUNpG0FiYtzMSb2ZbfM4Nx+8/Fjh6wjrMebHBfV87lRwDIJWKYckHjbrov8wMf7kZzqfim7zyGBbsOC/dNg5D9sjf3Qn+7ne7vI9O7igFtPWj7u5HfSY5Ax7Oavz8z0XUCvZEuxoB0jGFQgFfN400XouI7nqqfiieqh+K/66lw8PJAYGeTvi2X8E6ryff74Q/TySjWSUfeLk6omPNQExccRQtqviiR90QAMD7T9TChOVHMax1ZdzIyEXt0Ap4vG4wXvlhH3aeTcHwNpXxcssoi8tEBXhocC3N8goBx6+kMQA+AAyAVCrFbwEsCICl2RHBnq07mmQS/vo3q2i1ushVYVvcVfYvmG0+sl3hQxOIqHCWxt45OahMWhadHVX4sGcdk3NebBKBF5tEmN33+4GNkKfVSxM8zn7QBeuPJeG1RQcAAD+/1BhVAtyx+eQ1zNuegFdaRuGJuiHo8Ok2nE/JQrvqAWaPSWXHAEilUtwWQGepBZABsLgSb2Zh8E/7pdsxIZ546bFIK9aIiKj0HFRKk23zVEoFusQE4fz0rsjO00mzgp9tGG4yFGPl6y1w5XZOifZ2puJjAKRSubsXMMcAlqecfB0em7lFur1pdCupRYuI6FFT1Bah7k4OqBbI2fUPCgMglUpmXsEaavdbs8nZseB4Vh4DYFHi157AnG2mC8s+3yic4Y+IiB4IBkAqlczcgkDndp8A6KZR3Tm/9IvuPupWHb5iFv5ei6uENztFW6lGRET0qCu6/46oEBl3Ap2r4/0CYEHzfToDYKHWHLlqcjuumh/GdKhmpdoQEZE9YAsglUrGnW203J2Kfgu5sgWwSIcSb2PNkSQAQONIb3z5fD34PwK7exARkbwxAFKJ6fRCWtblfmMADQExowz7rj5q8rR6/O/AJVy9nY0vNt/d83NWnwaFrvBPRERUnhgAqcQME0CAuy18hTEExAy2AEreW3kMP/9juuXSt31jGf6IiOihYQCkEjO05jmoFPddB5AB8K5bmXkYsHAvDibeNilfO+IxVA+yz70oiYjIOhgAqcQM4/nuNwMYANzvnGPvYwBXHb6CYT//K92u4u+GGsEeeL5ROMMfERE9dAyAVGJpd1oA3e4zAcT4nDQ7HAMohMCYXw7htwOXTcqjA92x+OUm8GKXLxERWQkDIJVYanYeAKCC8/0DjJ+bBgBwMzMPeVo9HNWP/spDWp0eSoUCP/1zwSz8LXmlCZpE+VipZkRERAUYAKnEUrPzAQCezvffosfb1RGOKiXydHokp+cg1MvlQVfPqjYdv4bRyw5abPFc/DLDHxERyQMDIJVYatadAOhy/wCoUCjg76HBpVvZuJb2aAZAIQRWHb6KD9efwsWbWSbHgj2d8PvQ5gjg2n5ERCQjDIBUYrdL0AIIAAEeTncCYO6DrNZDl5WnxbK9iXhv5XGzYy80Dkdadj4mda8JP3eNFWpHRERUOAZAKrGSdAEDQOCd1q+k1JwHVqeHRQiB+TvO49iVVLPxfQbb32yNMO9Hr6WTiIgeHQyAVGKGLuAKJWgBBIBrabYbAHV6gdcW7ceRS6m4YiHI+ro5olvtYLzepjJ83NjiR0RE8sYASCWWklkwC7i4O1cEeBQEIlsKgDq9QE6+Dr/sS8TVtBzM2XbO4nm1Qz1RLcAd7z9RC04ORS+KTUREJBcMgFRiKZkFY/l8i9nSFeh5pwtY5gEwPScfPb7agXM3Mos8L8rXFc83CscLjcPvuxcyERGRHPG3F5VYSkZBC6CPW3FbAA1dwPKaBJKVp8Xnm07jTHIGVEoFNhy/VuT58/vHomqAO4I8naFSKh5SLYmIiMofAyCViBDCKAAWrwUwwGgSiBACCkX5hSchBHadTUFMqCecHVRQqwoWmr50Kws+rhoMWbQfcVX98ELjCExdfRwBHk64cjsbx66kme3Ja0ylVEClVGD6UzEIruAMXzdHVPZ3L7d6ExERWRMDIJVIWrYWeTo9AMCnmGMAgzyd4KhWIjtfh7PXM1HZ363YzyeEAADM2nYWv+6/hHPXM+GuUSO9BHsLbz113eJSLZbEPxWD5xuFF/uxiYiIbBEDIJXI2RsZAAB/d02xJz04OajQONIb20/fwLb/rt83AE5fexI/7b6AjEJCXknCX2HCvV1QLdAdQ+IqoX64F1IycuGqUXMiBxER2QUGQCqRI5dSAQDRQR4lul+rqn7YfvoGtp5KxqAWkWbH1x29ip1nU/DDrgv3fazqQR4QQuBkUjoAoHOtQPi4OeJscib+SUiBvqDRECEVnDG+SzR2nU3BldvZeL1tFbhp1Aj1coaLo+lbn0u3EBGRPWEApBLZd+EWACA2wqtE92sd7Y+pq09g++kbOJh4G3XDKuBkUhr2nb+Fq6nZ+HrLWYv3C/Z0wrMNw9ElJtCk5VChUCAzVwtHtRIOd8b9FaZb7eAS1ZWIiOhRxwBIJbL//E0AJQ+Alfzc0LlWINYeTcITX+8o8twn6gZj5jN14KguOthxCRYiIqLS4W9QKrbLt7NxJTUHKqUCdcMrlPj+I9pVwdqjSRaP1QmrgKWvNOEYPCIiooeAAZCKbfPJZABAjSAPszF0xREd6IFDEzug21fbkXgzG589WxehXs5QKIAGEd7lXV0iIiIqRNF9bHbgm2++QWRkJJycnNCgQQNs377d2lWSpV1nUzBh+VEAwON1Sj+mztPFAdvfbIPz07viiXohiK3ozfBHRET0kNl1C+DSpUsxcuRIfPPNN2jevDnmzJmDzp074/jx4wgP51pwt7PycC0tFx0/+0sqi/J1Rb9mFa1XKSIiIiozhTCstGuHGjdujPr162PWrFlSWfXq1fHEE08gPj7+vvdPS0uDp6cnUlNT4eFRsmVRSkqvFzh3IwMujmoEejjh8OVUaNRKVPF3g1YvcOJqGjydHeDu5IAzyRmo4OIApUKB8ymZ0OkF0nPyoVAokJadj0u3slElwA3Jabm4npELna7gLaBUKpCek48TV9Nw9rr5frhqpQKrhrdAdOCDfa1EREQP0sP8/S1XdtsCmJeXh/379+Ott94yKe/QoQN27txp8T65ubnIzb27n21aWtoDqdtXm09jzl/nAFE+ix6Xh9fbVMbwtlXuu+QKERERyZ/dBsAbN25Ap9MhICDApDwgIABJSZZnqsbHx2Py5MkPvG6OaiXSc8oe/JQKSIsi38vJQYlcrR4VnB1wKysf1QLcodXr4eOmgRACrar6wd3JAV1rB8HH1bFc9+8lIiIi67LbAGhwb7ARQhQadsaPH4/Ro0dLt9PS0hAWFlbudXqiXgjiqvnjVmYeEm5kIszbBQcTb+OxKr7QqFU4dOk2agV7orK/G84kZyBHq4ODUolK/q64np4LdycHeLk4FHT55uQjX6uHWqWEQgEoFQq4cf08IiIiu2a3ScDX1xcqlcqstS85OdmsVdBAo9FAo3nwW4b5uzvB390JANA4ygcA0Lyyr3S8WqC79P8awaZjFyJ8TL+lHk4OD6qaREREZKPsdkCXo6MjGjRogI0bN5qUb9y4Ec2aNbNSrYiIiIgePLttAQSA0aNH48UXX0RsbCyaNm2KuXPn4uLFixg8eLC1q0ZERET0wNh1AHz22WeRkpKCKVOm4OrVq6hVqxbWrFmDiIgIa1eNiIiI6IGx63UAy4rrCBEREdke/v624zGARERERPaKAZCIiIjIzjAAEhEREdkZBkAiIiIiO8MASERERGRnGACJiIiI7AwDIBEREZGdYQAkIiIisjMMgERERER2xq63gisrwyYqaWlpVq4JERERFZfh97Y9b4bGAFgG6enpAICwsDAr14SIiIhKKj09HZ6entauhlVwL+Ay0Ov1uHLlCtzd3aFQKKxdHatKS0tDWFgYEhMT7XZfxQeJ1/fB4vV9sHh9Hyxe35ITQiA9PR3BwcFQKu1zNBxbAMtAqVQiNDTU2tWQFQ8PD34APUC8vg8Wr++Dxev7YPH6loy9tvwZ2GfsJSIiIrJjDIBEREREdoYBkMqFRqPBpEmToNForF2VRxKv74PF6/tg8fo+WLy+VBqcBEJERERkZ9gCSERERGRnGACJiIiI7AwDIBEREZGdYQAkIiIisjMMgFRm33zzDSIjI+Hk5IQGDRpg+/bt1q6STYqPj0fDhg3h7u4Of39/PPHEEzh16pTJOUIIvPfeewgODoazszPi4uJw7NgxK9XYtsXHx0OhUGDkyJFSGa9v2Vy+fBl9+vSBj48PXFxcULduXezfv186zutbelqtFu+++y4iIyPh7OyMqKgoTJkyBXq9XjqH15dKRBCVwZIlS4SDg4OYN2+eOH78uBgxYoRwdXUVFy5csHbVbE7Hjh3FggULxNGjR8XBgwdF165dRXh4uMjIyJDOmT59unB3dxf/+9//xJEjR8Szzz4rgoKCRFpamhVrbnv27NkjKlasKGrXri1GjBghlfP6lt7NmzdFRESE6N+/v/jnn39EQkKC2LRpkzhz5ox0Dq9v6U2dOlX4+PiIVatWiYSEBPHLL78INzc38dlnn0nn8PpSSTAAUpk0atRIDB482KQsOjpavPXWW1aq0aMjOTlZABDbtm0TQgih1+tFYGCgmD59unROTk6O8PT0FLNnz7ZWNW1Oenq6qFKliti4caNo1aqVFAB5fctm3LhxokWLFoUe5/Utm65du4qBAwealD311FOiT58+QgheXyo5dgFTqeXl5WH//v3o0KGDSXmHDh2wc+dOK9Xq0ZGamgoA8Pb2BgAkJCQgKSnJ5HprNBq0atWK17sEhg4diq5du6Jdu3Ym5by+ZfPHH38gNjYWPXv2hL+/P+rVq4d58+ZJx3l9y6ZFixb4888/8d9//wEADh06hL///htdunQBwOtLJae2dgXIdt24cQM6nQ4BAQEm5QEBAUhKSrJSrR4NQgiMHj0aLVq0QK1atQBAuqaWrveFCxceeh1t0ZIlS3DgwAHs3bvX7Bivb9mcO3cOs2bNwujRo/H2229jz549GD58ODQaDfr27cvrW0bjxo1DamoqoqOjoVKpoNPpMG3aNDz//PMA+P6lkmMApDJTKBQmt4UQZmVUMsOGDcPhw4fx999/mx3j9S6dxMREjBgxAhs2bICTk1Oh5/H6lo5er0dsbCw++OADAEC9evVw7NgxzJo1C3379pXO4/UtnaVLl+Knn37Czz//jJo1a+LgwYMYOXIkgoOD0a9fP+k8Xl8qLnYBU6n5+vpCpVKZtfYlJyeb/RVKxff666/jjz/+wJYtWxAaGiqVBwYGAgCvdynt378fycnJaNCgAdRqNdRqNbZt24YvvvgCarVauoa8vqUTFBSEGjVqmJRVr14dFy9eBMD3b1m98cYbeOutt/Dcc88hJiYGL774IkaNGoX4+HgAvL5UcgyAVGqOjo5o0KABNm7caFK+ceNGNGvWzEq1sl1CCAwbNgy//fYbNm/ejMjISJPjkZGRCAwMNLneeXl52LZtG693MbRt2xZHjhzBwYMHpa/Y2Fj07t0bBw8eRFRUFK9vGTRv3txs2aL//vsPERERAPj+LausrCwolaa/slUqlbQMDK8vlZgVJ6DQI8CwDMx3330njh8/LkaOHClcXV3F+fPnrV01mzNkyBDh6ekptm7dKq5evSp9ZWVlSedMnz5deHp6it9++00cOXJEPP/881zmoQyMZwELwetbFnv27BFqtVpMmzZNnD59WixatEi4uLiIn376STqH17f0+vXrJ0JCQqRlYH777Tfh6+sr3nzzTekcXl8qCQZAKrOvv/5aRERECEdHR1G/fn1p2RIqGQAWvxYsWCCdo9frxaRJk0RgYKDQaDSiZcuW4siRI9artI27NwDy+pbNypUrRa1atYRGoxHR0dFi7ty5Jsd5fUsvLS1NjBgxQoSHhwsnJycRFRUl3nnnHZGbmyudw+tLJaEQQghrtkASERER0cPFMYBEREREdoYBkIiIiMjOMAASERER2RkGQCIiIiI7wwBIREREZGcYAImIiIjsDAMgERERkZ1hACQiukdcXBxGjhxptedPSUmBv78/zp8/X66Pe+TIEYSGhiIzM7NcH5eIbA8DIBGRzMTHx6N79+6oWLFisc7v3r072rVrZ/HYrl27oFAocODAAcTExKBRo0b49NNPy7G2RGSLGACJyCbl5+dbuwoPRHZ2Nr777ju89NJLxb7PoEGDsHnzZly4cMHs2Pz581G3bl3Ur18fADBgwADMmjULOp2u3OpMRLaHAZCIykQIgZkzZyIqKgrOzs6oU6cOfv31V+n41q1boVAo8OeffyI2NhYuLi5o1qwZTp06ZfI4K1euRIMGDeDk5ISoqChMnjwZWq1WOq5QKDB79mz06NEDrq6umDp1KgBg6tSp8Pf3h7u7O1566SW89dZbqFu3LgDgr7/+goODA5KSkkyea8yYMWjZsmWxX+OtW7fQt29feHl5wcXFBZ07d8bp06el4xcuXED37t3h5eUFV1dX1KxZE2vWrJHu27t3b/j5+cHZ2RlVqlTBggULCn2utWvXQq1Wo2nTpiblx48fR5cuXeDm5oaAgAC8+OKLuHHjBgCgW7du8Pf3x8KFC03uk5WVhaVLl2LQoEFSWceOHZGSkoJt27YV+/UT0aOHAZCIyuTdd9/FggULMGvWLBw7dgyjRo1Cnz59zALGO++8g48//hj79u2DWq3GwIEDpWPr169Hnz59MHz4cBw/fhxz5szBwoULMW3aNJPHmDRpEnr06IEjR45g4MCBWLRoEaZNm4YZM2Zg//79CA8Px6xZs6TzW7ZsiaioKPz4449SmVarxU8//YQBAwYU+zX2798f+/btwx9//IFdu3ZBCIEuXbpIrZBDhw5Fbm4u/vrrLxw5cgQzZsyAm5sbAGDChAk4fvw41q5dixMnTmDWrFnw9fUt9Ln++usvxMbGmpRdvXoVrVq1Qt26dbFv3z6sW7cO165dQ69evQAAarUaffv2xcKFC2G8vfsvv/yCvLw89O7dWypzdHREnTp1sH379mK/fiJ6BAkiolLKyMgQTk5OYufOnSblgwYNEs8//7wQQogtW7YIAGLTpk3S8dWrVwsAIjs7WwghxGOPPSY++OADk8f48ccfRVBQkHQbgBg5cqTJOY0bNxZDhw41KWvevLmoU6eOdHvGjBmievXq0u3ly5cLNzc3kZGRUejratWqlRgxYoQQQoj//vtPABA7duyQjt+4cUM4OzuLZcuWCSGEiImJEe+9957Fx+revbsYMGBAoc91rx49eoiBAwealE2YMEF06NDBpCwxMVEAEKdOnRJCCHHixAkBQGzevFk6p2XLltL3wdiTTz4p+vfvX+w6EdGjhy2ARFRqx48fR05ODtq3bw83Nzfp64cffsDZs2dNzq1du7b0/6CgIABAcnIyAGD//v2YMmWKyWO8/PLLuHr1KrKysqT73dsydurUKTRq1Mik7N7b/fv3x5kzZ7B7924ABWPievXqBVdXV2zfvt3kORctWmT2Gk+cOAG1Wo3GjRtLZT4+PqhWrRpOnDgBABg+fDimTp2K5s2bY9KkSTh8+LB07pAhQ7BkyRLUrVsXb775Jnbu3FnkNc3OzoaTk5NJ2f79+7FlyxaTukZHRwOAdJ2jo6PRrFkzzJ8/Xyrfvn27SUurgbOzs8l1JSL7o7Z2BYjIdun1egDA6tWrERISYnJMo9GY3HZwcJD+r1AoTO6v1+sxefJkPPXUU2bPYRyGXF1dzY4bHstAGHWBAoC/vz+6d++OBQsWICoqCmvWrMHWrVsBFATKgwcPSucGBASYPf69j2dcbnjul156CR07dsTq1auxYcMGxMfH4+OPP8brr7+Ozp0748KFC1i9ejU2bdqEtm3bYujQofjoo48sPq6vry9u3bplUqbX69G9e3fMmDHD7HxDmAYKJoMMGzYMX3/9NRYsWICIiAi0bdvW7D43b95EpUqVLD4/EdkHtgASUanVqFEDGo0GFy9eROXKlU2+wsLCiv049evXx6lTp8weo3LlylAqC/+YqlatGvbs2WNStm/fPrPzXnrpJSxZsgRz5sxBpUqV0Lx5cwAFLWHGz+Xu7m7xNWq1Wvzzzz9SWUpKCv777z9Ur15dKgsLC8PgwYPx22+/YcyYMZg3b550zM/PD/3798dPP/2Ezz77DHPnzi30NdWrVw/Hjx83uz7Hjh1DxYoVza6PcSju1asXVCoVfv75Z3z//fcYMGCAWUAGgKNHj6JevXqF1oGIHn1sASSiUnN3d8fYsWMxatQo6PV6tGjRAmlpadi5cyfc3NzQr1+/Yj3OxIkT0a1bN4SFhaFnz55QKpU4fPgwjhw5Is32teT111/Hyy+/jNjYWDRr1gxLly7F4cOHERUVZXJex44d4enpialTp2LKlCkleo1VqlRBjx498PLLL2POnDlwd3fHW2+9hZCQEPTo0QMAMHLkSHTu3BlVq1bFrVu3sHnzZikcTpw4EQ0aNEDNmjWRm5uLVatWmQTHe3Xs2BHjx4/HrVu34OXlBaBgksm8efPw/PPP44033oCvry/OnDmDJUuWYN68eVCpVAAANzc3PPvss3j77beRmpqK/v37mz3++fPncfny5ULXDSQi+8AWQCIqk/fffx8TJ05EfHw8qlevjo4dO2LlypWIjIws9mN07NgRq1atwsaNG9GwYUM0adIEn3zyCSIiIoq8X+/evTF+/HiMHTsW9evXR0JCAvr37282hk6pVKJ///7Q6XTo27dviV/jggUL0KBBA3Tr1g1NmzaFEAJr1qyRurV1Oh2GDh2K6tWro1OnTqhWrRq++eYbAAWzbsePH4/atWujZcuWUKlUWLJkSaHPFRMTg9jYWCxbtkwqCw4Oxo4dO6DT6dCxY0fUqlULI0aMgKenp1kL6aBBg3Dr1i20a9cO4eHhZo+/ePFidOjQ4b7XlogebQpR2AAXIiIb1L59ewQGBpos/QIAL7/8Mq5du4Y//vjDSjUrvjVr1mDs2LE4evRokV3gJZWbm4sqVapg8eLFUjc4EdkndgETkc3KysrC7Nmz0bFjR6hUKixevBibNm3Cxo0bpXNSU1Oxd+9eLFq0CCtWrLBibYuvS5cuOH36NC5fvlyisZT3c+HCBbzzzjsMf0TEFkAisl3Z2dno3r07Dhw4gNzcXFSrVg3vvvuuyWziuLg47NmzB6+++ir3wCUiuoMBkIiIiMjOcBIIERERkZ1hACQiIiKyMwyARERERHaGAZCIiIjIzjAAEhEREdkZBkAiIiIiO8MASERERGRnGACJiIiI7AwDIBEREZGd+T+Z2GFhOnC6WwAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "spectrum.data_type = 'spectrum'\n", - "v =spectrum.plot()\n" - ] - }, { "cell_type": "code", "execution_count": 1, diff --git a/pyTEMlib/eels_tools.py b/pyTEMlib/eels_tools.py index d01f5be9..0650b2e6 100644 --- a/pyTEMlib/eels_tools.py +++ b/pyTEMlib/eels_tools.py @@ -581,14 +581,22 @@ def energy_loss_function(E: np.ndarray, Ep: float, Ew: float, A: float) -> np.nd fit_dset = np.array(dataset[start_fit_pixel:end_fit_pixel]) guess_pos = np.argmax(fit_dset) guess_amplitude = fit_dset[guess_pos] - guess_width = 8 + guess_width =(endFitEnergy-startFitEnergy)/4 + guess_pos = energy[guess_pos] + if guess_width >8: + guess_width=8 popt, pcov = curve_fit(energy_loss_function, energy[start_fit_pixel:end_fit_pixel], fit_dset, p0=[guess_pos, guess_width, guess_amplitude]) plasmon = dataset.like_data(energy_loss_function(energy, popt[0], popt[1], popt[2])) start_plasmon = np.searchsorted(energy, 0)+1 + + plasmon[:start_plasmon] = 0. - plasmon.metadata['plasmon'] = popt + epsilon = drude(energy, popt[0], popt[1], 1) * popt[2] + epsilon[:start_plasmon] = 0. + + plasmon.metadata['plasmon'] = {'parameter': popt, 'epsilon':epsilon} return plasmon # if it can be parallelized: diff --git a/pyTEMlib/low_loss_widget.py b/pyTEMlib/low_loss_widget.py index 7ce621f9..bcae8da0 100644 --- a/pyTEMlib/low_loss_widget.py +++ b/pyTEMlib/low_loss_widget.py @@ -126,7 +126,7 @@ def get_resolution_function(self, value=0): self.low_loss_tab[3, 1].value = f"{np.log(self.parent.dataset.sum()/self.parent.datasets['resolution_function'].sum())}" self.parent.status_message('Fitted zero-loss peak') - def get_drude(self): + def get_drude(self, value=0): self.low_loss_tab[8, 0].value = False fit_start = self.low_loss_tab[6, 0].value fit_end = self.low_loss_tab[7, 0].value @@ -134,8 +134,10 @@ def get_drude(self): plasmon = eels_tools.fit_plasmon(self.parent.spectrum, fit_start, fit_end) + self.parent.datasets['plasmon'] = plasmon self.parent.datasets['_relationship']['plasmon'] = 'plasmon' + self.parent.status_message('Fitting plasmon peak 2') #self.dataset.metadata['plasmon'].update(self.parent.datasets['plasmon'].metadata['zero_loss']) self.low_loss_tab[8, 0].value = True @@ -154,6 +156,7 @@ def set_ll_action(self): self.low_loss_tab[4, 0].observe(self._update, names='value') self.low_loss_tab[5, 0].on_click(self.get_drude) self.low_loss_tab[8, 0].observe(self._update, names='value') + self.low_loss_tab[8, 2].observe(self._update, names='value') def _update(self, ev=0): @@ -167,7 +170,7 @@ def _update(self, ev=0): resolution_function = self.get_additional_spectrum('resolution_function') plasmon = self.get_additional_spectrum('plasmon') self.parent.axis.plot(self.parent.energy_scale, resolution_function, label='resolution function') - self.parent.axis.plot(self.parent.energy_scale, plasmon, label='resolution function') + self.parent.axis.plot(self.parent.energy_scale, plasmon, label='plasmon') self.parent.axis.plot(self.parent.energy_scale, spectrum - resolution_function - plasmon, label='difference') @@ -188,12 +191,18 @@ def _update(self, ev=0): if 'plasmon' in self.parent.datasets: plasmon = self.get_additional_spectrum('plasmon') - self.parent.axis.plot(self.parent.energy_scale, plasmon, label='resolution function') + self.parent.axis.plot(self.parent.energy_scale, plasmon, label='plasmon') self.parent.axis.plot(self.parent.energy_scale, spectrum - plasmon, label='difference') self.parent.axis.legend() - + if self.low_loss_tab[8, 2].value: + if 'plasmon' in self.parent.datasets: + if 'plasmon' in self.parent.datasets['plasmon'].metadata: + eps = self.parent.datasets['plasmon'].metadata['plasmon']['epsilon'] + self.parent.axis.plot(self.parent.energy_scale, eps.real, label='epsilon.real') + self.parent.axis.plot(self.parent.energy_scale, eps.imag, label='epsilon.imag') + self.parent.axis.legend() def get_additional_spectrum(self, key): if key not in self.parent.datasets.keys():