From 77012ea20e4025a9b04dbf23a538fa5a9b5cb082 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Mon, 1 Jul 2019 00:54:53 -0400 Subject: [PATCH 01/35] sketch the boiler plate for bnaf --- numpyro/contrib/nn/bna_nn.py | 48 +++++++++++++++++++++++++++ numpyro/distributions/distribution.py | 4 --- numpyro/distributions/flows.py | 25 ++++++++++++++ 3 files changed, 73 insertions(+), 4 deletions(-) create mode 100644 numpyro/contrib/nn/bna_nn.py create mode 100644 numpyro/distributions/flows.py diff --git a/numpyro/contrib/nn/bna_nn.py b/numpyro/contrib/nn/bna_nn.py new file mode 100644 index 000000000..48e777d6a --- /dev/null +++ b/numpyro/contrib/nn/bna_nn.py @@ -0,0 +1,48 @@ +def MaskedBlockDense(): + def init_fun(rng, input_shape): + return output_shape, params + + def apply_fun(params, inputs, **kwargs): + x, logdet = inputs + # TODO: implement + return o, logdet + + +def Tanh(): + def init_fun(rng, input_shape): + return + + def apply_fun(params, inputs, **kwargs): + x, logdet = inputs + return o, logdet + + +def stax_serial_with_jacobian(*layers): + """ + Works like `stax.serial` but also forward the log determinant of Jacobian. + """ + nlayers = len(layers) + init_funs, apply_funs = zip(*layers) + + def init_fun(rng, input_shape): + params = [] + for init_fun in init_funs: + rng, layer_rng = random.split(rng) + input_shape, param = init_fun(layer_rng, input_shape) + params.append(param) + return input_shape, params + + def apply_fun(params, inputs, **kwargs): + rng = kwargs.pop('rng', None) + rngs = random.split(rng, nlayers) if rng is not None else (None,) * nlayers + for fun, param, rng in zip(apply_funs, params, rngs): + inputs = fun(param, inputs, rng=rng, **kwargs) + return inputs + + return init_fun, apply_fun + + +def BlockNeuralAutoregressiveNN(input_dim, hidden_factor): + # TODO: support multi hidden factors + layers = [MaskedBlockDense(hidden_factor), Tanh(), MaskedBlockDense(input_dim)] + return stax_serial_with_jacobian(*layers) diff --git a/numpyro/distributions/distribution.py b/numpyro/distributions/distribution.py index 4a7648314..383333a28 100644 --- a/numpyro/distributions/distribution.py +++ b/numpyro/distributions/distribution.py @@ -185,10 +185,6 @@ def support(self): domain = t.codomain return domain - @property - def is_reparametrized(self): - return self.base_dist.reparametrized - def sample(self, key, sample_shape=()): x = self.base_dist.sample(key, sample_shape) for transform in self.transforms: diff --git a/numpyro/distributions/flows.py b/numpyro/distributions/flows.py new file mode 100644 index 000000000..4ffd1b0c7 --- /dev/null +++ b/numpyro/distributions/flows.py @@ -0,0 +1,25 @@ +class BlockNeuralAutoregressiveTransform(Transform): + event_dim = 1 + + def __init__(self, bna_nn, params): + self.bna_nn = bna_nn + self.params = params + + def __call__(self, x): + self._cached_x = x + y, self._cached_logdet = self.bna_nn(self.params, x) + return y + + def inv(self, y, caching=True): + if caching: + return self._cached_x + else: + raise ValueError("Block neural autoregressive transform does not have an analytic" + " inverse implemented.") + + def log_abs_det_jacobian(self, x, y, caching=True): + if caching: + return self._cached_logdet + else: + _, logdet = self.bna_nn(self.params, x) + return logdet From b4f2a82c3c50f86023e988bf748a7fd17a32f108 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Mon, 1 Jul 2019 09:25:12 -0400 Subject: [PATCH 02/35] add permute and nn.Tanh --- numpyro/contrib/nn/bna_nn.py | 9 +++++++-- numpyro/distributions/constraints.py | 21 +++++++++++++++++++++ numpyro/distributions/util.py | 4 ++++ 3 files changed, 32 insertions(+), 2 deletions(-) diff --git a/numpyro/contrib/nn/bna_nn.py b/numpyro/contrib/nn/bna_nn.py index 48e777d6a..81e9650a8 100644 --- a/numpyro/contrib/nn/bna_nn.py +++ b/numpyro/contrib/nn/bna_nn.py @@ -1,3 +1,6 @@ +from numpyro.distributions.util import softplus + + def MaskedBlockDense(): def init_fun(rng, input_shape): return output_shape, params @@ -10,11 +13,13 @@ def apply_fun(params, inputs, **kwargs): def Tanh(): def init_fun(rng, input_shape): - return + return input_shape, () def apply_fun(params, inputs, **kwargs): x, logdet = inputs - return o, logdet + y = np.tanh(x) + tanh_logdet = - 2 * (x - np.log(2.) + softplus(-2 * x)) + return y, logdet + tanh_logdet # TODO: reshape? def stax_serial_with_jacobian(*layers): diff --git a/numpyro/distributions/constraints.py b/numpyro/distributions/constraints.py index 92f606e78..c5294e405 100644 --- a/numpyro/distributions/constraints.py +++ b/numpyro/distributions/constraints.py @@ -25,6 +25,7 @@ import math import jax.numpy as np +from jax import ops from jax.scipy.special import expit, logit from numpyro.distributions.util import ( @@ -384,6 +385,26 @@ def log_abs_det_jacobian(self, x, y): return x[..., -n:].sum(-1) +class PermuteTransfrom(torch.nn.Module): + event_dim = 1 + + def __init__(self, permutation): + self.permutation = permutation + + def __call__(self, x): + return x[..., self.permutation] + + def inv(self, y): + size = self.permutation.size + permutation_inv = ops.index_update(np.zeros(size, dtype=np.int64), + np.arange(size), + np.arange(size)) + return x[..., permutation_inv] + + def log_abs_det_jacobian(self, x, y): + return np.full(np.shape(x)[:-1], 0.) + + class PowerTransform(Transform): domain = positive codomain = positive diff --git a/numpyro/distributions/util.py b/numpyro/distributions/util.py index a621a6a6d..48e822ff0 100644 --- a/numpyro/distributions/util.py +++ b/numpyro/distributions/util.py @@ -462,6 +462,10 @@ def signed_stick_breaking_tril(t): return y +def softplus(x): + return np.logaddexp(x, 0.) + + # The is sourced from: torch.distributions.util.py # # Copyright (c) 2016- Facebook, Inc (Adam Paszke) From 871d55e2a6378eff88d7f8739e80caf4481c05b4 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Mon, 8 Jul 2019 14:10:24 -0400 Subject: [PATCH 03/35] tries to find valid init_params --- numpyro/hmc_util.py | 31 ++++++++++++++++++++++++++----- 1 file changed, 26 insertions(+), 5 deletions(-) diff --git a/numpyro/hmc_util.py b/numpyro/hmc_util.py index 068c896a0..a2998f78d 100644 --- a/numpyro/hmc_util.py +++ b/numpyro/hmc_util.py @@ -1,7 +1,7 @@ from collections import namedtuple import jax -from jax import grad, jit, partial, random, value_and_grad, vmap +from jax import device_get, grad, jit, partial, random, value_and_grad, vmap from jax.flatten_util import ravel_pytree import jax.numpy as np from jax.ops import index_update @@ -775,9 +775,30 @@ def single_chain_init(key, only_params=False): potential_energy(seeded_model, model_args, model_kwargs, inv_transforms), jax.partial(transform_fn, inv_transforms)) + _, potential_fn, constrain_fn = single_chain_init(rng if rng.ndim == 1 else rng[0]) + + def single_chain_init_validated(key): + def cond_fn(state): + i, _, params = state + z = ravel_pytree(params)[0] + z_grad = ravel_pytree(grad(potential_fn)(params))[0] + return ~((i < 100) & np.all(np.isfinite(z)) & np.all(np.isfinite(z_grad))) + + def body_fn(state): + i, key, _ = state + key, subkey = random.split(key) + params = single_chain_init(subkey, only_params=True) + return i + 1, key, params + + init_params = single_chain_init(key, only_params=True) + num_tries, _, init_params = while_loop(cond_fn, body_fn, (0, key, init_params)) + return init_params, num_tries + if rng.ndim == 1: - return single_chain_init(rng) + init_params, num_tries = single_chain_init_validated(rng) else: - _, potential_fn, constrain_fun = single_chain_init(rng[0]) - init_params = vmap(lambda rng: single_chain_init(rng, only_params=True))(rng) - return init_params, potential_fn, constrain_fun + init_params, num_tries = vmap(single_chain_init_validated)(rng) + + if device_get(np.max(num_tries)) == 100: + raise RuntimeError("Cannot find valid initial parameters. Please check your model again.") + return init_params, potential_fn, constrain_fn From 98d0315381b5bcf5d327b0d8fd62540ff94d7575 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 10 Jul 2019 19:01:18 -0400 Subject: [PATCH 04/35] move find valid initial params to infer.util --- numpyro/contrib/autoguide/__init__.py | 1 + numpyro/hmc_util.py | 88 ++++++--------------------- numpyro/infer_util.py | 83 ++++++++++++++++++++++++- 3 files changed, 103 insertions(+), 69 deletions(-) diff --git a/numpyro/contrib/autoguide/__init__.py b/numpyro/contrib/autoguide/__init__.py index 16a890ab0..7d7fe968d 100644 --- a/numpyro/contrib/autoguide/__init__.py +++ b/numpyro/contrib/autoguide/__init__.py @@ -132,6 +132,7 @@ class AutoContinuous(AutoGuide): def __init__(self, rng, model, get_params_fn, prefix="auto", init_loc_fn=init_to_median): # Wrap model in a `substitute` handler to initialize from `init_loc_fn`. # Use `block` to not record sample primitives in `init_loc_fn`. + # TODO: make sure that rng is not reused model = substitute(model, substitute_fn=block(seed(init_loc_fn, rng))) super(AutoContinuous, self).__init__(model, get_params_fn, prefix=prefix) diff --git a/numpyro/hmc_util.py b/numpyro/hmc_util.py index a2998f78d..e070650bf 100644 --- a/numpyro/hmc_util.py +++ b/numpyro/hmc_util.py @@ -11,7 +11,7 @@ from numpyro.distributions.constraints import biject_to, real from numpyro.distributions.util import cholesky_inverse from numpyro.handlers import seed, trace -from numpyro.infer_util import log_density, transform_fn +from numpyro.infer_util import find_valid_initial_params, potential_energy, transform_fn from numpyro.util import cond, while_loop AdaptWindow = namedtuple('AdaptWindow', ['start', 'end']) @@ -704,20 +704,6 @@ def euclidean_kinetic_energy(inverse_mass_matrix, r): return 0.5 * np.dot(v, r) -def potential_energy(model, model_args, model_kwargs, inv_transforms): - def _potential_energy(params): - params_constrained = transform_fn(inv_transforms, params) - log_joint, model_trace = log_density(model, model_args, model_kwargs, params_constrained) - for name, t in inv_transforms.items(): - t_log_det = np.sum(t.log_abs_det_jacobian(params[name], params_constrained[name])) - if 'scale' in model_trace[name]: - t_log_det = model_trace[name]['scale'] * t_log_det - log_joint = log_joint + t_log_det - return - log_joint - - return _potential_energy - - def initialize_model(rng, model, *model_args, init_strategy='uniform', **model_kwargs): """ Given a model with Pyro primitives, returns a function which, given @@ -744,61 +730,27 @@ def initialize_model(rng, model, *model_args, init_strategy='uniform', **model_k to convert unconstrained HMC samples to constrained values that lie within the site's support. """ - def single_chain_init(key, only_params=False): - seeded_model = seed(model, key) - model_trace = trace(seeded_model).get_trace(*model_args, **model_kwargs) - constrained_values, inv_transforms = {}, {} - for k, v in model_trace.items(): - if v['type'] == 'sample' and not v['is_observed']: - constrained_values[k] = v['value'] - inv_transforms[k] = biject_to(v['fn'].support) - elif v['type'] == 'param': - constrained_values[k] = v['value'] - constraint = v['kwargs'].pop('constraint', real) - inv_transforms[k] = biject_to(constraint) - prior_params = transform_fn(inv_transforms, - {k: v for k, v in constrained_values.items()}, invert=True) - if init_strategy == 'uniform': - init_params = {} - for k, v in prior_params.items(): - key, = random.split(key, 1) - init_params[k] = random.uniform(key, shape=np.shape(v), minval=-2, maxval=2) - elif init_strategy == 'prior': - init_params = prior_params - else: - raise ValueError('initialize={} is not a valid initialization strategy.'.format(init_strategy)) - - if only_params: - return init_params - else: - return (init_params, - potential_energy(seeded_model, model_args, model_kwargs, inv_transforms), - jax.partial(transform_fn, inv_transforms)) - - _, potential_fn, constrain_fn = single_chain_init(rng if rng.ndim == 1 else rng[0]) - - def single_chain_init_validated(key): - def cond_fn(state): - i, _, params = state - z = ravel_pytree(params)[0] - z_grad = ravel_pytree(grad(potential_fn)(params))[0] - return ~((i < 100) & np.all(np.isfinite(z)) & np.all(np.isfinite(z_grad))) - - def body_fn(state): - i, key, _ = state - key, subkey = random.split(key) - params = single_chain_init(subkey, only_params=True) - return i + 1, key, params - - init_params = single_chain_init(key, only_params=True) - num_tries, _, init_params = while_loop(cond_fn, body_fn, (0, key, init_params)) - return init_params, num_tries + def single_chain_init(key): + return find_valid_initial_params(key, model, *model_args, init_strategy=init_strategy, + **model_kwargs) + + seeded_model = seed(model, rng if rng.ndim == 1 else rng[0]) + model_trace = trace(seeded_model).get_trace(*model_args, **model_kwargs) + inv_transforms = {} + for k, v in model_trace.items(): + if v['type'] == 'sample' and not v['is_observed']: + inv_transforms[k] = biject_to(v['fn'].support) + elif v['type'] == 'param': + constraint = v['kwargs'].pop('constraint', real) + inv_transforms[k] = biject_to(constraint) + + potential_fn = potential_energy(seeded_model, model_args, model_kwargs, inv_transforms) if rng.ndim == 1: - init_params, num_tries = single_chain_init_validated(rng) + init_params, is_valid = single_chain_init(rng) else: - init_params, num_tries = vmap(single_chain_init_validated)(rng) + init_params, is_valid = vmap(single_chain_init)(rng) - if device_get(np.max(num_tries)) == 100: + if device_get(~np.all(is_valid)): raise RuntimeError("Cannot find valid initial parameters. Please check your model again.") - return init_params, potential_fn, constrain_fn + return init_params, potential_fn, jax.partial(transform_fn, inv_transforms) diff --git a/numpyro/infer_util.py b/numpyro/infer_util.py index 8a3b3a218..ea829d995 100644 --- a/numpyro/infer_util.py +++ b/numpyro/infer_util.py @@ -1,6 +1,10 @@ +from jax import grad, random +from jax.flatten_util import ravel_pytree import jax.numpy as np -from numpyro.handlers import substitute, trace +from numpyro.distributions.constraints import biject_to, real +from numpyro.handlers import seed, substitute, trace +from numpyro.util import while_loop def log_density(model, model_args, model_kwargs, params): @@ -39,3 +43,80 @@ def transform_fn(transforms, params, invert=False): """ return {k: transforms[k](v) if not invert else transforms[k].inv(v) for k, v in params.items()} + + +def potential_energy(model, model_args, model_kwargs, inv_transforms): + def _potential_energy(params): + params_constrained = transform_fn(inv_transforms, params) + log_joint, model_trace = log_density(model, model_args, model_kwargs, params_constrained) + for name, t in inv_transforms.items(): + t_log_det = np.sum(t.log_abs_det_jacobian(params[name], params_constrained[name])) + if 'scale' in model_trace[name]: + t_log_det = model_trace[name]['scale'] * t_log_det + log_joint = log_joint + t_log_det + return - log_joint + + return _potential_energy + + +def find_valid_initial_params(rng, model, *model_args, init_strategy='uniform', **model_kwargs): + """ + Given a model with Pyro primitives, returns an initial valid unconstrained + parameters. This function also returns an `is_valid` flag to say whether the + initial parameters are valid. + + :param jax.random.PRNGKey rng: random number generator seed to + sample from the prior. The returned `init_params` will have the + batch shape ``rng.shape[:-1]``. + :param model: Python callable containing Pyro primitives. + :param `*model_args`: args provided to the model. + :param str init_strategy: initialization strategy - `uniform` + initializes the unconstrained parameters by drawing from + a `Uniform(-2, 2)` distribution (as used by Stan), whereas + `prior` initializes the parameters by sampling from the prior + for each of the sample sites. + :param `**model_kwargs`: kwargs provided to the model. + :return: tuple of (`init_params`, `is_valid`). + """ + def cond_fn(state): + i, _, _, is_valid = state + return (i < 100) & (~is_valid) + + def body_fn(state): + i, key, _, _ = state + key, subkey = random.split(key) + # TODO: incorporate init_to_median here + seeded_model = seed(model, subkey) + model_trace = trace(seeded_model).get_trace(*model_args, **model_kwargs) + constrained_values, inv_transforms = {}, {} + for k, v in model_trace.items(): + if v['type'] == 'sample' and not v['is_observed']: + constrained_values[k] = v['value'] + inv_transforms[k] = biject_to(v['fn'].support) + elif v['type'] == 'param': + constrained_values[k] = v['value'] + constraint = v['kwargs'].pop('constraint', real) + inv_transforms[k] = biject_to(constraint) + prior_params = transform_fn(inv_transforms, + {k: v for k, v in constrained_values.items()}, invert=True) + if init_strategy == 'uniform': + params = {} + for k, v in prior_params.items(): + key, = random.split(key, 1) + params[k] = random.uniform(key, shape=np.shape(v), minval=-2, maxval=2) + elif init_strategy == 'prior': + params = prior_params + else: + raise ValueError('initialize={} is not a valid initialization strategy.'.format(init_strategy)) + + potential_fn = potential_energy(seeded_model, model_args, model_kwargs, inv_transforms) + param_grads = grad(potential_fn)(params) + z = ravel_pytree(params)[0] + z_grad = ravel_pytree(param_grads)[0] + is_valid = np.all(np.isfinite(z)) & np.all(np.isfinite(z_grad)) + return i + 1, key, params, is_valid + + # NB: the logic here is kind of do-while instead of while-do + init_state = body_fn((0, rng, None, None)) + _, _, init_params, is_valid = while_loop(cond_fn, body_fn, init_state) + return init_params, is_valid From 52867047bf0781b8e32c627f0d685392319171de Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 10 Jul 2019 19:27:17 -0400 Subject: [PATCH 05/35] fix import --- test/test_handlers.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/test/test_handlers.py b/test/test_handlers.py index 5380e18dc..5d903c9c1 100644 --- a/test/test_handlers.py +++ b/test/test_handlers.py @@ -4,7 +4,7 @@ import numpyro.distributions as dist from numpyro.handlers import sample, scale -from numpyro.hmc_util import log_density +from numpyro.infer_util import log_density def test_scale(): From cf059b9be612fd56506625513d5a4dd0aee826ab Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 10 Jul 2019 23:32:02 -0400 Subject: [PATCH 06/35] incorporate various init strategy --- numpyro/contrib/autoguide/__init__.py | 1 - numpyro/hmc_util.py | 10 ++--- numpyro/infer_util.py | 64 ++++++++++++++++++--------- 3 files changed, 45 insertions(+), 30 deletions(-) diff --git a/numpyro/contrib/autoguide/__init__.py b/numpyro/contrib/autoguide/__init__.py index 7d7fe968d..16a890ab0 100644 --- a/numpyro/contrib/autoguide/__init__.py +++ b/numpyro/contrib/autoguide/__init__.py @@ -132,7 +132,6 @@ class AutoContinuous(AutoGuide): def __init__(self, rng, model, get_params_fn, prefix="auto", init_loc_fn=init_to_median): # Wrap model in a `substitute` handler to initialize from `init_loc_fn`. # Use `block` to not record sample primitives in `init_loc_fn`. - # TODO: make sure that rng is not reused model = substitute(model, substitute_fn=block(seed(init_loc_fn, rng))) super(AutoContinuous, self).__init__(model, get_params_fn, prefix=prefix) diff --git a/numpyro/hmc_util.py b/numpyro/hmc_util.py index e070650bf..aa0e474db 100644 --- a/numpyro/hmc_util.py +++ b/numpyro/hmc_util.py @@ -11,7 +11,7 @@ from numpyro.distributions.constraints import biject_to, real from numpyro.distributions.util import cholesky_inverse from numpyro.handlers import seed, trace -from numpyro.infer_util import find_valid_initial_params, potential_energy, transform_fn +from numpyro.infer_util import find_valid_initial_params, init_to_uniform, potential_energy, transform_fn from numpyro.util import cond, while_loop AdaptWindow = namedtuple('AdaptWindow', ['start', 'end']) @@ -704,7 +704,7 @@ def euclidean_kinetic_energy(inverse_mass_matrix, r): return 0.5 * np.dot(v, r) -def initialize_model(rng, model, *model_args, init_strategy='uniform', **model_kwargs): +def initialize_model(rng, model, *model_args, init_strategy=init_to_uniform, **model_kwargs): """ Given a model with Pyro primitives, returns a function which, given unconstrained parameters, evaluates the potential energy (negative @@ -718,11 +718,7 @@ def initialize_model(rng, model, *model_args, init_strategy='uniform', **model_k batch shape ``rng.shape[:-1]``. :param model: Python callable containing Pyro primitives. :param `*model_args`: args provided to the model. - :param str init_strategy: initialization strategy - `uniform` - initializes the unconstrained parameters by drawing from - a `Uniform(-2, 2)` distribution (as used by Stan), whereas - `prior` initializes the parameters by sampling from the prior - for each of the sample sites. + :param callable init_strategy: a per-site initialization function. :param `**model_kwargs`: kwargs provided to the model. :return: tuple of (`init_params`, `potential_fn`, `constrain_fn`), `init_params` are values from the prior used to initiate MCMC, diff --git a/numpyro/infer_util.py b/numpyro/infer_util.py index ea829d995..6f6a157d6 100644 --- a/numpyro/infer_util.py +++ b/numpyro/infer_util.py @@ -1,9 +1,12 @@ +from functools import partial + from jax import grad, random from jax.flatten_util import ravel_pytree import jax.numpy as np +import numpyro.distributions as dist from numpyro.distributions.constraints import biject_to, real -from numpyro.handlers import seed, substitute, trace +from numpyro.handlers import block, sample, seed, substitute, trace from numpyro.util import while_loop @@ -59,7 +62,37 @@ def _potential_energy(params): return _potential_energy -def find_valid_initial_params(rng, model, *model_args, init_strategy='uniform', **model_kwargs): +def init_to_uniform(site, radius=2): + """ + Initialize to an arbitrary feasible point, ignoring distribution + parameters. + """ + if site['is_observed']: + return None + value = sample('_init', site['fn']) + t = biject_to(site['fn'].support) + unconstrained_value = sample('_unconstrained_init', dist.Uniform(-radius, radius), + sample_shape=np.shape(t.inv(value))) + return t(unconstrained_value) + + +def init_to_median(site, num_samples=15): + """ + Initialize to the prior median. + """ + if site['is_observed']: + return None + samples = sample('_init', site['fn'], sample_shape=(num_samples,)) + value = np.quantile(samples, 0.5, axis=0) + return value + + +init_to_feasible = lambda site: init_to_uniform(site, radius=0) +init_to_prior = lambda site: init_to_median(site, num_samples=1) + + +def find_valid_initial_params(rng, model, *model_args, init_strategy=init_to_uniform, + **model_kwargs): """ Given a model with Pyro primitives, returns an initial valid unconstrained parameters. This function also returns an `is_valid` flag to say whether the @@ -70,11 +103,7 @@ def find_valid_initial_params(rng, model, *model_args, init_strategy='uniform', batch shape ``rng.shape[:-1]``. :param model: Python callable containing Pyro primitives. :param `*model_args`: args provided to the model. - :param str init_strategy: initialization strategy - `uniform` - initializes the unconstrained parameters by drawing from - a `Uniform(-2, 2)` distribution (as used by Stan), whereas - `prior` initializes the parameters by sampling from the prior - for each of the sample sites. + :param callable init_strategy: a per-site initialization function. :param `**model_kwargs`: kwargs provided to the model. :return: tuple of (`init_params`, `is_valid`). """ @@ -85,8 +114,8 @@ def cond_fn(state): def body_fn(state): i, key, _, _ = state key, subkey = random.split(key) - # TODO: incorporate init_to_median here - seeded_model = seed(model, subkey) + + seeded_model = substitute(model, substitute_fn=block(seed(init_strategy, subkey))) model_trace = trace(seeded_model).get_trace(*model_args, **model_kwargs) constrained_values, inv_transforms = {}, {} for k, v in model_trace.items(): @@ -97,19 +126,10 @@ def body_fn(state): constrained_values[k] = v['value'] constraint = v['kwargs'].pop('constraint', real) inv_transforms[k] = biject_to(constraint) - prior_params = transform_fn(inv_transforms, - {k: v for k, v in constrained_values.items()}, invert=True) - if init_strategy == 'uniform': - params = {} - for k, v in prior_params.items(): - key, = random.split(key, 1) - params[k] = random.uniform(key, shape=np.shape(v), minval=-2, maxval=2) - elif init_strategy == 'prior': - params = prior_params - else: - raise ValueError('initialize={} is not a valid initialization strategy.'.format(init_strategy)) - - potential_fn = potential_energy(seeded_model, model_args, model_kwargs, inv_transforms) + params = transform_fn(inv_transforms, + {k: v for k, v in constrained_values.items()}, invert=True) + + potential_fn = potential_energy(model, model_args, model_kwargs, inv_transforms) param_grads = grad(potential_fn)(params) z = ravel_pytree(params)[0] z_grad = ravel_pytree(param_grads)[0] From 4443f1329f2bd570c177a6a480776979ff2588e7 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Thu, 11 Jul 2019 21:50:20 -0400 Subject: [PATCH 07/35] use init strategy in autoguide --- numpyro/contrib/autoguide/__init__.py | 66 ++++++--------------------- numpyro/hmc_util.py | 2 +- numpyro/infer_util.py | 45 ++++++++++++------ test/test_hmc_util.py | 22 ++++++++- 4 files changed, 68 insertions(+), 67 deletions(-) diff --git a/numpyro/contrib/autoguide/__init__.py b/numpyro/contrib/autoguide/__init__.py index 16a890ab0..6e51393e5 100644 --- a/numpyro/contrib/autoguide/__init__.py +++ b/numpyro/contrib/autoguide/__init__.py @@ -1,7 +1,6 @@ # Adapted from pyro.contrib.autoguide from abc import ABC, abstractmethod -import numpy as onp import scipy.stats as osp from jax import vmap @@ -12,49 +11,16 @@ from numpyro.distributions import constraints from numpyro.distributions.constraints import biject_to from numpyro.distributions.util import sum_rightmost -from numpyro.handlers import block, param, sample, seed, substitute, trace -from numpyro.infer_util import transform_fn +from numpyro.handlers import block, param, sample, seed, trace +from numpyro.infer_util import find_valid_initial_params, init_to_median, transform_fn __all__ = [ 'AutoContinuous', 'AutoGuide', 'AutoDiagonalNormal', - 'init_to_feasible', - 'init_to_median', ] -def init_to_feasible(site): - """ - Initialize to an arbitrary feasible point, ignoring distribution - parameters. - """ - if site['is_observed']: - return None - value = sample('_init', site['fn']) - t = biject_to(site['fn'].support) - return t(np.zeros(np.shape(t.inv(value)))) - - -def init_to_median(site, num_samples=15): - """ - Initialize to the prior median; fallback to a feasible point if median is - undefined. - """ - if site['is_observed']: - return None - try: - # Try to compute empirical median. - samples = sample('_init', site['fn'], sample_shape=(num_samples,)) - value = onp.median(samples, axis=0) - if np.isnan(value): - raise ValueError - return value - except ValueError: - # Fall back to feasible point. - return init_to_feasible(site) - - class AutoGuide(ABC): """ Base class for automatic guides. @@ -126,32 +92,30 @@ class AutoContinuous(AutoGuide): Blei :param callable model: A Pyro model. - :param callable init_loc_fn: A per-site initialization function. + :param callable init_strategy: A per-site initialization function. See :ref:`autoguide-initialization` section for available functions. """ - def __init__(self, rng, model, get_params_fn, prefix="auto", init_loc_fn=init_to_median): - # Wrap model in a `substitute` handler to initialize from `init_loc_fn`. - # Use `block` to not record sample primitives in `init_loc_fn`. - model = substitute(model, substitute_fn=block(seed(init_loc_fn, rng))) + def __init__(self, rng, model, get_params_fn, prefix="auto", init_strategy=init_to_median): + self.rng = rng + self.init_strategy = init_strategy + model = seed(model, rng) super(AutoContinuous, self).__init__(model, get_params_fn, prefix=prefix) def _setup_prototype(self, *args, **kwargs): super(AutoContinuous, self)._setup_prototype(*args, **kwargs) + # FIXME: without block statement, get AssertionError: all sites must have unique names + init_params, is_valid = block(find_valid_initial_params)(self.rng, self.model, *args, + init_strategy=self.init_strategy, + **kwargs) self._inv_transforms = {} - unconstrained_sites = {} for name, site in self.prototype_trace.items(): if site['type'] == 'sample' and not site['is_observed']: - # Collect the shapes of unconstrained values. - # These may differ from the shapes of constrained values. - transform = biject_to(site['fn'].support) - unconstrained_val = transform.inv(site['value']) - self._inv_transforms[name] = transform - unconstrained_sites[name] = unconstrained_val - - latent_size = sum(np.size(x) for x in unconstrained_sites.values()) + self._inv_transforms[name] = biject_to(site['fn'].support) + + latent_size = sum(np.size(x) for x in init_params.values()) if latent_size == 0: raise RuntimeError('{} found no latent variables; Use an empty guide instead'.format(type(self).__name__)) - self._init_latent, self._unravel_fn = ravel_pytree(unconstrained_sites) + self._init_latent, self._unravel_fn = ravel_pytree(init_params) def __call__(self, *args, **kwargs): """ diff --git a/numpyro/hmc_util.py b/numpyro/hmc_util.py index aa0e474db..54f695c91 100644 --- a/numpyro/hmc_util.py +++ b/numpyro/hmc_util.py @@ -728,7 +728,7 @@ def initialize_model(rng, model, *model_args, init_strategy=init_to_uniform, **m """ def single_chain_init(key): return find_valid_initial_params(key, model, *model_args, init_strategy=init_strategy, - **model_kwargs) + param_as_improper=True, **model_kwargs) seeded_model = seed(model, rng if rng.ndim == 1 else rng[0]) model_trace = trace(seeded_model).get_trace(*model_args, **model_kwargs) diff --git a/numpyro/infer_util.py b/numpyro/infer_util.py index 6f6a157d6..b0d0b4722 100644 --- a/numpyro/infer_util.py +++ b/numpyro/infer_util.py @@ -1,5 +1,3 @@ -from functools import partial - from jax import grad, random from jax.flatten_util import ravel_pytree import jax.numpy as np @@ -62,6 +60,26 @@ def _potential_energy(params): return _potential_energy +def init_to_median(site, num_samples=15): + """ + Initialize to the prior median. + """ + if site['is_observed']: + return None + samples = sample('_init', site['fn'], sample_shape=(num_samples,)) + value = np.quantile(samples, 0.5, axis=0) + return value + + +def init_to_prior(site): + """ + Initialize to a prior sample. + """ + if site['is_observed']: + return None + return sample('_init', site['fn']) + + def init_to_uniform(site, radius=2): """ Initialize to an arbitrary feasible point, ignoring distribution @@ -76,23 +94,20 @@ def init_to_uniform(site, radius=2): return t(unconstrained_value) -def init_to_median(site, num_samples=15): +def init_to_feasible(site): """ - Initialize to the prior median. + Initialize to an arbitrary feasible point, ignoring distribution + parameters. """ if site['is_observed']: return None - samples = sample('_init', site['fn'], sample_shape=(num_samples,)) - value = np.quantile(samples, 0.5, axis=0) - return value - - -init_to_feasible = lambda site: init_to_uniform(site, radius=0) -init_to_prior = lambda site: init_to_median(site, num_samples=1) + value = sample('_init', site['fn']) + t = biject_to(site['fn'].support) + return t(np.zeros(np.shape(t.inv(value)))) def find_valid_initial_params(rng, model, *model_args, init_strategy=init_to_uniform, - **model_kwargs): + param_as_improper=False, **model_kwargs): """ Given a model with Pyro primitives, returns an initial valid unconstrained parameters. This function also returns an `is_valid` flag to say whether the @@ -104,6 +119,8 @@ def find_valid_initial_params(rng, model, *model_args, init_strategy=init_to_uni :param model: Python callable containing Pyro primitives. :param `*model_args`: args provided to the model. :param callable init_strategy: a per-site initialization function. + :param bool param_as_improper: a flag to decide whether to consider sites with + `param` statement as sites with improper priors. :param `**model_kwargs`: kwargs provided to the model. :return: tuple of (`init_params`, `is_valid`). """ @@ -115,6 +132,8 @@ def body_fn(state): i, key, _, _ = state key, subkey = random.split(key) + # Wrap model in a `substitute` handler to initialize from `init_loc_fn`. + # Use `block` to not record sample primitives in `init_loc_fn`. seeded_model = substitute(model, substitute_fn=block(seed(init_strategy, subkey))) model_trace = trace(seeded_model).get_trace(*model_args, **model_kwargs) constrained_values, inv_transforms = {}, {} @@ -122,7 +141,7 @@ def body_fn(state): if v['type'] == 'sample' and not v['is_observed']: constrained_values[k] = v['value'] inv_transforms[k] = biject_to(v['fn'].support) - elif v['type'] == 'param': + elif v['type'] == 'param' and param_as_improper: constrained_values[k] = v['value'] constraint = v['kwargs'].pop('constraint', real) inv_transforms[k] = biject_to(constraint) diff --git a/test/test_hmc_util.py b/test/test_hmc_util.py index 8ec16cfc8..351c83259 100644 --- a/test/test_hmc_util.py +++ b/test/test_hmc_util.py @@ -23,6 +23,12 @@ warmup_adapter, welford_covariance ) +from numpyro.infer_util import ( + init_to_prior, + init_to_uniform, + init_to_median, + init_to_feasible, +) from numpyro.util import control_flow_prims_disabled, fori_loop, optional logger = logging.getLogger(__name__) @@ -387,7 +393,13 @@ def fn(vv_state): assert tree.num_proposals > 10 -@pytest.mark.parametrize('init_strategy', ['prior', 'uniform']) +@pytest.mark.parametrize('init_strategy', [ + init_to_feasible, + pytest.param(init_to_median, + marks=pytest.mark.xfail(reason="batching rule for quantile not implemented")), + init_to_prior, + init_to_uniform, +]) def test_initialize_model_change_point(init_strategy): def model(data): alpha = 1 / np.mean(data) @@ -417,7 +429,13 @@ def model(data): assert_allclose(p[i], init_params_i[name], atol=1e-6) -@pytest.mark.parametrize('init_strategy', ['prior', 'uniform']) +@pytest.mark.parametrize('init_strategy', [ + init_to_feasible, + pytest.param(init_to_median, + marks=pytest.mark.xfail(reason="batching rule for quantile not implemented")), + init_to_prior, + init_to_uniform, +]) def test_initialize_model_dirichlet_categorical(init_strategy): def model(data): concentration = np.array([1.0, 1.0, 1.0]) From 3d23e7e1b0c3c01874d41a606f920a1fd028bd99 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Thu, 1 Aug 2019 11:09:39 -0400 Subject: [PATCH 08/35] use np.mean inplace of np.median --- examples/neutra.py | 3 +-- numpyro/contrib/autoguide/__init__.py | 38 +++++++++++---------------- numpyro/infer_util.py | 3 ++- test/test_hmc_util.py | 10 +++---- 4 files changed, 21 insertions(+), 33 deletions(-) diff --git a/examples/neutra.py b/examples/neutra.py index 482ca4694..164cc9f49 100644 --- a/examples/neutra.py +++ b/examples/neutra.py @@ -89,8 +89,7 @@ def body_fn(val): transformed_potential_fn = make_transformed_pe(potential_fn, transform, unpack_fn) transformed_constrain_fn = lambda x: constrain_fn(unpack_fn(transform(x))) # noqa: E731 - # TODO: expose latent_size in autoguide - init_params = np.zeros(np.size(guide._init_latent)) + init_params = np.zeros(guide.latent_size) print("\nStart NeuTra HMC...") zs = mcmc(args.num_warmup, args.num_samples, init_params, potential_fn=transformed_potential_fn) print("Transform samples into unwarped space...") diff --git a/numpyro/contrib/autoguide/__init__.py b/numpyro/contrib/autoguide/__init__.py index 8b9624cff..b4832cd1e 100644 --- a/numpyro/contrib/autoguide/__init__.py +++ b/numpyro/contrib/autoguide/__init__.py @@ -124,19 +124,15 @@ def _setup_prototype(self, *args, **kwargs): init_strategy=self.init_strategy, **kwargs) self._inv_transforms = {} - unconstrained_sites = {} for name, site in self.prototype_trace.items(): if site['type'] == 'sample' and not site['is_observed']: # TODO: handle dynamic support - transform = biject_to(site['fn'].support) - unconstrained_val = transform.inv(site['value']) - self._inv_transforms[name] = transform - unconstrained_sites[name] = unconstrained_val + self._inv_transforms[name] = biject_to(site['fn'].support) - latent_size = sum(np.size(x) for x in unconstrained_sites.values()) - if latent_size == 0: - raise RuntimeError('{} found no latent variables; Use an empty guide instead'.format(type(self).__name__)) self._init_latent, self._unravel_fn = ravel_pytree(init_params) + self.latent_size = np.size(self._init_latent) + if self.latent_size == 0: + raise RuntimeError('{} found no latent variables; Use an empty guide instead'.format(type(self).__name__)) @abstractmethod def _get_transform(self): @@ -162,9 +158,8 @@ def __call__(self, *args, **kwargs): sample_latent_fn = substitute(sample_latent_fn, params) base_dist = kwargs.pop('base_dist', None) - latent_size = np.size(self._init_latent) if base_dist is None: - base_dist = _Normal(np.zeros(latent_size), 1.) + base_dist = _Normal(np.zeros(self.latent_size), 1.) latent = sample_latent_fn(base_dist, *args, **kwargs) # unpack continuous latent samples @@ -198,9 +193,8 @@ def get_transform(self, opt_state): def sample_posterior(self, rng, opt_state, *args, **kwargs): sample_shape = kwargs.pop('sample_shape', ()) base_dist = kwargs.pop('base_dist', None) - latent_size = np.size(self._init_latent) if base_dist is None: - base_dist = _Normal(np.zeros(latent_size), 1.) + base_dist = _Normal(np.zeros(self.latent_size), 1.) params = self.get_params(opt_state) latent_sample = substitute(seed(self._sample_latent, rng), params)(base_dist, sample_shape=sample_shape) return self.unpack_latent(latent_sample) @@ -230,7 +224,7 @@ def setup(self, *args, **kwargs): super(AutoDiagonalNormal, self).setup(*args, **kwargs) return { '{}_loc'.format(self.prefix): self._init_latent, - '{}_scale'.format(self.prefix): np.ones(np.size(self._init_latent)), + '{}_scale'.format(self.prefix): np.ones(self.latent_size), } def median(self, opt_state): @@ -300,44 +294,42 @@ class AutoIAFNormal(AutoContinuous): :param int num_flows: the number of flows to be used, defaults to 3. :param `**arn_kwargs`: keywords for constructing autoregressive neural networks. """ - def __init__(self, rng, model, get_params_fn, prefix="auto", init_loc_fn=init_to_median, + def __init__(self, rng, model, get_params_fn, prefix="auto", init_strategy=init_to_median, num_flows=3, **arn_kwargs): self.arn_kwargs = arn_kwargs self.arns = [] self.num_flows = num_flows rng, *self.arn_rngs = random.split(rng, num_flows + 1) super(AutoIAFNormal, self).__init__(rng, model, get_params_fn, prefix=prefix, - init_loc_fn=init_loc_fn) + init_strategy=init_strategy) def setup(self, *args, **kwargs): super(AutoIAFNormal, self).setup(*args, **kwargs) - latent_size = np.size(self._init_latent) - if latent_size == 1: + if self.latent_size == 1: raise ValueError('latent dim = 1. Consider using AutoDiagonalNormal instead') params = {} if not self.arns: # 2-layer by default following the experiments in IAF paper # (https://arxiv.org/abs/1606.04934) and Neutra paper (https://arxiv.org/abs/1903.03704) - hidden_dims = self.arn_kwargs.get('hidden_dims', [latent_size, latent_size]) + hidden_dims = self.arn_kwargs.get('hidden_dims', [self.latent_size, self.latent_size]) skip_connections = self.arn_kwargs.get('skip_connections', True) nonlinearity = self.arn_kwargs.get('nonlinearity', stax.Relu) for i in range(self.num_flows): - arn_init, arn = AutoregressiveNN(latent_size, hidden_dims, - permutation=np.arange(latent_size), + arn_init, arn = AutoregressiveNN(self.latent_size, hidden_dims, + permutation=np.arange(self.latent_size), skip_connections=skip_connections, nonlinearity=nonlinearity) - _, init_params = arn_init(self.arn_rngs[i], (latent_size,)) + _, init_params = arn_init(self.arn_rngs[i], (self.latent_size,)) params['{}_arn__{}'.format(self.prefix, i)] = init_params self.arns.append(arn) return params def _get_transform(self): - latent_size = np.size(self._init_latent) flows = [] for i in range(self.num_flows): arn_params = param('{}_arn__{}'.format(self.prefix, i), None) if i > 0: - flows.append(PermuteTransform(np.arange(latent_size)[::-1])) + flows.append(PermuteTransform(np.arange(self.latent_size)[::-1])) flows.append(InverseAutoregressiveTransform(self.arns[i], arn_params)) return ComposeTransform(flows) diff --git a/numpyro/infer_util.py b/numpyro/infer_util.py index ffb54d228..2eb173aeb 100644 --- a/numpyro/infer_util.py +++ b/numpyro/infer_util.py @@ -85,7 +85,8 @@ def init_to_median(site, num_samples=15): if site['is_observed']: return None samples = sample('_init', site['fn'], sample_shape=(num_samples,)) - value = np.quantile(samples, 0.5, axis=0) + # TODO: use np.median when it is available upstream + value = np.mean(samples, axis=0) return value diff --git a/test/test_hmc_util.py b/test/test_hmc_util.py index c9cc95eca..13cfa3de6 100644 --- a/test/test_hmc_util.py +++ b/test/test_hmc_util.py @@ -14,7 +14,6 @@ from numpyro.handlers import sample, seed from numpyro.hmc_util import ( AdaptWindow, - _cov, _is_iterative_turning, _leaf_idx_to_ckpt_idxs, build_adaptation_schedule, @@ -429,8 +428,7 @@ def model(): @pytest.mark.parametrize('init_strategy', [ init_to_feasible, - pytest.param(init_to_median, - marks=pytest.mark.xfail(reason="batching rule for quantile not implemented")), + init_to_median, init_to_prior, init_to_uniform, ]) @@ -465,8 +463,7 @@ def model(data): @pytest.mark.parametrize('init_strategy', [ init_to_feasible, - pytest.param(init_to_median, - marks=pytest.mark.xfail(reason="batching rule for quantile not implemented")), + init_to_median, init_to_prior, init_to_uniform, ]) @@ -511,8 +508,7 @@ def test_gaussian_subposterior(method, diagonal): if diagonal: assert_allclose(np.var(draws, axis=0), np.diag(cov), atol=0.05) else: - # TODO: use np.cov for the next JAX version - assert_allclose(_cov(draws), cov, atol=0.05) + assert_allclose(np.cov(draws), cov, atol=0.05) @pytest.mark.parametrize('method', [consensus, parametric_draws]) From 3a211bd97b0e7e2aa1270d8ece401fe1f9625a34 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Fri, 2 Aug 2019 11:41:34 -0400 Subject: [PATCH 09/35] dynamic support for svi and autoguide --- numpyro/contrib/autoguide/__init__.py | 23 +++++++++++------- numpyro/handlers.py | 2 ++ numpyro/infer_util.py | 5 +--- numpyro/svi.py | 34 ++++++++++++++++++--------- 4 files changed, 41 insertions(+), 23 deletions(-) diff --git a/numpyro/contrib/autoguide/__init__.py b/numpyro/contrib/autoguide/__init__.py index d26ae6878..964db4c68 100644 --- a/numpyro/contrib/autoguide/__init__.py +++ b/numpyro/contrib/autoguide/__init__.py @@ -157,11 +157,14 @@ def _setup_prototype(self, *args, **kwargs): unconstrained_sites = {} for name, site in self.prototype_trace.items(): if site['type'] == 'sample' and not site['is_observed']: - # TODO: handle dynamic support - transform = biject_to(site['fn'].support) - unconstrained_val = transform.inv(site['value']) - self._inv_transforms[name] = transform - unconstrained_sites[name] = unconstrained_val + if site['intermediates']: + transform = biject_to(site['fn'].base_dist.support) + self.inv_transforms[name] = transform + unconstrained_sites[name] = transform.inv(site['intermediates'][0][0]) + else: + transform = biject_to(site['fn'].support) + self.inv_transforms[name] = transform + unconstrained_sites[name] = transform.inv(site['value']) latent_size = sum(np.size(x) for x in unconstrained_sites.values()) if latent_size == 0: @@ -205,9 +208,13 @@ def __call__(self, *args, **kwargs): site = self.prototype_trace[name] value = transform(unconstrained_value) log_density = - transform.log_abs_det_jacobian(unconstrained_value, value) - log_density = sum_rightmost(log_density, np.ndim(log_density) - np.ndim(value) + - len(site['fn'].event_shape)) - delta_dist = dist.Delta(value, log_density=log_density, event_ndim=len(site['fn'].event_shape)) + if site['intermediates']: + event_ndim = len(site['fn'].base_dist.event_shape) + else: + event_ndim = len(site['fn'].event_shape) + log_density = sum_rightmost(log_density, + np.ndim(log_density) - np.ndim(value) + event_ndim) + delta_dist = dist.Delta(value, log_density=log_density, event_ndim=event_ndim) result[name] = sample(name, delta_dist) return result diff --git a/numpyro/handlers.py b/numpyro/handlers.py index 5c12969a3..4ce4931e1 100644 --- a/numpyro/handlers.py +++ b/numpyro/handlers.py @@ -196,6 +196,8 @@ def __init__(self, fn, guide_trace): def process_message(self, msg): if msg['name'] in self.guide_trace: msg['value'] = self.guide_trace[msg['name']]['value'] + if msg['type'] == 'sample': + msg['intermediates'] = self.guide_trace[msg['name']]['intermediates'] class block(Messenger): diff --git a/numpyro/infer_util.py b/numpyro/infer_util.py index a8b5c3a64..bd1bf8367 100644 --- a/numpyro/infer_util.py +++ b/numpyro/infer_util.py @@ -17,10 +17,7 @@ def log_density(model, model_args, model_kwargs, params, skip_dist_transforms=Fa domain. :return: log of joint density and a corresponding model trace """ - if skip_dist_transforms: - model = substitute(model, base_param_map=params) - else: - model = substitute(model, params) + model = substitute(model, base_param_map=params) model_trace = trace(model).get_trace(*model_args, **model_kwargs) log_joint = 0. for site in model_trace.values(): diff --git a/numpyro/svi.py b/numpyro/svi.py index 30bfee8f9..826af5acd 100644 --- a/numpyro/svi.py +++ b/numpyro/svi.py @@ -3,10 +3,11 @@ import jax from jax import random, value_and_grad +from numpyro.contrib.autoguide import AutoContinuous from numpyro.distributions import constraints -from numpyro.distributions.constraints import biject_to -from numpyro.handlers import replay, seed, substitute, trace -from numpyro.infer_util import log_density +from numpyro.distributions.constraints import biject_to, ComposeTransform +from numpyro.handlers import replay, seed, substitute, trace, Messenger +from numpyro.infer_util import log_density, transform_fn def _seed(model, guide, rng): @@ -63,18 +64,21 @@ def init_fn(rng, model_args=(), guide_args=(), params=None): guide_trace = trace(guide_init).get_trace(*guide_args, **kwargs) model_trace = trace(model_init).get_trace(*model_args, **kwargs) inv_transforms = {} - for site in list(guide_trace.values()) + list(model_trace.values()): + # NB: params in model_trace will be overwritten by params in guide_trace + for site in list(model_trace.values()) + list(guide_trace.values()): if site['type'] == 'param': constraint = site['kwargs'].pop('constraint', constraints.real) transform = biject_to(constraint) - inv_transforms[site['name']] = transform - params[site['name']] = transform.inv(site['value']) - - def transform_constrained(inv_transforms, params): - return {k: inv_transforms[k](v) for k, v in params.items()} + if isinstance(transform, ComposeTransform): + base_transform = transform.parts[0] + inv_transforms[site['name']] = base_transform + params[site['name']] = base_transform(transform.inv(site['value'])) + else: + inv_transforms[site['name']] = transform + params[site['name']] = site['value'] nonlocal constrain_fn - constrain_fn = jax.partial(transform_constrained, inv_transforms) + constrain_fn = jax.partial(transform_fn, inv_transforms) return optim_init(params), constrain_fn def update_fn(i, rng, opt_state, model_args=(), guide_args=()): @@ -151,7 +155,15 @@ def elbo(param_map, model, guide, model_args, guide_args, kwargs, constrain_fn): """ param_map = constrain_fn(param_map) guide_log_density, guide_trace = log_density(guide, guide_args, kwargs, param_map) - model_log_density, _ = log_density(replay(model, guide_trace), model_args, kwargs, param_map) + # NB: we only want to substitute params not available in guide_trace + param_map = {k: v for k, v in param_map if k not in guide_trace} + # NB: only skip transforms for AutoContinuous guide + skip_dist_transforms = False + guide_fn = guide.fn if isinstance(guide, Messenger) else guide + if isinstance(guide_fn, AutoContinuous): + skip_dist_transforms = True + model_log_density, _ = log_density(replay(model, guide_trace), model_args, kwargs, param_map, + skip_dist_transforms=skip_dist_transforms) # log p(z) - log q(z) elbo = model_log_density - guide_log_density # Return (-elbo) since by convention we do gradient descent on a loss and From 6e956ee1e584d2082bfc55df84f57b78a740f4cb Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Sat, 3 Aug 2019 12:10:09 -0400 Subject: [PATCH 10/35] fig typos --- numpyro/contrib/autoguide/__init__.py | 4 ++-- numpyro/hmc_util.py | 4 ++-- numpyro/svi.py | 2 +- test/test_hmc_util.py | 13 ++++++++----- 4 files changed, 13 insertions(+), 10 deletions(-) diff --git a/numpyro/contrib/autoguide/__init__.py b/numpyro/contrib/autoguide/__init__.py index 964db4c68..8356cde67 100644 --- a/numpyro/contrib/autoguide/__init__.py +++ b/numpyro/contrib/autoguide/__init__.py @@ -159,11 +159,11 @@ def _setup_prototype(self, *args, **kwargs): if site['type'] == 'sample' and not site['is_observed']: if site['intermediates']: transform = biject_to(site['fn'].base_dist.support) - self.inv_transforms[name] = transform + self._inv_transforms[name] = transform unconstrained_sites[name] = transform.inv(site['intermediates'][0][0]) else: transform = biject_to(site['fn'].support) - self.inv_transforms[name] = transform + self._inv_transforms[name] = transform unconstrained_sites[name] = transform.inv(site['value']) latent_size = sum(np.size(x) for x in unconstrained_sites.values()) diff --git a/numpyro/hmc_util.py b/numpyro/hmc_util.py index f9940a225..ddc853f23 100644 --- a/numpyro/hmc_util.py +++ b/numpyro/hmc_util.py @@ -711,11 +711,11 @@ def euclidean_kinetic_energy(inverse_mass_matrix, r): return 0.5 * np.dot(v, r) -def potential_energy(model, model_args, model_kwargs, inv_transforms, skip_dist_transforms=True): +def potential_energy(model, model_args, model_kwargs, inv_transforms): def _potential_energy(params): params_constrained = transform_fn(inv_transforms, params) log_joint, model_trace = log_density(model, model_args, model_kwargs, params_constrained, - skip_dist_transforms=skip_dist_transforms) + skip_dist_transforms=True) for name, t in inv_transforms.items(): t_log_det = np.sum(t.log_abs_det_jacobian(params[name], params_constrained[name])) if 'scale' in model_trace[name]: diff --git a/numpyro/svi.py b/numpyro/svi.py index 826af5acd..913c62389 100644 --- a/numpyro/svi.py +++ b/numpyro/svi.py @@ -156,7 +156,7 @@ def elbo(param_map, model, guide, model_args, guide_args, kwargs, constrain_fn): param_map = constrain_fn(param_map) guide_log_density, guide_trace = log_density(guide, guide_args, kwargs, param_map) # NB: we only want to substitute params not available in guide_trace - param_map = {k: v for k, v in param_map if k not in guide_trace} + param_map = {k: v for k, v in param_map.items() if k not in guide_trace} # NB: only skip transforms for AutoContinuous guide skip_dist_transforms = False guide_fn = guide.fn if isinstance(guide, Messenger) else guide diff --git a/test/test_hmc_util.py b/test/test_hmc_util.py index 878708375..864529749 100644 --- a/test/test_hmc_util.py +++ b/test/test_hmc_util.py @@ -407,18 +407,21 @@ def model(): model = seed(model, random.PRNGKey(0)) inv_transforms = {'x': biject_to(x_prior.support), 'y': biject_to(y_prior.support)} expected_samples = partial(transform_fn, inv_transforms)(params) - expected_log_density = potential_energy( - model, (), {}, inv_transforms, skip_dist_transforms=False)(params) + expected_potential_energy = ( + - x_prior.log_prob(expected_samples['x']) - + y_prior.log_prob(expected_samples['y']) - + inv_transforms['x'].log_abs_det_jacobian(params['x'], expected_samples['x']) - + inv_transforms['y'].log_abs_det_jacobian(params['y'], expected_samples['y']) + ) base_inv_transforms = {'x': biject_to(x_prior.support), 'y': biject_to(y_prior.base_dist.support)} actual_samples = make_constrain_fn( seed(model, random.PRNGKey(0)), (), {}, base_inv_transforms)(params) - actual_log_density = potential_energy( - model, (), {}, base_inv_transforms, skip_dist_transforms=True)(params) + actual_potential_energy = potential_energy(model, (), {}, base_inv_transforms)(params) assert_allclose(expected_samples['x'], actual_samples['x']) assert_allclose(expected_samples['y'], actual_samples['y']) - assert_allclose(expected_log_density, actual_log_density) + assert_allclose(expected_potential_energy, actual_potential_energy) @pytest.mark.parametrize('init_strategy', ['prior', 'uniform']) From 818b0623884254e12209ecce3ffb12f6f6f6426d Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Sun, 4 Aug 2019 23:17:34 -0400 Subject: [PATCH 11/35] add tests and update autoguide for dynamic support --- examples/vae.py | 2 +- numpyro/contrib/autoguide/__init__.py | 71 ++++++++++++++++----------- numpyro/distributions/continuous.py | 3 ++ numpyro/hmc_util.py | 20 ++------ numpyro/infer_util.py | 7 +++ numpyro/svi.py | 23 ++++++++- test/contrib/test_autoguide.py | 28 +++++++++++ test/test_svi.py | 31 +++++++++++- 8 files changed, 138 insertions(+), 47 deletions(-) diff --git a/examples/vae.py b/examples/vae.py index 780fbd896..9c4db6363 100644 --- a/examples/vae.py +++ b/examples/vae.py @@ -16,7 +16,7 @@ def sigmoid(x): - return 1 / (1 + np.exp(x)) + return 1 / (1 + np.exp(-x)) # TODO: move to JAX diff --git a/numpyro/contrib/autoguide/__init__.py b/numpyro/contrib/autoguide/__init__.py index 8356cde67..5a70e7988 100644 --- a/numpyro/contrib/autoguide/__init__.py +++ b/numpyro/contrib/autoguide/__init__.py @@ -2,7 +2,6 @@ from abc import ABC, abstractmethod import numpy as onp -import scipy.stats as osp from jax import random, vmap from jax.experimental import stax @@ -17,7 +16,7 @@ from numpyro.distributions.flows import InverseAutoregressiveTransform from numpyro.distributions.util import sum_rightmost from numpyro.handlers import block, param, sample, seed, substitute, trace -from numpyro.infer_util import transform_fn +from numpyro.infer_util import constrain_fn, transform_fn __all__ = [ 'AutoContinuous', @@ -121,6 +120,8 @@ def _sample_latent(self, *args, **kwargs): def _setup_prototype(self, *args, **kwargs): # run the model so we can inspect its structure self.prototype_trace = block(trace(self.model).get_trace)(*args, **kwargs) + self._args = args + self._kwargs = kwargs class AutoContinuous(AutoGuide): @@ -148,12 +149,16 @@ class AutoContinuous(AutoGuide): def __init__(self, rng, model, get_params_fn, prefix="auto", init_loc_fn=init_to_median): # Wrap model in a `substitute` handler to initialize from `init_loc_fn`. # Use `block` to not record sample primitives in `init_loc_fn`. - model = substitute(model, substitute_fn=block(seed(init_loc_fn, rng))) + # TODO: remove init_loc_fn mechanism in favor of init_strategy + # which is addressed in https://github.com/pyro-ppl/numpyro/pull/237 + # model = substitute(model, substitute_fn=block(seed(init_loc_fn, rng))) + model = seed(model, rng) super(AutoContinuous, self).__init__(model, get_params_fn, prefix=prefix) def _setup_prototype(self, *args, **kwargs): super(AutoContinuous, self)._setup_prototype(*args, **kwargs) self._inv_transforms = {} + self._has_transformed_dist = False unconstrained_sites = {} for name, site in self.prototype_trace.items(): if site['type'] == 'sample' and not site['is_observed']: @@ -161,6 +166,7 @@ def _setup_prototype(self, *args, **kwargs): transform = biject_to(site['fn'].base_dist.support) self._inv_transforms[name] = transform unconstrained_sites[name] = transform.inv(site['intermediates'][0][0]) + self._has_transformed_dist = True else: transform = biject_to(site['fn'].support) self._inv_transforms[name] = transform @@ -169,7 +175,7 @@ def _setup_prototype(self, *args, **kwargs): latent_size = sum(np.size(x) for x in unconstrained_sites.values()) if latent_size == 0: raise RuntimeError('{} found no latent variables; Use an empty guide instead'.format(type(self).__name__)) - self._init_latent, self._unravel_fn = ravel_pytree(unconstrained_sites) + self._init_latent, self.unpack_latent = ravel_pytree(unconstrained_sites) @abstractmethod def _get_transform(self): @@ -203,7 +209,7 @@ def __call__(self, *args, **kwargs): # unpack continuous latent samples result = {} - for name, unconstrained_value in self._unravel_fn(latent).items(): + for name, unconstrained_value in self.unpack_latent(latent).items(): transform = self._inv_transforms[name] site = self.prototype_trace[name] value = transform(unconstrained_value) @@ -219,28 +225,39 @@ def __call__(self, *args, **kwargs): return result - def unpack_latent(self, latent_sample, transform=True): + def _unpack_and_transform(self, latent_sample, params, model_args=None, model_kwargs=None): sample_shape = np.shape(latent_sample)[:-1] latent_sample = np.reshape(latent_sample, (-1, np.shape(latent_sample)[-1])) - unpacked_samples = vmap(self._unravel_fn)(latent_sample) + model_args = self._args if model_args is None else model_args + model_kwargs = self._kwargs if model_kwargs is None else model_kwargs + + def unpack_single_latent(latent): + unpacked_samples = self.unpack_latent(latent) + if self._has_transformed_dist: + base_param_map = {**params, **unpacked_samples} + return constrain_fn(self.model, model_args, model_kwargs, + self._inv_transforms, base_param_map) + else: + return transform_fn(self._inv_transforms, unpacked_samples) + + unpacked_samples = vmap(unpack_single_latent)(latent_sample) unpacked_samples = tree_map(lambda x: np.reshape(x, sample_shape + np.shape(x)[1:]), unpacked_samples) - - transform = self._inv_transforms if transform else {} - return transform_fn(transform, unpacked_samples) + return unpacked_samples def get_transform(self, opt_state): return substitute(self._get_transform, self.get_params(opt_state))() - def sample_posterior(self, rng, opt_state, *args, **kwargs): - sample_shape = kwargs.pop('sample_shape', ()) - base_dist = kwargs.pop('base_dist', None) + def sample_posterior(self, rng, opt_state, sample_shape=(), base_dist=None, + model_args=None, model_kwargs=None): latent_size = np.size(self._init_latent) if base_dist is None: base_dist = _Normal(np.zeros(latent_size), 1.) params = self.get_params(opt_state) - latent_sample = substitute(seed(self._sample_latent, rng), params)(base_dist, sample_shape=sample_shape) - return self.unpack_latent(latent_sample) + latent_sample = substitute(seed(self._sample_latent, rng), params)( + base_dist, sample_shape=sample_shape) + return self._unpack_and_transform(latent_sample, params, + model_args=model_args, model_kwargs=model_kwargs) class AutoDiagonalNormal(AutoContinuous): @@ -260,7 +277,7 @@ def _get_transform(self): def _loc_scale(self): loc = param('{}_loc'.format(self.prefix), None) - scale = biject_to(constraints.positive)(param('{}_scale'.format(self.prefix), None)) + scale = param('{}_scale'.format(self.prefix), None, constraint=constraints.positive) return loc, scale def setup(self, *args, **kwargs): @@ -270,7 +287,7 @@ def setup(self, *args, **kwargs): '{}_scale'.format(self.prefix): np.ones(np.size(self._init_latent)), } - def median(self, opt_state): + def median(self, opt_state, model_args=None, model_kwargs=None): """ Returns the posterior median value of each latent variable. @@ -278,10 +295,11 @@ def median(self, opt_state): :return: A dict mapping sample site name to median tensor. :rtype: dict """ - loc, _ = substitute(self._loc_scale, self.get_params(opt_state))() - return transform_fn(self._inv_transforms, self._unravel_fn(loc)) + params = self.get_params(opt_state) + loc, _ = substitute(self._loc_scale, params)() + return self._unpack_and_transform(loc, params, model_args=model_args, model_kwargs=model_kwargs) - def quantiles(self, opt_state, quantiles): + def quantiles(self, opt_state, quantiles, model_args=None, model_kwargs=None): """ Returns posterior quantiles each latent variable. Example:: @@ -293,14 +311,11 @@ def quantiles(self, opt_state, quantiles): :return: A dict mapping sample site name to a list of quantile values. :rtype: dict """ - loc, scale = substitute(self._loc_scale, self.get_params(opt_state))() - result = {} - for q in quantiles: - latent = osp.norm(loc, scale).ppf(q) - for name, unconstrained_value in self._unravel_fn(latent).items(): - transform = self._inv_transforms[name] - result.setdefault(name, []).append(transform(unconstrained_value)) - return result + params = self.get_params(opt_state) + loc, scale = substitute(self._loc_scale, params)() + quantiles = np.array(quantiles)[..., None] + latent = dist.Normal(loc, scale).icdf(quantiles) + return self._unpack_and_transform(latent, params, model_args=model_args, model_kwargs=model_kwargs) # TODO: remove when to_event is supported diff --git a/numpyro/distributions/continuous.py b/numpyro/distributions/continuous.py index 90b9e16b9..3214fb618 100644 --- a/numpyro/distributions/continuous.py +++ b/numpyro/distributions/continuous.py @@ -643,6 +643,9 @@ def log_prob(self, value): value_scaled = (value - self.loc) / self.scale return -0.5 * value_scaled ** 2 - normalize_term + def icdf(self, q): + return self.loc + self.scale * ndtri(q) + @property def mean(self): return np.broadcast_to(self.loc, self.batch_shape) diff --git a/numpyro/hmc_util.py b/numpyro/hmc_util.py index ddc853f23..0196c741f 100644 --- a/numpyro/hmc_util.py +++ b/numpyro/hmc_util.py @@ -11,8 +11,8 @@ import numpyro.distributions as dist from numpyro.distributions.constraints import biject_to, real, ComposeTransform from numpyro.distributions.util import cholesky_inverse -from numpyro.handlers import seed, substitute, trace -from numpyro.infer_util import log_density, transform_fn +from numpyro.handlers import seed, trace +from numpyro.infer_util import constrain_fn, log_density, transform_fn from numpyro.util import cond, fori_loop, while_loop AdaptWindow = namedtuple('AdaptWindow', ['start', 'end']) @@ -726,16 +726,6 @@ def _potential_energy(params): return _potential_energy -def make_constrain_fn(model, model_args, model_kwargs, inv_transforms): - def _constrain_fn(params): - params_constrained = transform_fn(inv_transforms, params) - substituted_model = substitute(model, base_param_map=params_constrained) - model_trace = trace(substituted_model).get_trace(*model_args, **model_kwargs) - return {k: model_trace[k]['value'] for k, v in params.items()} - - return _constrain_fn - - def initialize_model(rng, model, *model_args, init_strategy='uniform', **model_kwargs): """ Given a model with Pyro primitives, returns a function which, given @@ -801,16 +791,16 @@ def single_chain_init(key, only_params=False): if has_transformed_dist: # we might want to replay the trace here - constrain_fn = make_constrain_fn(seeded_model, model_args, model_kwargs, inv_transforms) + constrain_fun = jax.partial(constrain_fn, seeded_model, model_args, model_kwargs, inv_transforms) else: - constrain_fn = jax.partial(transform_fn, inv_transforms) + constrain_fun = jax.partial(transform_fn, inv_transforms) if only_params: return init_params else: return (init_params, potential_energy(seeded_model, model_args, model_kwargs, inv_transforms), - constrain_fn) + constrain_fun) if rng.ndim == 1: return single_chain_init(rng) diff --git a/numpyro/infer_util.py b/numpyro/infer_util.py index bd1bf8367..e8401d1aa 100644 --- a/numpyro/infer_util.py +++ b/numpyro/infer_util.py @@ -53,3 +53,10 @@ def transform_fn(transforms, params, invert=False): transforms = {k: v.inv for k, v in transforms.items()} return {k: transforms[k](v) if k in transforms else v for k, v in params.items()} + + +def constrain_fn(model, model_args, model_kwargs, transforms, params): + params_constrained = transform_fn(transforms, params) + substituted_model = substitute(model, base_param_map=params_constrained) + model_trace = trace(substituted_model).get_trace(*model_args, **model_kwargs) + return {k: model_trace[k]['value'] for k, v in params.items() if k in model_trace} diff --git a/numpyro/svi.py b/numpyro/svi.py index 913c62389..b987bf2d9 100644 --- a/numpyro/svi.py +++ b/numpyro/svi.py @@ -18,8 +18,6 @@ def _seed(model, guide, rng): def svi(model, guide, loss, optim_init, optim_update, get_params, **kwargs): - constrain_fn = None - """ Stochastic Variational Inference given an ELBo loss objective. @@ -129,6 +127,27 @@ def evaluate(rng, opt_state, model_args=(), guide_args=()): return init_fn, update_fn, evaluate +# TODO: move this function to svi, rename it to get_params +def get_param(opt_state, model, guide, get_params, constrain_fn, rng, + model_args=None, guide_args=None, **kwargs): + params = constrain_fn(get_params(opt_state)) + model, guide = _seed(model, guide, rng) + if guide_args is not None: + guide = substitute(guide, base_param_map=params) + guide_trace = trace(guide).get_trace(*guide_args, **kwargs) + model_params = {k: v for k, v in params.items() if k not in guide_trace} + params = {k: guide_trace[k]['value'] if k in guide_trace else v + for k, v in params.items()} + + if model_args is not None: + model = substitute(replay(model, guide_trace), base_param_map=model_params) + model_trace = trace(model).get_trace(*model_args, **kwargs) + params = {k: model_trace[k]['value'] if k in model_params else v + for k, v in params.items()} + + return params + + def elbo(param_map, model, guide, model_args, guide_args, kwargs, constrain_fn): """ This is the most basic implementation of the Evidence Lower Bound, which is the diff --git a/test/contrib/test_autoguide.py b/test/contrib/test_autoguide.py index be9cc42db..ef1d23d6d 100644 --- a/test/contrib/test_autoguide.py +++ b/test/contrib/test_autoguide.py @@ -83,3 +83,31 @@ def body_fn(i, val): # test .sample_posterior method posterior_samples = guide.sample_posterior(random.PRNGKey(1), opt_state, sample_shape=(1000,)) assert_allclose(np.mean(posterior_samples['coefs'], 0), true_coefs, rtol=0.1) + + +def test_uniform_normal(): + true_coef = 0.9 + data = true_coef + random.normal(random.PRNGKey(0), (1000,)) + + def model(data): + alpha = sample('alpha', dist.Uniform(0, 1)) + loc = sample('loc', dist.Uniform(0, alpha)) + sample('obs', dist.Normal(loc, 0.1), obs=data) + + opt_init, opt_update, get_params = optimizers.adam(0.01) + rng_guide, rng_init, rng_train = random.split(random.PRNGKey(1), 3) + guide = AutoDiagonalNormal(rng_guide, model, get_params) + svi_init, svi_update, _ = svi(model, guide, elbo, opt_init, opt_update, get_params) + opt_state, constrain_fn = svi_init(rng_init, model_args=(data,), guide_args=(data,)) + + def body_fn(i, val): + opt_state_, rng_ = val + loss, opt_state_, rng_ = svi_update(i, rng_, opt_state_, model_args=(data,), guide_args=(data,)) + return opt_state_, rng_ + + opt_state, _ = fori_loop(0, 1000, body_fn, (opt_state, rng_train)) + median = guide.median(opt_state) + assert_allclose(median['loc'], true_coef, rtol=0.05) + # test .quantile method + median = guide.quantiles(opt_state, [0.2, 0.5]) + assert_allclose(median['loc'][1], true_coef, rtol=0.1) diff --git a/test/test_svi.py b/test/test_svi.py index efdabd625..c7b9d2106 100644 --- a/test/test_svi.py +++ b/test/test_svi.py @@ -7,7 +7,7 @@ import numpyro.distributions as dist from numpyro.distributions import constraints from numpyro.handlers import param, sample -from numpyro.svi import elbo, svi +from numpyro.svi import elbo, get_param, svi from numpyro.util import fori_loop @@ -39,3 +39,32 @@ def body_fn(i, val): params = constrain_fn(get_params(opt_state)) assert_allclose(params['alpha_q'] / (params['alpha_q'] + params['beta_q']), 0.8, atol=0.05, rtol=0.05) + + +def test_dynamic_constraints(): + true_coef = 0.9 + data = true_coef + random.normal(random.PRNGKey(0), (1000,)) + + def model(data): + # NB: model's constraints will play no effect + loc = param('loc', 0., constraint=constraints.interval(0, 0.5)) + sample('obs', dist.Normal(loc, 0.1), obs=data) + + def guide(): + alpha = param('alpha', 0.5, constraint=constraints.unit_interval) + param('loc', 0, constraint=constraints.interval(0, alpha)) + + opt_init, opt_update, get_params = optimizers.adam(0.05) + svi_init, svi_update, _ = svi(model, guide, elbo, opt_init, opt_update, get_params) + rng_init, rng_train = random.split(random.PRNGKey(1)) + opt_state, constrain_fn = svi_init(rng_init, model_args=(data,)) + + def body_fn(i, val): + opt_state_, rng_ = val + loss, opt_state_, rng_ = svi_update(i, rng_, opt_state_, model_args=(data,)) + return opt_state_, rng_ + + opt_state, rng = fori_loop(0, 300, body_fn, (opt_state, rng_train)) + params = get_param(opt_state, model, guide, get_params, constrain_fn, rng, + guide_args=()) + assert_allclose(params['loc'], true_coef, atol=0.05) From 25b240838cc27637aeb570e6d27bebdd1b4cf936 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Sun, 4 Aug 2019 23:19:55 -0400 Subject: [PATCH 12/35] swap actual and expected in test --- test/test_hmc_util.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/test/test_hmc_util.py b/test/test_hmc_util.py index 864529749..9c3893c73 100644 --- a/test/test_hmc_util.py +++ b/test/test_hmc_util.py @@ -421,7 +421,7 @@ def model(): assert_allclose(expected_samples['x'], actual_samples['x']) assert_allclose(expected_samples['y'], actual_samples['y']) - assert_allclose(expected_potential_energy, actual_potential_energy) + assert_allclose(actual_potential_energy, expected_potential_energy) @pytest.mark.parametrize('init_strategy', ['prior', 'uniform']) From 76a89f408d63f4fdeb84ad2e128548fec891848f Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Mon, 5 Aug 2019 12:27:22 -0400 Subject: [PATCH 13/35] address comment --- numpyro/svi.py | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/numpyro/svi.py b/numpyro/svi.py index b987bf2d9..8a57316c4 100644 --- a/numpyro/svi.py +++ b/numpyro/svi.py @@ -6,7 +6,7 @@ from numpyro.contrib.autoguide import AutoContinuous from numpyro.distributions import constraints from numpyro.distributions.constraints import biject_to, ComposeTransform -from numpyro.handlers import replay, seed, substitute, trace, Messenger +from numpyro.handlers import replay, seed, substitute, trace from numpyro.infer_util import log_density, transform_fn @@ -35,6 +35,9 @@ def svi(model, guide, loss, optim_init, optim_update, get_params, **kwargs): :return: tuple of `(init_fn, update_fn, evaluate)`. """ constrain_fn = None + # NB: only skip transforms for AutoContinuous guide + loss_fn = jax.partial(loss, skip_dist_transforms=True) if isinstance(guide, AutoContinuous) \ + else loss def init_fn(rng, model_args=(), guide_args=(), params=None): """ @@ -95,8 +98,8 @@ def update_fn(i, rng, opt_state, model_args=(), guide_args=()): rng, rng_seed = random.split(rng) model_init, guide_init = _seed(model, guide, rng_seed) params = get_params(opt_state) - loss_val, grads = value_and_grad(loss)(params, model_init, guide_init, model_args, - guide_args, kwargs, constrain_fn=constrain_fn) + loss_val, grads = value_and_grad(loss_fn)(params, model_init, guide_init, model_args, + guide_args, kwargs, constrain_fn=constrain_fn) opt_state = optim_update(i, grads, opt_state) return loss_val, opt_state, rng @@ -115,7 +118,7 @@ def evaluate(rng, opt_state, model_args=(), guide_args=()): """ model_init, guide_init = _seed(model, guide, rng) params = get_params(opt_state) - return loss(params, model_init, guide_init, model_args, guide_args, kwargs, constrain_fn=constrain_fn) + return loss_fn(params, model_init, guide_init, model_args, guide_args, kwargs, constrain_fn=constrain_fn) # Make local functions visible from the global scope once # `svi` is called for sphinx doc generation. @@ -148,7 +151,8 @@ def get_param(opt_state, model, guide, get_params, constrain_fn, rng, return params -def elbo(param_map, model, guide, model_args, guide_args, kwargs, constrain_fn): +def elbo(param_map, model, guide, model_args, guide_args, kwargs, constrain_fn, + skip_dist_transforms=False): """ This is the most basic implementation of the Evidence Lower Bound, which is the fundamental objective in Variational Inference. This implementation has various @@ -176,11 +180,6 @@ def elbo(param_map, model, guide, model_args, guide_args, kwargs, constrain_fn): guide_log_density, guide_trace = log_density(guide, guide_args, kwargs, param_map) # NB: we only want to substitute params not available in guide_trace param_map = {k: v for k, v in param_map.items() if k not in guide_trace} - # NB: only skip transforms for AutoContinuous guide - skip_dist_transforms = False - guide_fn = guide.fn if isinstance(guide, Messenger) else guide - if isinstance(guide_fn, AutoContinuous): - skip_dist_transforms = True model_log_density, _ = log_density(replay(model, guide_trace), model_args, kwargs, param_map, skip_dist_transforms=skip_dist_transforms) # log p(z) - log q(z) From c392565f0301fdff9df0bb64014dd95f26d4e4e4 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Mon, 5 Aug 2019 14:20:37 -0400 Subject: [PATCH 14/35] fix issue at elbo loss, at test for autoguide --- numpyro/handlers.py | 2 -- numpyro/svi.py | 20 +++++++++++------ test/contrib/test_autoguide.py | 41 ++++++++++++++++++++++++++++++++++ 3 files changed, 54 insertions(+), 9 deletions(-) diff --git a/numpyro/handlers.py b/numpyro/handlers.py index 4ce4931e1..5c12969a3 100644 --- a/numpyro/handlers.py +++ b/numpyro/handlers.py @@ -196,8 +196,6 @@ def __init__(self, fn, guide_trace): def process_message(self, msg): if msg['name'] in self.guide_trace: msg['value'] = self.guide_trace[msg['name']]['value'] - if msg['type'] == 'sample': - msg['intermediates'] = self.guide_trace[msg['name']]['intermediates'] class block(Messenger): diff --git a/numpyro/svi.py b/numpyro/svi.py index 8a57316c4..dea002310 100644 --- a/numpyro/svi.py +++ b/numpyro/svi.py @@ -36,8 +36,7 @@ def svi(model, guide, loss, optim_init, optim_update, get_params, **kwargs): """ constrain_fn = None # NB: only skip transforms for AutoContinuous guide - loss_fn = jax.partial(loss, skip_dist_transforms=True) if isinstance(guide, AutoContinuous) \ - else loss + loss_fn = jax.partial(loss, is_autoguide=True) if isinstance(guide, AutoContinuous) else loss def init_fn(rng, model_args=(), guide_args=(), params=None): """ @@ -152,7 +151,7 @@ def get_param(opt_state, model, guide, get_params, constrain_fn, rng, def elbo(param_map, model, guide, model_args, guide_args, kwargs, constrain_fn, - skip_dist_transforms=False): + is_autoguide=False): """ This is the most basic implementation of the Evidence Lower Bound, which is the fundamental objective in Variational Inference. This implementation has various @@ -178,10 +177,17 @@ def elbo(param_map, model, guide, model_args, guide_args, kwargs, constrain_fn, """ param_map = constrain_fn(param_map) guide_log_density, guide_trace = log_density(guide, guide_args, kwargs, param_map) - # NB: we only want to substitute params not available in guide_trace - param_map = {k: v for k, v in param_map.items() if k not in guide_trace} - model_log_density, _ = log_density(replay(model, guide_trace), model_args, kwargs, param_map, - skip_dist_transforms=skip_dist_transforms) + if is_autoguide: + # in autoguide, a site's value holds intermediate value + for name, site in guide_trace.items(): + if site['type'] == 'sample': + param_map[name] = site['value'] + else: + # NB: we only want to substitute params not available in guide_trace + param_map = {k: v for k, v in param_map.items() if k not in guide_trace} + model = replay(model, guide_trace) + model_log_density, _ = log_density(model, model_args, kwargs, param_map, + skip_dist_transforms=is_autoguide) # log p(z) - log q(z) elbo = model_log_density - guide_log_density # Return (-elbo) since by convention we do gradient descent on a loss and diff --git a/test/contrib/test_autoguide.py b/test/contrib/test_autoguide.py index ef1d23d6d..3f7b74e89 100644 --- a/test/contrib/test_autoguide.py +++ b/test/contrib/test_autoguide.py @@ -4,6 +4,7 @@ from jax import random from jax.experimental import optimizers import jax.numpy as np +from jax.test_util import check_eq from numpyro.contrib.autoguide import AutoDiagonalNormal, AutoIAFNormal import numpyro.distributions as dist @@ -111,3 +112,43 @@ def body_fn(i, val): # test .quantile method median = guide.quantiles(opt_state, [0.2, 0.5]) assert_allclose(median['loc'][1], true_coef, rtol=0.1) + + +def test_dynamic_supports(): + true_coef = 0.9 + data = true_coef + random.normal(random.PRNGKey(0), (1000,)) + + def actual_model(data): + alpha = sample('alpha', dist.Uniform(0, 1)) + loc = sample('loc', dist.Uniform(0, alpha)) + sample('obs', dist.Normal(loc, 0.1), obs=data) + + def expected_model(data): + alpha = sample('alpha', dist.Uniform(0, 1)) + loc = sample('loc', dist.Uniform(0, 1)) * alpha + sample('obs', dist.Normal(loc, 0.1), obs=data) + + opt_init, opt_update, get_params = optimizers.adam(0.01) + rng_guide, rng_init, rng_train = random.split(random.PRNGKey(1), 3) + + guide = AutoDiagonalNormal(rng_guide, actual_model, get_params) + svi_init, _, svi_eval = svi(actual_model, guide, elbo, opt_init, opt_update, get_params) + opt_state, constrain_fn = svi_init(rng_init, (data,), (data,)) + actual_params = get_params(opt_state) + actual_base_values = constrain_fn(actual_params) + actual_values = guide.median(opt_state) + actual_loss = svi_eval(random.PRNGKey(1), opt_state, (data,), (data,)) + + guide = AutoDiagonalNormal(rng_guide, expected_model, get_params) + svi_init, _, svi_eval = svi(expected_model, guide, elbo, opt_init, opt_update, get_params) + opt_state, constrain_fn = svi_init(rng_init, (data,), (data,)) + expected_params = get_params(opt_state) + expected_base_values = constrain_fn(expected_params) + expected_values = guide.median(opt_state) + expected_loss = svi_eval(random.PRNGKey(1), opt_state, (data,), (data,)) + + check_eq(actual_params, expected_params) + check_eq(actual_base_values, expected_base_values) + assert_allclose(actual_values['alpha'], expected_values['alpha']) + assert_allclose(actual_values['loc'], expected_values['alpha'] * expected_values['loc']) + assert_allclose(actual_loss, expected_loss) From 75bb0a9c835cdfc499f1642405bac6f2f811cbc6 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Mon, 5 Aug 2019 14:38:25 -0400 Subject: [PATCH 15/35] fix import at hmc_util test --- test/test_hmc_util.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/test/test_hmc_util.py b/test/test_hmc_util.py index 9c3893c73..73ee89a68 100644 --- a/test/test_hmc_util.py +++ b/test/test_hmc_util.py @@ -23,14 +23,13 @@ dual_averaging, find_reasonable_step_size, initialize_model, - make_constrain_fn, parametric_draws, potential_energy, velocity_verlet, warmup_adapter, welford_covariance ) -from numpyro.infer_util import transform_fn +from numpyro.infer_util import constrain_fn, transform_fn from numpyro.util import control_flow_prims_disabled, fori_loop, optional logger = logging.getLogger(__name__) @@ -415,8 +414,8 @@ def model(): ) base_inv_transforms = {'x': biject_to(x_prior.support), 'y': biject_to(y_prior.base_dist.support)} - actual_samples = make_constrain_fn( - seed(model, random.PRNGKey(0)), (), {}, base_inv_transforms)(params) + actual_samples = constrain_fn( + seed(model, random.PRNGKey(0)), (), {}, base_inv_transforms, params) actual_potential_energy = potential_energy(model, (), {}, base_inv_transforms)(params) assert_allclose(expected_samples['x'], actual_samples['x']) From f33c0cf589d2c30343d462f148daa0a6394fe485 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Tue, 6 Aug 2019 22:17:59 -0400 Subject: [PATCH 16/35] use cov instead of np.cov, defer the change to later PR --- numpyro/hmc_util.py | 14 +++++++++++--- test/test_hmc_util.py | 3 ++- 2 files changed, 13 insertions(+), 4 deletions(-) diff --git a/numpyro/hmc_util.py b/numpyro/hmc_util.py index 16bb42ddf..9e90346b0 100644 --- a/numpyro/hmc_util.py +++ b/numpyro/hmc_util.py @@ -13,7 +13,7 @@ from numpyro.distributions.util import cholesky_inverse from numpyro.handlers import seed, trace from numpyro.infer_util import constrain_fn, find_valid_initial_params, init_to_uniform, potential_energy, transform_fn -from numpyro.util import cond, while_loop +from numpyro.util import cond, fori_loop, while_loop AdaptWindow = namedtuple('AdaptWindow', ['start', 'end']) AdaptState = namedtuple('AdaptState', ['step_size', 'inverse_mass_matrix', 'mass_matrix_sqrt', @@ -776,6 +776,14 @@ def single_chain_init(key): return init_params, potential_fn, constrain_fun +# TODO: to be replaced by np.cov ddof=1 for the next JAX version +def _cov(samples): + wc_init, wc_update, wc_final = welford_covariance(diagonal=False) + state = wc_init(samples.shape[1]) + state = fori_loop(0, samples.shape[0], lambda i, state: wc_update(samples[i], state), state) + return wc_final(state)[0] + + def consensus(subposteriors, num_draws=None, diagonal=False, rng=None): """ Merges subposteriors following consensus Monte Carlo algorithm. @@ -815,7 +823,7 @@ def consensus(subposteriors, num_draws=None, diagonal=False, rng=None): # get weighted samples samples_flat = np.einsum('ij,ikj->kj', normalized_weights, joined_subposteriors) else: - weights = vmap(lambda x: np.linalg.inv(np.cov(x)))(joined_subposteriors) + weights = vmap(lambda x: np.linalg.inv(_cov(x)))(joined_subposteriors) normalized_weights = np.matmul(np.linalg.inv(np.sum(weights, axis=0)), weights) samples_flat = np.einsum('ijk,ilk->lj', normalized_weights, joined_subposteriors) @@ -853,7 +861,7 @@ def parametric(subposteriors, diagonal=False): mean = np.einsum('ij,ij->j', normalized_weights, submeans) return mean, var else: - weights = vmap(lambda x: np.linalg.inv(np.cov(x)))(joined_subposteriors) + weights = vmap(lambda x: np.linalg.inv(_cov(x)))(joined_subposteriors) cov = np.linalg.inv(np.sum(weights, axis=0)) normalized_weights = np.matmul(cov, weights) diff --git a/test/test_hmc_util.py b/test/test_hmc_util.py index 3189e468c..c0a23d499 100644 --- a/test/test_hmc_util.py +++ b/test/test_hmc_util.py @@ -14,6 +14,7 @@ from numpyro.handlers import sample, seed from numpyro.hmc_util import ( AdaptWindow, + _cov, _is_iterative_turning, _leaf_idx_to_ckpt_idxs, build_adaptation_schedule, @@ -511,7 +512,7 @@ def test_gaussian_subposterior(method, diagonal): if diagonal: assert_allclose(np.var(draws, axis=0), np.diag(cov), atol=0.05) else: - assert_allclose(np.cov(draws), cov, atol=0.05) + assert_allclose(_cov(draws), cov, atol=0.05) @pytest.mark.parametrize('method', [consensus, parametric_draws]) From 240399b37ff9730be7f9e1f3d00e047277e7efc3 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Tue, 6 Aug 2019 23:02:53 -0400 Subject: [PATCH 17/35] add option param_as_improper --- numpyro/handlers.py | 15 ++++++++++++--- numpyro/infer_util.py | 24 +++++++++++++++--------- test/test_handlers.py | 2 +- 3 files changed, 28 insertions(+), 13 deletions(-) diff --git a/numpyro/handlers.py b/numpyro/handlers.py index 5c12969a3..1559cfb49 100644 --- a/numpyro/handlers.py +++ b/numpyro/handlers.py @@ -391,9 +391,18 @@ def process_message(self, msg): else: msg['value'] = self.base_param_map[msg['name']] elif self.substitute_fn is not None: - value = self.substitute_fn(msg) - if value is not None: - msg['value'] = value + base_value = self.substitute_fn(msg) + if base_value is not None: + if msg['type'] == 'sample': + msg['value'], msg['intermediates'] = msg['fn'].transform_with_intermediates( + base_value) + else: + constraint = msg['kwargs'].pop('constraint', real) + transform = biject_to(constraint) + if isinstance(transform, ComposeTransform): + msg['value'] = ComposeTransform(transform.parts[1:])(base_value) + else: + msg['value'] = base_value else: raise ValueError("Neither `param_map`, `base_param_map`, nor `substitute_fn`" "provided to substitute handler.") diff --git a/numpyro/infer_util.py b/numpyro/infer_util.py index d553125bf..92a819527 100644 --- a/numpyro/infer_util.py +++ b/numpyro/infer_util.py @@ -109,11 +109,12 @@ def potential_energy(model, model_args, model_kwargs, inv_transforms, params): return - log_joint -def init_to_median(site, num_samples=15): +def init_to_median(site, num_samples=15, skip_param=False): """ Initialize to the prior median. """ - if site['is_observed']: + if ((site['type'] == 'sample' and site['is_observed']) + or (site['type'] == 'param' and skip_param)): return None samples = sample('_init', site['fn'], sample_shape=(num_samples,)) # TODO: use np.median when it is available upstream @@ -121,21 +122,23 @@ def init_to_median(site, num_samples=15): return value -def init_to_prior(site): +def init_to_prior(site, skip_param=False): """ Initialize to a prior sample. """ - if site['is_observed']: + if ((site['type'] == 'sample' and site['is_observed']) + or (site['type'] == 'param' and skip_param)): return None return sample('_init', site['fn']) -def init_to_uniform(site, radius=2): +def init_to_uniform(site, radius=2, skip_param=False): """ Initialize to an arbitrary feasible point, ignoring distribution parameters. """ - if site['is_observed']: + if ((site['type'] == 'sample' and site['is_observed']) + or (site['type'] == 'param' and skip_param)): return None value = sample('_init', site['fn']) t = biject_to(site['fn'].support) @@ -144,12 +147,13 @@ def init_to_uniform(site, radius=2): return t(unconstrained_value) -def init_to_feasible(site): +def init_to_feasible(site, skip_param=False): """ Initialize to an arbitrary feasible point, ignoring distribution parameters. """ - if site['is_observed']: + if ((site['type'] == 'sample' and site['is_observed']) + or (site['type'] == 'param' and skip_param)): return None value = sample('_init', site['fn']) t = biject_to(site['fn'].support) @@ -174,6 +178,8 @@ def find_valid_initial_params(rng, model, *model_args, init_strategy=init_to_uni :param `**model_kwargs`: kwargs provided to the model. :return: tuple of (`init_params`, `is_valid`). """ + init_strategy = jax.partial(init_strategy, skip_param=not param_as_improper) + def cond_fn(state): i, _, _, is_valid = state return (i < 100) & (~is_valid) @@ -195,7 +201,7 @@ def body_fn(state): else: constrained_values[k] = v['value'] inv_transforms[k] = biject_to(v['fn'].support) - elif v['type'] == 'param': + elif v['type'] == 'param' and param_as_improper: constraint = v['kwargs'].pop('constraint', real) transform = biject_to(constraint) if isinstance(transform, ComposeTransform): diff --git a/test/test_handlers.py b/test/test_handlers.py index 2437eb5af..8a7c0ac81 100644 --- a/test/test_handlers.py +++ b/test/test_handlers.py @@ -5,7 +5,7 @@ import numpyro.distributions as dist from numpyro.handlers import sample, scale, param, substitute, seed, trace, condition -from numpyro.hmc_util import log_density +from numpyro.infer_util import log_density from numpyro.util import optional From 92293cc315843a78b717951bdb19af938c1b28bf Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 7 Aug 2019 00:23:52 -0400 Subject: [PATCH 18/35] support param as improper --- numpyro/infer_util.py | 68 +++++++++++++++++++++++++++---------------- 1 file changed, 43 insertions(+), 25 deletions(-) diff --git a/numpyro/infer_util.py b/numpyro/infer_util.py index 92a819527..1e2b38208 100644 --- a/numpyro/infer_util.py +++ b/numpyro/infer_util.py @@ -113,23 +113,31 @@ def init_to_median(site, num_samples=15, skip_param=False): """ Initialize to the prior median. """ - if ((site['type'] == 'sample' and site['is_observed']) - or (site['type'] == 'param' and skip_param)): - return None - samples = sample('_init', site['fn'], sample_shape=(num_samples,)) - # TODO: use np.median when it is available upstream - value = np.mean(samples, axis=0) - return value + if site['type'] == 'sample' and not site['is_observed']: + if isinstance(site['fn'], dist.TransformedDistribution): + fn = site['fn'].base_dist + else: + fn = site['fn'] + samples = sample('_init', fn, sample_shape=(num_samples,)) + # TODO: use np.median when it is available upstream + return np.mean(samples, axis=0) + + if site['type'] == 'param' and not skip_param: + # return base value of param site + constraint = site['kwargs'].pop('constraint', real) + transform = biject_to(constraint) + value = site['args'][0] + if isinstance(transform, ComposeTransform): + base_transform = transform.parts[0] + value = base_transform(transform.inv(value)) + return value def init_to_prior(site, skip_param=False): """ Initialize to a prior sample. """ - if ((site['type'] == 'sample' and site['is_observed']) - or (site['type'] == 'param' and skip_param)): - return None - return sample('_init', site['fn']) + return init_to_median(site, num_samples=1, skip_param=skip_param) def init_to_uniform(site, radius=2, skip_param=False): @@ -137,14 +145,29 @@ def init_to_uniform(site, radius=2, skip_param=False): Initialize to an arbitrary feasible point, ignoring distribution parameters. """ - if ((site['type'] == 'sample' and site['is_observed']) - or (site['type'] == 'param' and skip_param)): - return None - value = sample('_init', site['fn']) - t = biject_to(site['fn'].support) - unconstrained_value = sample('_unconstrained_init', dist.Uniform(-radius, radius), - sample_shape=np.shape(t.inv(value))) - return t(unconstrained_value) + if site['type'] == 'sample' and not site['is_observed']: + if isinstance(site['fn'], dist.TransformedDistribution): + fn = site['fn'].base_dist + else: + fn = site['fn'] + value = sample('_init', fn) + base_transform = biject_to(fn.support) + unconstrained_value = sample('_unconstrained_init', dist.Uniform(-radius, radius), + sample_shape=np.shape(base_transform.inv(value))) + return base_transform(unconstrained_value) + + if site['type'] == 'param' and not skip_param: + # return base value of param site + constraint = site['kwargs'].pop('constraint', real) + transform = biject_to(constraint) + value = site['args'][0] + unconstrained_value = sample('_unconstrained_init', dist.Uniform(-radius, radius), + sample_shape=np.shape(transform.inv(value))) + if isinstance(transform, ComposeTransform): + base_transform = transform.parts[0] + else: + base_transform = transform + return base_transform(unconstrained_value) def init_to_feasible(site, skip_param=False): @@ -152,12 +175,7 @@ def init_to_feasible(site, skip_param=False): Initialize to an arbitrary feasible point, ignoring distribution parameters. """ - if ((site['type'] == 'sample' and site['is_observed']) - or (site['type'] == 'param' and skip_param)): - return None - value = sample('_init', site['fn']) - t = biject_to(site['fn'].support) - return t(np.zeros(np.shape(t.inv(value)))) + return init_to_uniform(site, radius=0, skip_param=skip_param) def find_valid_initial_params(rng, model, *model_args, init_strategy=init_to_uniform, From 3d5d1e8d70c3e1b392d2547ebe3731bf290c9346 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Thu, 8 Aug 2019 00:26:00 -0400 Subject: [PATCH 19/35] add covtype notebook --- notebooks/source/covtype.ipynb | 2705 ++++++++++++++++++++++++++++++++ 1 file changed, 2705 insertions(+) create mode 100644 notebooks/source/covtype.ipynb diff --git a/notebooks/source/covtype.ipynb b/notebooks/source/covtype.ipynb new file mode 100644 index 000000000..e3975a88b --- /dev/null +++ b/notebooks/source/covtype.ipynb @@ -0,0 +1,2705 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from functools import partial\n", + "import os; os.environ['XLA_FLAGS'] = '--xla_force_host_platform_device_count=4'\n", + "\n", + "import numpy as onp\n", + "\n", + "from jax import jit, random, vmap\n", + "from jax.config import config; config.update('jax_platform_name', 'cpu')\n", + "import jax.numpy as np\n", + "\n", + "import numpyro.distributions as dist\n", + "from numpyro.examples.datasets import COVTYPE, load_dataset\n", + "from numpyro.handlers import sample, scale, seed, substitute, trace\n", + "from numpyro.hmc_util import consensus, initialize_model, parametric_draws\n", + "from numpyro.mcmc import mcmc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### load data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data shape: (581012, 55)\n", + "Label distribution: 211840 has label 1, 369172 has label 0\n" + ] + } + ], + "source": [ + "def _load_dataset():\n", + " _, fetch = load_dataset(COVTYPE, shuffle=False)\n", + " features, labels = fetch()\n", + "\n", + " # normalize features and add intercept\n", + " features = (features - features.mean(0)) / features.std(0)\n", + " features = np.hstack([features, np.ones((features.shape[0], 1))])\n", + "\n", + " # make binary feature\n", + " _, counts = onp.unique(labels, return_counts=True)\n", + " specific_category = np.argmax(counts)\n", + " labels = (labels == specific_category)\n", + "\n", + " N, dim = features.shape\n", + " print(\"Data shape:\", features.shape)\n", + " print(\"Label distribution: {} has label 1, {} has label 0\"\n", + " .format(labels.sum(), N - labels.sum()))\n", + " return features, labels\n", + "\n", + "X_full, y_full = _load_dataset()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### prepare train shards and test set" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train set contains 400000 (68.85%) data points.\n", + "Test set contains 181012 (31.15%) data points.\n" + ] + } + ], + "source": [ + "def get_train_shards_and_test_data(X, y, K, N, rng=None):\n", + " if rng is not None:\n", + " idxs = random.shuffle(rng, np.arange(X.shape[0]))\n", + " X = X[idxs]\n", + " y = y[idxs]\n", + " shards = []\n", + " for i in range(K):\n", + " shards.append((X[i * N: (i + 1) * N], y[i * N: (i + 1) * N]))\n", + " test_data = (X[K * N:], y[K * N:])\n", + " return shards, test_data\n", + "\n", + "K, N = 40, 10000\n", + "shards, (X_test, y_test) = get_train_shards_and_test_data(\n", + " X_full, y_full, K, N, random.PRNGKey(0))\n", + "print(\"Train set contains {} ({}%) data points.\".format(\n", + " K * N, round(K * N / X_full.shape[0] * 100, 2)))\n", + "print(\"Test set contains {} ({}%) data points.\".format(\n", + " X_full.shape[0] - K * N, round(100 - K * N / X_full.shape[0] * 100, 2)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### model" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def model(X, y, K=1):\n", + " with scale(1 / K):\n", + " coefs = sample('coefs', dist.Normal(np.zeros(X.shape[-1]), np.ones(X.shape[-1])))\n", + " return sample('y', dist.Bernoulli(logits=np.dot(X, coefs)), obs=y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### sampling" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def get_subposterior(rng, shard, K):\n", + " rngs = random.split(rng, 4)\n", + " X, y = shard\n", + " init_params, potential_fn, _ = initialize_model(rngs, model, X, y, K=K)\n", + " samples = mcmc(num_warmup=1000, num_samples=2500, init_params=init_params,\n", + " num_chains=4, potential_fn=potential_fn)\n", + " return samples" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " =============================== SUBPOSTERIOR 00 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.94 0.06 1.94 1.84 2.04 10596.19 1.00\n", + " coefs[1] 0.00 0.03 0.00 -0.06 0.06 13018.15 1.00\n", + " coefs[2] -0.05 0.07 -0.05 -0.15 0.06 3962.76 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.32 -0.21 8349.60 1.00\n", + " coefs[4] -0.13 0.04 -0.13 -0.19 -0.07 9673.05 1.00\n", + " coefs[5] -0.09 0.03 -0.09 -0.15 -0.04 11774.95 1.00\n", + " coefs[6] 0.33 0.25 0.32 -0.08 0.73 3044.25 1.00\n", + " coefs[7] -0.70 0.15 -0.69 -0.94 -0.45 3230.34 1.00\n", + " coefs[8] 0.61 0.29 0.60 0.12 1.08 3048.04 1.00\n", + " coefs[9] -0.04 0.03 -0.04 -0.08 0.01 11912.89 1.00\n", + " coefs[10] 0.38 0.65 0.37 -0.66 1.50 3045.41 1.00\n", + " coefs[11] -0.05 0.29 -0.06 -0.54 0.42 3041.88 1.00\n", + " coefs[12] 0.12 0.65 0.11 -0.99 1.17 3040.15 1.00\n", + " coefs[13] -0.94 0.65 -0.88 -2.00 0.08 5089.97 1.00\n", + " coefs[14] -0.48 0.67 -0.37 -1.51 0.56 5935.95 1.00\n", + " coefs[15] -0.80 0.56 -0.69 -1.65 0.03 5174.92 1.00\n", + " coefs[16] -0.71 0.60 -0.59 -1.63 0.11 4779.67 1.00\n", + " coefs[17] -0.28 0.22 -0.27 -0.65 0.08 1027.92 1.00\n", + " coefs[18] -0.57 0.66 -0.46 -1.58 0.40 5873.46 1.00\n", + " coefs[19] -0.49 0.67 -0.39 -1.61 0.53 5699.48 1.00\n", + " coefs[20] -0.77 0.59 -0.66 -1.62 0.03 5339.04 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1357.53 1.00\n", + " coefs[22] -0.01 0.07 -0.00 -0.13 0.11 1117.18 1.00\n", + " coefs[23] -0.07 0.25 -0.07 -0.47 0.34 537.29 1.00\n", + " coefs[24] -0.04 0.16 -0.04 -0.31 0.21 542.14 1.00\n", + " coefs[25] -0.01 0.23 -0.02 -0.39 0.35 498.36 1.00\n", + " coefs[26] -0.01 0.18 -0.01 -0.31 0.27 506.74 1.00\n", + " coefs[27] -0.72 0.61 -0.61 -1.61 0.12 5016.54 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.59 1.71 11735.13 1.00\n", + " coefs[29] 0.09 0.08 0.09 -0.04 0.21 522.46 1.00\n", + " coefs[30] 0.11 0.09 0.11 -0.04 0.25 581.10 1.00\n", + " coefs[31] 0.04 0.08 0.04 -0.09 0.16 822.05 1.00\n", + " coefs[32] 0.11 0.09 0.11 -0.03 0.26 518.96 1.00\n", + " coefs[33] 0.13 0.13 0.13 -0.08 0.34 494.96 1.00\n", + " coefs[34] 0.06 0.05 0.06 -0.02 0.15 858.21 1.00\n", + " coefs[35] 0.38 0.24 0.38 -0.01 0.77 488.03 1.00\n", + " coefs[36] 0.40 0.31 0.40 -0.10 0.90 484.06 1.00\n", + " coefs[37] 0.17 0.19 0.17 -0.13 0.50 491.13 1.00\n", + " coefs[38] -0.02 0.04 -0.02 -0.08 0.05 833.97 1.00\n", + " coefs[39] -0.01 0.08 -0.01 -0.14 0.11 601.79 1.00\n", + " coefs[40] 0.03 0.05 0.03 -0.05 0.11 632.43 1.00\n", + " coefs[41] -0.77 0.58 -0.65 -1.62 0.05 5172.22 1.00\n", + " coefs[42] 0.11 0.41 0.11 -0.56 0.77 485.90 1.00\n", + " coefs[43] -0.04 0.23 -0.04 -0.40 0.34 487.10 1.00\n", + " coefs[44] 0.16 0.21 0.16 -0.19 0.50 486.21 1.00\n", + " coefs[45] 0.12 0.30 0.12 -0.36 0.61 485.58 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.26 0.64 488.71 1.00\n", + " coefs[47] -0.03 0.07 -0.03 -0.14 0.08 688.12 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.03 530.56 1.00\n", + " coefs[49] 0.02 1.00 0.01 -1.59 1.68 11841.74 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.68 -0.08 4715.49 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.37 0.17 496.97 1.00\n", + " coefs[52] -0.13 0.16 -0.13 -0.38 0.13 491.79 1.00\n", + " coefs[53] -0.13 0.13 -0.13 -0.34 0.08 498.09 1.00\n", + " coefs[54] -1.71 0.19 -1.70 -2.01 -1.40 4068.47 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 01 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.03 0.06 2.03 1.93 2.13 6297.01 1.00\n", + " coefs[1] -0.10 0.03 -0.10 -0.16 -0.05 6696.79 1.00\n", + " coefs[2] -0.04 0.07 -0.04 -0.16 0.09 2407.61 1.00\n", + " coefs[3] -0.23 0.03 -0.24 -0.29 -0.18 5620.77 1.00\n", + " coefs[4] -0.12 0.04 -0.12 -0.18 -0.06 5804.19 1.00\n", + " coefs[5] -0.18 0.03 -0.18 -0.23 -0.13 6953.33 1.00\n", + " coefs[6] 0.23 0.30 0.23 -0.26 0.72 2060.03 1.00\n", + " coefs[7] -0.64 0.18 -0.64 -0.94 -0.34 2165.40 1.00\n", + " coefs[8] 0.68 0.35 0.67 0.11 1.27 2051.67 1.00\n", + " coefs[9] -0.04 0.03 -0.04 -0.09 0.02 7364.88 1.00\n", + " coefs[10] 0.42 0.65 0.42 -0.69 1.45 2455.62 1.00\n", + " coefs[11] -0.05 0.29 -0.05 -0.54 0.41 2496.49 1.00\n", + " coefs[12] 0.07 0.65 0.06 -1.06 1.08 2474.35 1.00\n", + " coefs[13] -1.02 0.64 -0.97 -2.04 0.02 3633.72 1.00\n", + " coefs[14] -0.46 0.67 -0.36 -1.51 0.55 3974.22 1.00\n", + " coefs[15] -0.78 0.56 -0.68 -1.61 0.05 3326.03 1.00\n", + " coefs[16] -0.74 0.58 -0.63 -1.61 0.10 3931.39 1.00\n", + " coefs[17] -0.11 0.18 -0.10 -0.41 0.20 716.27 1.01\n", + " coefs[18] -0.54 0.67 -0.44 -1.55 0.44 4309.01 1.00\n", + " coefs[19] -0.44 0.68 -0.35 -1.56 0.59 4171.46 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.63 0.02 3801.33 1.00\n", + " coefs[21] 0.03 0.03 0.03 -0.01 0.07 928.09 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.06 0.14 821.22 1.01\n", + " coefs[23] 0.03 0.24 0.04 -0.38 0.40 486.42 1.01\n", + " coefs[24] 0.05 0.15 0.05 -0.20 0.29 508.69 1.01\n", + " coefs[25] -0.08 0.23 -0.08 -0.43 0.31 474.61 1.01\n", + " coefs[26] 0.01 0.18 0.02 -0.27 0.31 482.02 1.01\n", + " coefs[27] -0.68 0.63 -0.56 -1.60 0.18 3544.17 1.00\n", + " coefs[28] -0.78 0.60 -0.66 -1.60 0.03 3720.32 1.00\n", + " coefs[29] 0.09 0.08 0.09 -0.03 0.21 525.53 1.01\n", + " coefs[30] 0.00 0.10 0.00 -0.16 0.17 779.43 1.01\n", + " coefs[31] -0.04 0.10 -0.03 -0.19 0.11 1169.81 1.00\n", + " coefs[32] 0.12 0.09 0.12 -0.03 0.26 512.40 1.01\n", + " coefs[33] 0.15 0.13 0.15 -0.05 0.37 482.55 1.01\n", + " coefs[34] 0.93 0.59 0.82 0.11 1.79 3574.15 1.00\n", + " coefs[35] 0.34 0.24 0.34 -0.05 0.72 473.55 1.01\n", + " coefs[36] 0.30 0.30 0.30 -0.21 0.78 470.35 1.01\n", + " coefs[37] 0.17 0.19 0.17 -0.16 0.47 467.05 1.01\n", + " coefs[38] -0.04 0.04 -0.04 -0.11 0.02 769.86 1.01\n", + " coefs[39] 0.01 0.08 0.01 -0.11 0.14 578.20 1.01\n", + " coefs[40] -0.01 0.05 -0.01 -0.09 0.08 612.50 1.01\n", + " coefs[41] -0.80 0.59 -0.67 -1.64 0.04 3531.23 1.00\n", + " coefs[42] 0.02 0.41 0.02 -0.64 0.68 469.07 1.01\n", + " coefs[43] 0.02 0.23 0.02 -0.35 0.39 472.51 1.01\n", + " coefs[44] 0.16 0.21 0.16 -0.19 0.49 471.76 1.01\n", + " coefs[45] 0.09 0.29 0.09 -0.40 0.55 469.03 1.01\n", + " coefs[46] 0.23 0.27 0.23 -0.22 0.67 471.88 1.01\n", + " coefs[47] -0.07 0.07 -0.07 -0.19 0.04 839.36 1.01\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.02 510.68 1.01\n", + " coefs[49] 0.03 1.01 0.03 -1.59 1.76 7599.21 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.67 -0.07 3259.83 1.00\n", + " coefs[51] -0.13 0.17 -0.13 -0.41 0.12 472.94 1.01\n", + " coefs[52] -0.15 0.16 -0.15 -0.40 0.11 473.82 1.01\n", + " coefs[53] -0.17 0.13 -0.17 -0.38 0.03 488.46 1.01\n", + " coefs[54] -1.64 0.18 -1.63 -1.94 -1.34 2819.50 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 02 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.97 0.06 1.97 1.87 2.07 10141.39 1.00\n", + " coefs[1] -0.07 0.03 -0.07 -0.13 -0.01 11681.33 1.00\n", + " coefs[2] 0.05 0.08 0.05 -0.08 0.18 3349.04 1.00\n", + " coefs[3] -0.27 0.03 -0.27 -0.32 -0.22 8028.85 1.00\n", + " coefs[4] -0.12 0.03 -0.12 -0.18 -0.06 9352.06 1.00\n", + " coefs[5] -0.13 0.03 -0.13 -0.18 -0.07 11348.87 1.00\n", + " coefs[6] 0.80 0.32 0.80 0.28 1.32 2779.37 1.00\n", + " coefs[7] -1.06 0.19 -1.06 -1.37 -0.74 2899.08 1.00\n", + " coefs[8] 1.32 0.37 1.32 0.71 1.93 2786.07 1.00\n", + " coefs[9] -0.08 0.03 -0.08 -0.13 -0.03 12106.53 1.00\n", + " coefs[10] 0.45 0.65 0.44 -0.64 1.50 2853.02 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.56 0.39 2876.41 1.00\n", + " coefs[12] 0.13 0.65 0.13 -0.96 1.18 2851.32 1.00\n", + " coefs[13] -1.08 0.62 -1.02 -2.08 -0.10 4547.27 1.00\n", + " coefs[14] -0.45 0.67 -0.34 -1.51 0.56 5752.40 1.00\n", + " coefs[15] -0.79 0.57 -0.68 -1.63 0.06 4399.13 1.00\n", + " coefs[16] -0.70 0.59 -0.59 -1.58 0.16 5696.39 1.00\n", + " coefs[17] -0.14 0.19 -0.13 -0.44 0.18 742.08 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.58 0.39 5940.96 1.00\n", + " coefs[19] -0.44 0.68 -0.35 -1.54 0.62 5852.71 1.00\n", + " coefs[20] -0.77 0.58 -0.65 -1.62 0.02 5257.50 1.00\n", + " coefs[21] -0.76 0.58 -0.64 -1.60 0.03 5145.51 1.00\n", + " coefs[22] 0.03 0.08 0.03 -0.08 0.16 1171.01 1.00\n", + " coefs[23] 0.16 0.25 0.15 -0.26 0.57 534.48 1.00\n", + " coefs[24] 0.02 0.16 0.02 -0.25 0.28 535.89 1.00\n", + " coefs[25] -0.15 0.24 -0.16 -0.56 0.23 527.60 1.00\n", + " coefs[26] 0.06 0.18 0.06 -0.25 0.36 526.14 1.00\n", + " coefs[27] -0.72 0.61 -0.59 -1.61 0.13 5205.52 1.00\n", + " coefs[28] 0.03 1.00 0.04 -1.61 1.65 10712.86 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.06 0.21 607.37 1.00\n", + " coefs[30] -0.00 0.10 -0.00 -0.16 0.15 652.04 1.00\n", + " coefs[31] -0.02 0.10 -0.01 -0.17 0.13 1134.64 1.00\n", + " coefs[32] 0.10 0.09 0.10 -0.05 0.25 535.91 1.00\n", + " coefs[33] 0.15 0.14 0.15 -0.08 0.36 527.35 1.00\n", + " coefs[34] 0.91 0.59 0.79 0.10 1.78 4974.60 1.00\n", + " coefs[35] 0.38 0.25 0.38 -0.04 0.78 520.29 1.00\n", + " coefs[36] 0.37 0.32 0.37 -0.14 0.92 516.69 1.00\n", + " coefs[37] 0.18 0.20 0.17 -0.17 0.49 518.95 1.00\n", + " coefs[38] -0.80 0.58 -0.68 -1.65 -0.01 5323.77 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 622.80 1.00\n", + " coefs[40] 0.07 0.05 0.07 -0.01 0.15 571.08 1.01\n", + " coefs[41] -0.01 0.07 -0.01 -0.12 0.10 1236.93 1.00\n", + " coefs[42] 0.07 0.43 0.07 -0.61 0.79 513.79 1.00\n", + " coefs[43] 0.01 0.24 0.01 -0.38 0.41 521.37 1.00\n", + " coefs[44] 0.16 0.22 0.16 -0.21 0.52 511.80 1.00\n", + " coefs[45] 0.08 0.31 0.08 -0.43 0.58 514.38 1.00\n", + " coefs[46] 0.23 0.29 0.23 -0.23 0.71 515.12 1.00\n", + " coefs[47] -0.13 0.09 -0.13 -0.27 0.01 1051.75 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.03 574.66 1.00\n", + " coefs[49] -0.80 0.59 -0.68 -1.63 0.02 5085.05 1.00\n", + " coefs[50] -0.85 0.58 -0.73 -1.67 -0.07 4703.61 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.40 0.17 522.50 1.00\n", + " coefs[52] -0.08 0.16 -0.07 -0.34 0.20 518.37 1.00\n", + " coefs[53] -0.18 0.13 -0.18 -0.40 0.03 526.44 1.00\n", + " coefs[54] -1.67 0.19 -1.65 -1.95 -1.36 3894.03 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 03 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.93 0.06 1.93 1.84 2.04 9308.68 1.00\n", + " coefs[1] -0.03 0.04 -0.03 -0.08 0.04 11831.11 1.00\n", + " coefs[2] -0.08 0.06 -0.08 -0.18 0.03 3625.92 1.00\n", + " coefs[3] -0.27 0.03 -0.27 -0.33 -0.22 7283.21 1.00\n", + " coefs[4] -0.09 0.03 -0.09 -0.14 -0.03 8157.44 1.00\n", + " coefs[5] -0.09 0.03 -0.09 -0.14 -0.04 10004.68 1.00\n", + " coefs[6] 0.04 0.24 0.04 -0.35 0.44 2665.26 1.00\n", + " coefs[7] -0.57 0.15 -0.57 -0.80 -0.31 2781.87 1.00\n", + " coefs[8] 0.33 0.28 0.33 -0.12 0.80 2642.32 1.00\n", + " coefs[9] 0.02 0.03 0.02 -0.03 0.07 11808.21 1.00\n", + " coefs[10] 0.37 0.65 0.37 -0.72 1.45 2985.63 1.00\n", + " coefs[11] -0.00 0.29 -0.01 -0.48 0.49 2998.92 1.00\n", + " coefs[12] 0.11 0.65 0.10 -0.95 1.21 2991.93 1.00\n", + " coefs[13] -0.99 0.63 -0.92 -1.99 0.04 4876.03 1.00\n", + " coefs[14] -0.47 0.67 -0.36 -1.53 0.50 5544.85 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.65 0.06 4454.60 1.00\n", + " coefs[16] -0.71 0.59 -0.60 -1.61 0.13 4989.00 1.00\n", + " coefs[17] 0.05 0.17 0.05 -0.23 0.32 633.85 1.00\n", + " coefs[18] -0.54 0.66 -0.42 -1.54 0.43 5998.03 1.00\n", + " coefs[19] -0.45 0.68 -0.35 -1.52 0.63 5489.12 1.00\n", + " coefs[20] -0.77 0.58 -0.65 -1.61 0.02 5007.75 1.00\n", + " coefs[21] 0.03 0.04 0.03 -0.03 0.09 1821.60 1.00\n", + " coefs[22] -0.00 0.08 0.00 -0.13 0.11 1044.03 1.00\n", + " coefs[23] 0.02 0.26 0.02 -0.40 0.45 600.96 1.00\n", + " coefs[24] 0.01 0.16 0.01 -0.24 0.30 591.14 1.00\n", + " coefs[25] -0.05 0.24 -0.05 -0.45 0.34 569.65 1.00\n", + " coefs[26] -0.00 0.19 -0.00 -0.29 0.33 572.75 1.00\n", + " coefs[27] -0.72 0.61 -0.60 -1.60 0.14 4787.94 1.00\n", + " coefs[28] 0.03 0.99 0.04 -1.57 1.67 9415.44 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.06 0.21 615.59 1.00\n", + " coefs[30] 0.03 0.10 0.03 -0.13 0.19 749.84 1.00\n", + " coefs[31] 0.01 0.08 0.01 -0.11 0.15 937.97 1.00\n", + " coefs[32] 0.12 0.09 0.12 -0.03 0.27 585.50 1.00\n", + " coefs[33] 0.14 0.14 0.14 -0.08 0.37 578.11 1.00\n", + " coefs[34] 0.15 0.07 0.14 0.04 0.25 1184.94 1.00\n", + " coefs[35] 0.34 0.25 0.34 -0.08 0.75 562.89 1.00\n", + " coefs[36] 0.36 0.32 0.36 -0.15 0.92 562.32 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.16 0.51 564.23 1.00\n", + " coefs[38] -0.03 0.04 -0.03 -0.10 0.03 914.20 1.00\n", + " coefs[39] -0.83 0.57 -0.71 -1.68 -0.05 4856.42 1.00\n", + " coefs[40] 0.09 0.05 0.09 -0.00 0.17 716.14 1.00\n", + " coefs[41] -0.78 0.59 -0.66 -1.62 0.04 5147.75 1.00\n", + " coefs[42] 0.06 0.43 0.06 -0.63 0.80 560.74 1.00\n", + " coefs[43] 0.04 0.24 0.04 -0.36 0.44 567.24 1.00\n", + " coefs[44] 0.23 0.22 0.23 -0.14 0.59 562.82 1.00\n", + " coefs[45] 0.13 0.31 0.13 -0.38 0.65 562.89 1.00\n", + " coefs[46] 0.21 0.29 0.21 -0.26 0.69 560.89 1.00\n", + " coefs[47] -0.06 0.07 -0.06 -0.17 0.07 884.93 1.00\n", + " coefs[48] -0.01 0.07 -0.01 -0.11 0.11 642.70 1.00\n", + " coefs[49] -0.79 0.60 -0.67 -1.66 0.01 4636.00 1.00\n", + " coefs[50] -0.85 0.59 -0.72 -1.68 -0.06 4578.95 1.00\n", + " coefs[51] -0.07 0.18 -0.07 -0.36 0.22 573.25 1.00\n", + " coefs[52] -0.11 0.17 -0.11 -0.39 0.15 567.32 1.00\n", + " coefs[53] -0.19 0.13 -0.19 -0.40 0.04 584.89 1.00\n", + " coefs[54] -1.73 0.19 -1.71 -2.03 -1.43 3787.09 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 04 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.00 0.06 2.00 1.90 2.10 9663.05 1.00\n", + " coefs[1] 0.01 0.03 0.01 -0.04 0.07 12229.09 1.00\n", + " coefs[2] -0.05 0.08 -0.05 -0.18 0.08 3518.69 1.00\n", + " coefs[3] -0.27 0.03 -0.26 -0.32 -0.21 7811.88 1.00\n", + " coefs[4] -0.14 0.03 -0.14 -0.20 -0.09 8939.99 1.00\n", + " coefs[5] -0.21 0.03 -0.21 -0.26 -0.15 10756.10 1.00\n", + " coefs[6] 0.29 0.32 0.28 -0.22 0.82 2819.50 1.00\n", + " coefs[7] -0.72 0.19 -0.72 -1.04 -0.41 2925.77 1.00\n", + " coefs[8] 0.69 0.37 0.69 0.08 1.29 2825.15 1.00\n", + " coefs[9] 0.03 0.03 0.03 -0.02 0.08 12007.14 1.00\n", + " coefs[10] 0.43 0.65 0.42 -0.67 1.47 3220.08 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.55 0.40 3229.13 1.00\n", + " coefs[12] 0.10 0.65 0.09 -1.05 1.08 3214.88 1.00\n", + " coefs[13] -1.04 0.62 -0.99 -2.05 -0.06 5156.93 1.00\n", + " coefs[14] -0.45 0.68 -0.35 -1.52 0.56 5786.49 1.00\n", + " coefs[15] -0.76 0.58 -0.65 -1.65 0.08 4260.86 1.00\n", + " coefs[16] -0.72 0.58 -0.61 -1.60 0.12 5213.66 1.00\n", + " coefs[17] -0.04 0.17 -0.04 -0.31 0.23 558.39 1.00\n", + " coefs[18] -0.52 0.68 -0.40 -1.59 0.44 6109.99 1.00\n", + " coefs[19] -0.47 0.68 -0.38 -1.58 0.58 5597.20 1.00\n", + " coefs[20] -0.77 0.59 -0.66 -1.61 0.02 5070.21 1.00\n", + " coefs[21] -0.78 0.59 -0.66 -1.63 0.01 4634.14 1.00\n", + " coefs[22] 0.10 0.06 0.10 0.01 0.19 642.58 1.00\n", + " coefs[23] 0.12 0.24 0.11 -0.29 0.51 465.45 1.00\n", + " coefs[24] 0.09 0.15 0.09 -0.15 0.35 470.90 1.00\n", + " coefs[25] -0.11 0.23 -0.11 -0.48 0.27 454.80 1.00\n", + " coefs[26] 0.00 0.18 0.00 -0.30 0.29 466.84 1.00\n", + " coefs[27] -0.72 0.61 -0.60 -1.60 0.14 5204.11 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.60 1.66 11259.68 1.00\n", + " coefs[29] 0.09 0.08 0.08 -0.03 0.22 488.93 1.00\n", + " coefs[30] 0.02 0.09 0.03 -0.13 0.18 610.00 1.00\n", + " coefs[31] -0.75 0.59 -0.63 -1.60 0.08 4911.00 1.00\n", + " coefs[32] 0.09 0.09 0.09 -0.05 0.23 463.51 1.00\n", + " coefs[33] 0.15 0.13 0.15 -0.06 0.37 460.50 1.00\n", + " coefs[34] 0.93 0.59 0.80 0.12 1.77 4713.75 1.00\n", + " coefs[35] 0.32 0.24 0.32 -0.07 0.72 450.32 1.00\n", + " coefs[36] 0.32 0.31 0.32 -0.19 0.82 446.76 1.00\n", + " coefs[37] 0.17 0.19 0.17 -0.14 0.49 449.21 1.00\n", + " coefs[38] -0.05 0.05 -0.05 -0.13 0.02 1126.07 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.11 0.14 542.39 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.12 514.96 1.00\n", + " coefs[41] -0.01 0.07 -0.01 -0.12 0.10 1089.97 1.00\n", + " coefs[42] 0.05 0.41 0.05 -0.65 0.69 447.89 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.36 0.39 451.39 1.00\n", + " coefs[44] 0.18 0.21 0.18 -0.16 0.53 448.32 1.00\n", + " coefs[45] 0.12 0.30 0.12 -0.36 0.60 447.13 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.23 0.67 449.59 1.00\n", + " coefs[47] -0.12 0.09 -0.11 -0.25 0.03 961.34 1.00\n", + " coefs[48] -0.10 0.06 -0.10 -0.20 0.00 482.43 1.00\n", + " coefs[49] -0.01 0.03 -0.01 -0.05 0.03 1292.54 1.00\n", + " coefs[50] -0.84 0.58 -0.73 -1.68 -0.06 5019.30 1.00\n", + " coefs[51] -0.09 0.17 -0.09 -0.36 0.19 453.50 1.00\n", + " coefs[52] -0.12 0.16 -0.12 -0.38 0.14 453.09 1.00\n", + " coefs[53] -0.16 0.13 -0.16 -0.37 0.05 458.05 1.00\n", + " coefs[54] -1.69 0.19 -1.68 -2.00 -1.40 4062.23 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 05 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.98 0.06 1.98 1.88 2.08 10055.48 1.00\n", + " coefs[1] -0.09 0.03 -0.09 -0.15 -0.03 13343.50 1.00\n", + " coefs[2] -0.06 0.07 -0.06 -0.18 0.06 3771.35 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.31 -0.20 8377.00 1.00\n", + " coefs[4] -0.12 0.03 -0.12 -0.18 -0.07 9458.58 1.00\n", + " coefs[5] -0.19 0.03 -0.19 -0.24 -0.13 11099.64 1.00\n", + " coefs[6] 0.16 0.28 0.16 -0.28 0.65 2986.01 1.00\n", + " coefs[7] -0.68 0.17 -0.67 -0.95 -0.39 3098.70 1.00\n", + " coefs[8] 0.53 0.33 0.53 0.01 1.08 2974.13 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.07 0.02 12492.35 1.00\n", + " coefs[10] 0.43 0.65 0.42 -0.63 1.52 3281.51 1.00\n", + " coefs[11] -0.04 0.29 -0.05 -0.53 0.44 3280.68 1.00\n", + " coefs[12] 0.09 0.65 0.08 -0.95 1.20 3275.10 1.00\n", + " coefs[13] -1.02 0.62 -0.96 -1.99 0.03 5048.16 1.00\n", + " coefs[14] -0.45 0.66 -0.34 -1.48 0.55 6484.69 1.00\n", + " coefs[15] -0.76 0.57 -0.66 -1.64 0.07 4874.24 1.00\n", + " coefs[16] -0.71 0.59 -0.59 -1.60 0.13 5196.60 1.00\n", + " coefs[17] -0.85 0.54 -0.75 -1.71 -0.04 4288.80 1.00\n", + " coefs[18] -0.53 0.66 -0.41 -1.55 0.42 5984.25 1.00\n", + " coefs[19] -0.43 0.68 -0.34 -1.52 0.61 6184.44 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.61 0.02 5183.95 1.00\n", + " coefs[21] -0.76 0.60 -0.65 -1.61 0.06 5107.29 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.06 0.14 931.40 1.00\n", + " coefs[23] 0.12 0.25 0.12 -0.29 0.53 654.15 1.00\n", + " coefs[24] 0.03 0.16 0.03 -0.24 0.28 661.51 1.00\n", + " coefs[25] 0.02 0.24 0.02 -0.38 0.39 640.94 1.00\n", + " coefs[26] 0.08 0.18 0.08 -0.22 0.38 650.77 1.00\n", + " coefs[27] -0.72 0.61 -0.60 -1.59 0.13 5054.07 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.60 1.71 12236.32 1.00\n", + " coefs[29] 0.05 0.08 0.05 -0.08 0.18 716.26 1.00\n", + " coefs[30] 0.07 0.09 0.07 -0.09 0.21 819.35 1.00\n", + " coefs[31] -0.76 0.58 -0.63 -1.63 0.05 5197.70 1.00\n", + " coefs[32] 0.11 0.09 0.11 -0.04 0.25 664.44 1.00\n", + " coefs[33] 0.15 0.13 0.16 -0.07 0.37 636.44 1.00\n", + " coefs[34] 0.08 0.05 0.08 0.00 0.16 913.04 1.00\n", + " coefs[35] 0.38 0.25 0.38 -0.04 0.76 631.09 1.00\n", + " coefs[36] 0.41 0.32 0.42 -0.11 0.91 625.04 1.00\n", + " coefs[37] 0.16 0.20 0.17 -0.17 0.47 634.99 1.00\n", + " coefs[38] -0.01 0.05 -0.01 -0.10 0.07 1734.43 1.00\n", + " coefs[39] 0.06 0.08 0.06 -0.07 0.18 733.19 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.13 751.19 1.00\n", + " coefs[41] -0.77 0.58 -0.64 -1.64 0.04 5405.80 1.00\n", + " coefs[42] 0.13 0.42 0.13 -0.55 0.82 630.46 1.00\n", + " coefs[43] 0.06 0.24 0.07 -0.32 0.44 631.90 1.00\n", + " coefs[44] 0.19 0.22 0.19 -0.18 0.53 624.94 1.00\n", + " coefs[45] 0.17 0.30 0.17 -0.33 0.65 625.77 1.00\n", + " coefs[46] 0.25 0.28 0.25 -0.22 0.70 622.20 1.00\n", + " coefs[47] -0.12 0.09 -0.12 -0.25 0.03 1352.86 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.04 690.67 1.00\n", + " coefs[49] 0.01 0.03 0.01 -0.04 0.06 2201.81 1.00\n", + " coefs[50] -0.85 0.58 -0.73 -1.68 -0.07 4536.52 1.00\n", + " coefs[51] -0.07 0.17 -0.07 -0.36 0.19 638.33 1.00\n", + " coefs[52] -0.06 0.16 -0.05 -0.32 0.21 633.89 1.00\n", + " coefs[53] -0.13 0.13 -0.12 -0.34 0.08 644.18 1.00\n", + " coefs[54] -1.83 0.20 -1.82 -2.15 -1.50 4430.47 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 06 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.95 0.06 1.95 1.85 2.05 10029.37 1.00\n", + " coefs[1] -0.08 0.04 -0.08 -0.14 -0.02 12149.78 1.00\n", + " coefs[2] -0.07 0.07 -0.07 -0.18 0.04 3538.75 1.00\n", + " coefs[3] -0.28 0.03 -0.28 -0.33 -0.23 7831.87 1.00\n", + " coefs[4] -0.08 0.04 -0.08 -0.13 -0.02 8546.42 1.00\n", + " coefs[5] -0.15 0.03 -0.15 -0.20 -0.10 11509.36 1.00\n", + " coefs[6] 0.22 0.26 0.21 -0.20 0.65 2659.06 1.00\n", + " coefs[7] -0.68 0.16 -0.68 -0.94 -0.42 2786.69 1.00\n", + " coefs[8] 0.62 0.30 0.61 0.14 1.13 2692.12 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 12142.73 1.00\n", + " coefs[10] 0.44 0.66 0.43 -0.66 1.52 3204.45 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.53 0.44 3207.91 1.00\n", + " coefs[12] 0.10 0.66 0.10 -1.00 1.17 3206.53 1.00\n", + " coefs[13] -1.07 0.62 -1.02 -2.08 -0.09 4936.60 1.00\n", + " coefs[14] -0.47 0.68 -0.35 -1.47 0.58 5590.17 1.00\n", + " coefs[15] -0.79 0.57 -0.68 -1.63 0.08 4904.63 1.00\n", + " coefs[16] -0.73 0.57 -0.62 -1.60 0.10 5217.49 1.00\n", + " coefs[17] 0.01 0.16 0.01 -0.25 0.27 685.60 1.00\n", + " coefs[18] -0.53 0.66 -0.41 -1.55 0.43 5794.67 1.00\n", + " coefs[19] -0.45 0.68 -0.35 -1.55 0.59 5598.62 1.00\n", + " coefs[20] -0.78 0.58 -0.67 -1.61 0.01 4899.15 1.00\n", + " coefs[21] -0.79 0.59 -0.66 -1.64 0.01 4949.36 1.00\n", + " coefs[22] 0.05 0.05 0.05 -0.04 0.14 761.87 1.00\n", + " coefs[23] 0.13 0.24 0.13 -0.25 0.54 591.47 1.00\n", + " coefs[24] 0.13 0.15 0.13 -0.11 0.38 583.33 1.00\n", + " coefs[25] -0.16 0.23 -0.16 -0.54 0.21 579.37 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.30 591.59 1.00\n", + " coefs[27] -0.71 0.62 -0.59 -1.60 0.16 5125.28 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.60 1.64 11076.76 1.00\n", + " coefs[29] -0.03 0.09 -0.03 -0.17 0.10 762.71 1.00\n", + " coefs[30] 0.05 0.09 0.05 -0.09 0.20 775.29 1.00\n", + " coefs[31] 0.01 0.08 0.01 -0.11 0.13 865.56 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.08 0.20 593.73 1.00\n", + " coefs[33] 0.14 0.13 0.14 -0.08 0.35 568.23 1.00\n", + " coefs[34] 0.11 0.05 0.10 0.03 0.19 939.36 1.00\n", + " coefs[35] 0.34 0.24 0.34 -0.04 0.73 567.29 1.00\n", + " coefs[36] 0.33 0.31 0.33 -0.16 0.83 557.88 1.00\n", + " coefs[37] 0.18 0.19 0.18 -0.12 0.50 561.91 1.00\n", + " coefs[38] -0.01 0.04 -0.01 -0.07 0.06 987.06 1.00\n", + " coefs[39] 0.03 0.08 0.03 -0.09 0.16 660.49 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.13 719.50 1.00\n", + " coefs[41] -0.78 0.58 -0.66 -1.62 0.03 5507.11 1.00\n", + " coefs[42] 0.02 0.41 0.02 -0.66 0.66 565.26 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.34 0.40 572.24 1.00\n", + " coefs[44] 0.17 0.21 0.17 -0.19 0.49 559.31 1.00\n", + " coefs[45] 0.13 0.29 0.13 -0.35 0.61 560.67 1.00\n", + " coefs[46] 0.23 0.27 0.24 -0.22 0.67 565.95 1.00\n", + " coefs[47] -0.06 0.07 -0.06 -0.18 0.05 932.54 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.02 626.56 1.00\n", + " coefs[49] -0.81 0.60 -0.69 -1.67 -0.00 4698.19 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.07 4890.12 1.00\n", + " coefs[51] -0.15 0.17 -0.15 -0.43 0.11 581.16 1.00\n", + " coefs[52] -0.12 0.16 -0.12 -0.37 0.13 576.92 1.00\n", + " coefs[53] -0.13 0.13 -0.13 -0.34 0.07 586.00 1.00\n", + " coefs[54] -1.69 0.18 -1.68 -1.98 -1.39 4293.06 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 07 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.93 0.06 1.93 1.84 2.04 9250.39 1.00\n", + " coefs[1] -0.09 0.03 -0.09 -0.14 -0.03 11900.57 1.00\n", + " coefs[2] -0.07 0.06 -0.07 -0.18 0.03 3382.04 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.35 -0.25 7273.45 1.00\n", + " coefs[4] -0.12 0.03 -0.12 -0.18 -0.07 8136.64 1.00\n", + " coefs[5] -0.08 0.03 -0.08 -0.14 -0.03 10454.22 1.00\n", + " coefs[6] 0.18 0.25 0.17 -0.21 0.59 2678.54 1.00\n", + " coefs[7] -0.60 0.15 -0.60 -0.86 -0.37 2847.50 1.00\n", + " coefs[8] 0.58 0.29 0.57 0.13 1.08 2654.20 1.00\n", + " coefs[9] -0.00 0.03 -0.00 -0.05 0.05 11135.80 1.00\n", + " coefs[10] 0.41 0.65 0.40 -0.64 1.49 2891.96 1.00\n", + " coefs[11] -0.05 0.29 -0.06 -0.54 0.40 2908.39 1.00\n", + " coefs[12] 0.12 0.65 0.11 -0.96 1.18 2906.43 1.00\n", + " coefs[13] -1.06 0.62 -1.00 -1.98 0.01 4513.52 1.00\n", + " coefs[14] -0.45 0.68 -0.33 -1.50 0.58 5874.76 1.00\n", + " coefs[15] -0.80 0.56 -0.70 -1.69 0.00 4266.13 1.00\n", + " coefs[16] -0.72 0.59 -0.61 -1.61 0.10 5034.41 1.00\n", + " coefs[17] 0.03 0.17 0.03 -0.25 0.29 583.94 1.01\n", + " coefs[18] -0.55 0.67 -0.42 -1.56 0.41 5785.31 1.00\n", + " coefs[19] -0.45 0.68 -0.36 -1.58 0.56 5403.98 1.00\n", + " coefs[20] -0.76 0.58 -0.65 -1.60 0.04 5347.55 1.00\n", + " coefs[21] -0.00 0.03 0.00 -0.05 0.05 1203.81 1.00\n", + " coefs[22] -0.01 0.07 -0.00 -0.13 0.11 999.08 1.00\n", + " coefs[23] 0.18 0.25 0.19 -0.23 0.60 524.80 1.01\n", + " coefs[24] 0.08 0.16 0.08 -0.19 0.33 540.04 1.01\n", + " coefs[25] -0.14 0.24 -0.14 -0.53 0.25 519.78 1.01\n", + " coefs[26] -0.01 0.18 -0.01 -0.33 0.28 528.60 1.01\n", + " coefs[27] -0.71 0.62 -0.58 -1.60 0.15 5063.80 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.60 1.66 10397.30 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.09 0.17 558.96 1.01\n", + " coefs[30] -0.02 0.10 -0.02 -0.19 0.15 764.55 1.01\n", + " coefs[31] -0.03 0.09 -0.03 -0.18 0.13 1073.59 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.10 0.20 533.20 1.01\n", + " coefs[33] 0.11 0.14 0.12 -0.10 0.34 521.92 1.01\n", + " coefs[34] 0.92 0.59 0.79 0.10 1.77 4646.56 1.00\n", + " coefs[35] 0.33 0.25 0.33 -0.08 0.73 510.92 1.01\n", + " coefs[36] 0.32 0.32 0.32 -0.22 0.83 510.46 1.01\n", + " coefs[37] 0.14 0.20 0.14 -0.21 0.45 510.92 1.01\n", + " coefs[38] -0.07 0.05 -0.07 -0.15 0.01 1144.95 1.00\n", + " coefs[39] -0.07 0.09 -0.07 -0.23 0.07 802.88 1.00\n", + " coefs[40] 0.07 0.05 0.07 -0.01 0.15 590.70 1.01\n", + " coefs[41] -0.78 0.59 -0.65 -1.65 0.04 4782.36 1.00\n", + " coefs[42] 0.05 0.42 0.05 -0.66 0.74 511.47 1.01\n", + " coefs[43] -0.01 0.24 -0.01 -0.41 0.37 519.40 1.01\n", + " coefs[44] 0.16 0.22 0.17 -0.22 0.50 513.40 1.01\n", + " coefs[45] 0.07 0.31 0.08 -0.44 0.56 510.38 1.01\n", + " coefs[46] 0.21 0.29 0.22 -0.27 0.67 508.85 1.01\n", + " coefs[47] -0.85 0.57 -0.73 -1.66 -0.05 4640.92 1.00\n", + " coefs[48] -0.06 0.07 -0.06 -0.17 0.04 567.66 1.01\n", + " coefs[49] -0.80 0.59 -0.68 -1.65 -0.00 4733.44 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.08 4562.81 1.00\n", + " coefs[51] -0.14 0.17 -0.14 -0.42 0.15 524.03 1.01\n", + " coefs[52] -0.06 0.16 -0.06 -0.33 0.21 517.19 1.01\n", + " coefs[53] -0.15 0.13 -0.15 -0.36 0.07 522.64 1.01\n", + " coefs[54] -1.70 0.19 -1.69 -1.99 -1.39 3848.03 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 08 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.07 0.06 2.07 1.97 2.17 6006.90 1.00\n", + " coefs[1] -0.08 0.04 -0.08 -0.14 -0.02 6950.95 1.00\n", + " coefs[2] -0.02 0.07 -0.03 -0.15 0.10 2377.69 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 5572.29 1.00\n", + " coefs[4] -0.09 0.04 -0.09 -0.15 -0.03 5713.46 1.00\n", + " coefs[5] -0.17 0.03 -0.17 -0.22 -0.11 6679.18 1.00\n", + " coefs[6] 0.41 0.30 0.40 -0.09 0.90 1949.82 1.00\n", + " coefs[7] -0.76 0.18 -0.75 -1.05 -0.45 2055.76 1.00\n", + " coefs[8] 0.82 0.36 0.80 0.25 1.41 1971.61 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 7249.79 1.00\n", + " coefs[10] 0.42 0.67 0.41 -0.62 1.57 2239.69 1.00\n", + " coefs[11] -0.09 0.30 -0.10 -0.58 0.39 2251.76 1.00\n", + " coefs[12] 0.11 0.67 0.10 -0.95 1.24 2239.80 1.00\n", + " coefs[13] -0.98 0.63 -0.92 -1.95 0.06 3243.72 1.00\n", + " coefs[14] -0.47 0.66 -0.37 -1.53 0.52 3707.25 1.00\n", + " coefs[15] -0.78 0.57 -0.67 -1.66 0.05 2946.07 1.00\n", + " coefs[16] -0.73 0.59 -0.61 -1.60 0.13 3752.58 1.00\n", + " coefs[17] -0.13 0.19 -0.13 -0.46 0.16 896.44 1.01\n", + " coefs[18] -0.55 0.67 -0.43 -1.56 0.44 4189.47 1.00\n", + " coefs[19] -0.43 0.68 -0.34 -1.49 0.64 4551.92 1.00\n", + " coefs[20] -0.77 0.59 -0.64 -1.62 0.03 3922.11 1.00\n", + " coefs[21] -0.76 0.59 -0.63 -1.61 0.05 3791.52 1.00\n", + " coefs[22] 0.06 0.06 0.06 -0.03 0.16 903.58 1.01\n", + " coefs[23] 0.10 0.25 0.10 -0.31 0.52 635.36 1.01\n", + " coefs[24] 0.12 0.16 0.12 -0.14 0.38 629.98 1.01\n", + " coefs[25] -0.08 0.24 -0.08 -0.46 0.32 618.53 1.01\n", + " coefs[26] 0.01 0.18 0.01 -0.30 0.30 621.07 1.01\n", + " coefs[27] -0.70 0.62 -0.57 -1.61 0.16 3618.38 1.00\n", + " coefs[28] -0.77 0.60 -0.65 -1.61 0.03 3809.29 1.00\n", + " coefs[29] 0.08 0.08 0.08 -0.06 0.20 692.94 1.01\n", + " coefs[30] 0.11 0.09 0.11 -0.03 0.26 679.52 1.01\n", + " coefs[31] -0.75 0.58 -0.64 -1.60 0.07 3537.22 1.00\n", + " coefs[32] 0.12 0.09 0.12 -0.03 0.27 646.89 1.01\n", + " coefs[33] 0.19 0.13 0.19 -0.03 0.41 619.62 1.01\n", + " coefs[34] 0.10 0.05 0.10 0.01 0.18 970.71 1.00\n", + " coefs[35] 0.35 0.25 0.35 -0.04 0.77 606.18 1.01\n", + " coefs[36] 0.38 0.32 0.37 -0.14 0.90 604.82 1.01\n", + " coefs[37] 0.18 0.20 0.18 -0.14 0.51 610.69 1.01\n", + " coefs[38] -0.77 0.57 -0.66 -1.58 0.02 3904.29 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 724.62 1.01\n", + " coefs[40] 0.03 0.05 0.03 -0.06 0.11 746.12 1.01\n", + " coefs[41] 0.04 0.06 0.04 -0.05 0.13 959.08 1.00\n", + " coefs[42] 0.10 0.42 0.10 -0.55 0.84 605.63 1.01\n", + " coefs[43] 0.05 0.24 0.04 -0.33 0.44 609.63 1.01\n", + " coefs[44] 0.16 0.22 0.16 -0.20 0.52 605.83 1.01\n", + " coefs[45] 0.12 0.30 0.12 -0.40 0.60 602.34 1.01\n", + " coefs[46] 0.26 0.28 0.26 -0.21 0.72 603.36 1.01\n", + " coefs[47] -0.08 0.07 -0.07 -0.19 0.04 976.89 1.00\n", + " coefs[48] -0.12 0.06 -0.12 -0.23 -0.02 677.15 1.01\n", + " coefs[49] -0.02 0.02 -0.02 -0.06 0.02 1377.67 1.00\n", + " coefs[50] -0.84 0.58 -0.71 -1.66 -0.07 3162.14 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.39 0.17 616.19 1.01\n", + " coefs[52] -0.11 0.16 -0.11 -0.39 0.15 615.73 1.01\n", + " coefs[53] -0.13 0.13 -0.13 -0.35 0.08 625.27 1.01\n", + " coefs[54] -1.75 0.19 -1.74 -2.05 -1.45 2716.86 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 09 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.01 0.06 2.01 1.91 2.12 9583.20 1.00\n", + " coefs[1] -0.02 0.03 -0.02 -0.08 0.03 12244.17 1.00\n", + " coefs[2] 0.00 0.07 0.00 -0.11 0.12 3899.89 1.00\n", + " coefs[3] -0.32 0.03 -0.32 -0.37 -0.26 7491.94 1.00\n", + " coefs[4] -0.06 0.03 -0.06 -0.11 0.00 8128.73 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.17 -0.07 11573.08 1.00\n", + " coefs[6] 0.41 0.27 0.41 -0.01 0.87 3193.36 1.00\n", + " coefs[7] -0.72 0.16 -0.72 -0.99 -0.46 3342.76 1.00\n", + " coefs[8] 0.74 0.31 0.74 0.22 1.25 3174.21 1.00\n", + " coefs[9] 0.02 0.03 0.02 -0.03 0.07 11291.83 1.00\n", + " coefs[10] 0.42 0.66 0.41 -0.66 1.50 3092.99 1.00\n", + " coefs[11] -0.07 0.29 -0.07 -0.55 0.41 3105.34 1.00\n", + " coefs[12] 0.08 0.66 0.07 -0.95 1.21 3098.35 1.00\n", + " coefs[13] -0.98 0.63 -0.92 -2.01 0.04 4969.90 1.00\n", + " coefs[14] -0.47 0.66 -0.37 -1.54 0.49 6361.60 1.00\n", + " coefs[15] -0.78 0.57 -0.66 -1.67 0.07 4862.64 1.00\n", + " coefs[16] -0.69 0.58 -0.58 -1.56 0.15 5141.14 1.00\n", + " coefs[17] -0.11 0.19 -0.10 -0.42 0.20 969.52 1.00\n", + " coefs[18] -0.54 0.67 -0.42 -1.59 0.42 5803.27 1.00\n", + " coefs[19] -0.47 0.67 -0.38 -1.52 0.60 5673.56 1.00\n", + " coefs[20] 0.01 0.97 0.01 -1.58 1.61 11893.53 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1600.17 1.00\n", + " coefs[22] 0.13 0.05 0.13 0.04 0.21 754.02 1.00\n", + " coefs[23] 0.07 0.25 0.08 -0.35 0.47 676.30 1.00\n", + " coefs[24] 0.05 0.16 0.06 -0.21 0.31 649.22 1.00\n", + " coefs[25] -0.07 0.24 -0.07 -0.45 0.32 638.48 1.00\n", + " coefs[26] 0.04 0.18 0.05 -0.26 0.34 635.07 1.00\n", + " coefs[27] -0.71 0.62 -0.58 -1.60 0.17 5073.59 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.61 1.64 10606.53 1.00\n", + " coefs[29] 0.07 0.08 0.08 -0.06 0.20 664.51 1.00\n", + " coefs[30] 0.02 0.10 0.02 -0.15 0.19 986.79 1.00\n", + " coefs[31] -0.75 0.58 -0.64 -1.60 0.08 4279.14 1.00\n", + " coefs[32] 0.07 0.09 0.07 -0.08 0.21 654.63 1.00\n", + " coefs[33] 0.15 0.13 0.15 -0.07 0.37 644.38 1.00\n", + " coefs[34] 0.93 0.59 0.81 0.13 1.80 4721.10 1.00\n", + " coefs[35] 0.35 0.25 0.36 -0.05 0.76 626.40 1.00\n", + " coefs[36] 0.32 0.32 0.33 -0.23 0.81 621.11 1.00\n", + " coefs[37] 0.17 0.20 0.18 -0.17 0.49 620.09 1.00\n", + " coefs[38] 0.01 0.04 0.01 -0.05 0.07 942.45 1.00\n", + " coefs[39] 0.05 0.07 0.05 -0.08 0.17 701.99 1.00\n", + " coefs[40] 0.04 0.05 0.04 -0.04 0.13 756.89 1.00\n", + " coefs[41] -0.78 0.59 -0.65 -1.63 0.06 5097.00 1.00\n", + " coefs[42] 0.03 0.42 0.04 -0.69 0.70 616.88 1.00\n", + " coefs[43] 0.00 0.24 0.01 -0.39 0.39 616.74 1.00\n", + " coefs[44] 0.18 0.22 0.18 -0.19 0.53 626.94 1.00\n", + " coefs[45] 0.13 0.30 0.14 -0.38 0.62 622.26 1.00\n", + " coefs[46] 0.23 0.28 0.23 -0.25 0.69 622.08 1.00\n", + " coefs[47] -0.09 0.09 -0.09 -0.23 0.05 1262.87 1.00\n", + " coefs[48] -0.05 0.06 -0.05 -0.15 0.05 672.90 1.00\n", + " coefs[49] -0.80 0.59 -0.69 -1.66 -0.01 4912.08 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.68 -0.08 4527.27 1.00\n", + " coefs[51] -0.11 0.17 -0.11 -0.39 0.17 629.31 1.00\n", + " coefs[52] -0.13 0.16 -0.13 -0.40 0.13 621.60 1.00\n", + " coefs[53] -0.20 0.13 -0.20 -0.42 0.01 630.94 1.00\n", + " coefs[54] -1.72 0.19 -1.70 -2.04 -1.42 3986.73 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 10 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.87 0.06 1.87 1.77 1.97 9851.85 1.00\n", + " coefs[1] -0.05 0.03 -0.05 -0.11 0.00 12023.27 1.00\n", + " coefs[2] -0.08 0.07 -0.08 -0.19 0.03 3664.70 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 8152.42 1.00\n", + " coefs[4] -0.11 0.03 -0.11 -0.17 -0.05 9085.34 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.11 11119.98 1.00\n", + " coefs[6] 0.03 0.25 0.02 -0.38 0.44 2855.36 1.00\n", + " coefs[7] -0.55 0.15 -0.54 -0.80 -0.30 3027.65 1.00\n", + " coefs[8] 0.36 0.29 0.36 -0.12 0.83 2848.40 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 12091.31 1.00\n", + " coefs[10] 0.39 0.65 0.38 -0.70 1.43 3073.54 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.50 0.45 3091.90 1.00\n", + " coefs[12] 0.12 0.65 0.11 -0.96 1.17 3077.49 1.00\n", + " coefs[13] -1.03 0.63 -0.97 -2.05 -0.03 5086.29 1.00\n", + " coefs[14] -0.46 0.67 -0.36 -1.52 0.54 5767.73 1.00\n", + " coefs[15] -0.81 0.58 -0.70 -1.70 0.02 4429.92 1.00\n", + " coefs[16] -0.75 0.58 -0.64 -1.62 0.10 5020.30 1.00\n", + " coefs[17] -0.05 0.17 -0.05 -0.32 0.23 634.36 1.00\n", + " coefs[18] -0.58 0.65 -0.47 -1.57 0.38 5653.50 1.00\n", + " coefs[19] -0.49 0.68 -0.39 -1.57 0.56 5316.42 1.00\n", + " coefs[20] -0.76 0.60 -0.64 -1.62 0.04 5141.74 1.00\n", + " coefs[21] 0.00 0.03 0.01 -0.04 0.06 1175.81 1.00\n", + " coefs[22] 0.09 0.05 0.09 0.00 0.17 589.10 1.00\n", + " coefs[23] 0.01 0.25 0.01 -0.39 0.42 537.95 1.00\n", + " coefs[24] -0.03 0.16 -0.03 -0.29 0.23 562.57 1.00\n", + " coefs[25] -0.04 0.23 -0.04 -0.42 0.34 508.79 1.01\n", + " coefs[26] -0.02 0.18 -0.02 -0.34 0.25 517.53 1.00\n", + " coefs[27] -0.73 0.61 -0.61 -1.61 0.13 4770.04 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.55 1.72 10221.27 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.08 0.17 561.90 1.01\n", + " coefs[30] -0.01 0.10 -0.01 -0.18 0.15 748.10 1.00\n", + " coefs[31] -0.01 0.08 -0.00 -0.13 0.12 783.81 1.00\n", + " coefs[32] 0.08 0.09 0.08 -0.06 0.23 532.06 1.01\n", + " coefs[33] 0.17 0.13 0.17 -0.06 0.37 514.16 1.01\n", + " coefs[34] 0.90 0.60 0.78 0.08 1.75 4699.27 1.00\n", + " coefs[35] 0.28 0.24 0.28 -0.10 0.69 505.90 1.01\n", + " coefs[36] 0.33 0.31 0.34 -0.17 0.84 505.30 1.01\n", + " coefs[37] 0.16 0.19 0.16 -0.16 0.47 503.53 1.01\n", + " coefs[38] -0.02 0.04 -0.02 -0.09 0.04 827.64 1.00\n", + " coefs[39] -0.03 0.08 -0.03 -0.16 0.11 663.60 1.00\n", + " coefs[40] 0.04 0.05 0.04 -0.05 0.12 666.94 1.00\n", + " coefs[41] -0.81 0.59 -0.68 -1.71 -0.03 4477.38 1.00\n", + " coefs[42] 0.06 0.41 0.07 -0.61 0.73 504.16 1.01\n", + " coefs[43] 0.03 0.23 0.04 -0.35 0.41 506.87 1.01\n", + " coefs[44] 0.20 0.21 0.20 -0.14 0.55 502.28 1.01\n", + " coefs[45] 0.08 0.30 0.09 -0.40 0.57 503.49 1.01\n", + " coefs[46] 0.17 0.28 0.18 -0.29 0.62 501.86 1.01\n", + " coefs[47] -0.09 0.07 -0.08 -0.20 0.03 751.62 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.03 553.11 1.00\n", + " coefs[49] -0.79 0.60 -0.68 -1.66 0.01 4806.02 1.00\n", + " coefs[50] -0.83 0.59 -0.70 -1.67 -0.03 4711.38 1.00\n", + " coefs[51] -0.08 0.17 -0.08 -0.36 0.18 505.60 1.01\n", + " coefs[52] -0.06 0.16 -0.06 -0.32 0.19 510.68 1.01\n", + " coefs[53] -0.20 0.13 -0.20 -0.41 0.01 515.18 1.01\n", + " coefs[54] -1.64 0.19 -1.62 -1.93 -1.33 4089.82 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 11 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.92 0.06 1.92 1.82 2.02 10396.90 1.00\n", + " coefs[1] -0.03 0.04 -0.03 -0.08 0.03 11519.16 1.00\n", + " coefs[2] -0.06 0.06 -0.06 -0.16 0.04 4117.58 1.00\n", + " coefs[3] -0.29 0.03 -0.29 -0.35 -0.23 7737.34 1.00\n", + " coefs[4] -0.07 0.04 -0.07 -0.13 -0.01 8773.20 1.00\n", + " coefs[5] -0.17 0.03 -0.18 -0.22 -0.12 11016.25 1.00\n", + " coefs[6] 0.19 0.21 0.18 -0.16 0.50 2829.57 1.00\n", + " coefs[7] -0.59 0.13 -0.58 -0.79 -0.38 3123.90 1.00\n", + " coefs[8] 0.48 0.24 0.46 0.09 0.85 2830.52 1.00\n", + " coefs[9] -0.05 0.03 -0.05 -0.09 0.00 12268.23 1.00\n", + " coefs[10] 0.45 0.66 0.44 -0.64 1.53 3044.65 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.56 0.40 3052.36 1.00\n", + " coefs[12] 0.08 0.65 0.07 -1.01 1.15 3041.06 1.00\n", + " coefs[13] -1.03 0.62 -0.97 -2.08 -0.06 4562.95 1.00\n", + " coefs[14] -0.47 0.67 -0.35 -1.55 0.51 5903.18 1.00\n", + " coefs[15] -0.80 0.56 -0.70 -1.67 0.02 4665.74 1.00\n", + " coefs[16] -0.73 0.59 -0.62 -1.63 0.10 4957.23 1.00\n", + " coefs[17] 0.00 0.17 0.00 -0.27 0.28 610.13 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.56 0.41 5781.93 1.00\n", + " coefs[19] -0.46 0.67 -0.37 -1.56 0.55 6074.50 1.00\n", + " coefs[20] -0.76 0.59 -0.64 -1.62 0.03 5252.85 1.00\n", + " coefs[21] -0.00 0.03 -0.00 -0.05 0.05 1165.34 1.00\n", + " coefs[22] 0.05 0.05 0.06 -0.04 0.14 680.97 1.00\n", + " coefs[23] 0.09 0.25 0.10 -0.34 0.48 529.12 1.00\n", + " coefs[24] -0.02 0.16 -0.01 -0.27 0.25 558.96 1.00\n", + " coefs[25] -0.03 0.23 -0.02 -0.43 0.35 525.19 1.00\n", + " coefs[26] 0.06 0.18 0.07 -0.23 0.36 518.36 1.00\n", + " coefs[27] -0.72 0.61 -0.59 -1.62 0.13 4954.67 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.61 1.65 10846.53 1.00\n", + " coefs[29] 0.05 0.08 0.06 -0.08 0.18 563.62 1.00\n", + " coefs[30] -0.05 0.10 -0.04 -0.22 0.11 807.13 1.00\n", + " coefs[31] -0.76 0.58 -0.65 -1.62 0.03 4982.14 1.00\n", + " coefs[32] 0.09 0.09 0.10 -0.06 0.24 543.12 1.00\n", + " coefs[33] 0.14 0.13 0.14 -0.08 0.36 525.64 1.00\n", + " coefs[34] 0.16 0.06 0.15 0.06 0.26 1251.32 1.00\n", + " coefs[35] 0.38 0.25 0.39 -0.01 0.81 516.49 1.00\n", + " coefs[36] 0.34 0.31 0.35 -0.19 0.85 511.53 1.00\n", + " coefs[37] 0.19 0.20 0.19 -0.14 0.51 514.24 1.00\n", + " coefs[38] -0.01 0.04 -0.01 -0.07 0.05 703.70 1.00\n", + " coefs[39] 0.03 0.08 0.03 -0.09 0.16 596.82 1.00\n", + " coefs[40] 0.06 0.05 0.06 -0.02 0.15 671.03 1.00\n", + " coefs[41] -0.79 0.59 -0.67 -1.65 0.02 4996.10 1.00\n", + " coefs[42] 0.08 0.42 0.09 -0.63 0.76 512.64 1.00\n", + " coefs[43] 0.00 0.23 0.01 -0.38 0.40 516.39 1.00\n", + " coefs[44] 0.18 0.22 0.18 -0.18 0.53 514.45 1.00\n", + " coefs[45] 0.15 0.30 0.16 -0.35 0.64 513.91 1.00\n", + " coefs[46] 0.23 0.28 0.24 -0.24 0.69 514.26 1.00\n", + " coefs[47] -0.85 0.57 -0.72 -1.67 -0.04 4633.11 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.03 600.11 1.00\n", + " coefs[49] -0.80 0.60 -0.68 -1.64 0.00 4628.84 1.00\n", + " coefs[50] -0.85 0.58 -0.73 -1.67 -0.09 4617.98 1.00\n", + " coefs[51] -0.10 0.17 -0.09 -0.40 0.17 524.69 1.00\n", + " coefs[52] -0.12 0.16 -0.12 -0.40 0.14 525.01 1.00\n", + " coefs[53] -0.13 0.13 -0.12 -0.34 0.09 532.74 1.00\n", + " coefs[54] -1.74 0.19 -1.73 -2.04 -1.43 3929.35 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 12 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.04 0.06 2.04 1.93 2.14 8304.52 1.00\n", + " coefs[1] -0.01 0.04 -0.01 -0.06 0.06 10118.62 1.00\n", + " coefs[2] -0.12 0.07 -0.11 -0.24 -0.00 3682.19 1.00\n", + " coefs[3] -0.33 0.03 -0.33 -0.39 -0.28 6963.70 1.00\n", + " coefs[4] -0.10 0.03 -0.10 -0.15 -0.04 7744.04 1.00\n", + " coefs[5] -0.15 0.03 -0.15 -0.20 -0.09 10497.57 1.00\n", + " coefs[6] 0.11 0.28 0.11 -0.34 0.58 2964.29 1.00\n", + " coefs[7] -0.58 0.17 -0.58 -0.85 -0.29 3083.36 1.00\n", + " coefs[8] 0.40 0.33 0.39 -0.15 0.92 2948.26 1.00\n", + " coefs[9] 0.01 0.03 0.01 -0.04 0.06 10148.21 1.00\n", + " coefs[10] 0.38 0.65 0.37 -0.72 1.41 3238.54 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.51 0.44 3251.02 1.00\n", + " coefs[12] 0.11 0.65 0.11 -0.94 1.19 3237.31 1.00\n", + " coefs[13] -1.00 0.63 -0.94 -2.09 -0.05 4687.49 1.00\n", + " coefs[14] -0.44 0.67 -0.34 -1.50 0.56 6099.61 1.00\n", + " coefs[15] -0.78 0.57 -0.68 -1.63 0.07 4550.37 1.00\n", + " coefs[16] -0.71 0.58 -0.60 -1.61 0.12 4864.50 1.00\n", + " coefs[17] -0.13 0.19 -0.12 -0.45 0.19 940.69 1.00\n", + " coefs[18] -0.54 0.66 -0.43 -1.56 0.40 5805.63 1.00\n", + " coefs[19] -0.45 0.68 -0.35 -1.59 0.55 5277.45 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.63 0.02 4861.90 1.00\n", + " coefs[21] -0.78 0.59 -0.66 -1.62 0.03 5058.03 1.00\n", + " coefs[22] 0.10 0.05 0.10 0.02 0.19 791.84 1.00\n", + " coefs[23] 0.10 0.25 0.10 -0.30 0.52 650.30 1.00\n", + " coefs[24] 0.12 0.16 0.12 -0.14 0.38 644.67 1.00\n", + " coefs[25] -0.01 0.24 -0.00 -0.39 0.38 630.09 1.00\n", + " coefs[26] 0.11 0.18 0.12 -0.17 0.43 635.35 1.00\n", + " coefs[27] -0.71 0.62 -0.59 -1.63 0.14 4712.25 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.60 1.67 10040.11 1.00\n", + " coefs[29] 0.05 0.08 0.05 -0.07 0.18 679.39 1.00\n", + " coefs[30] 0.05 0.09 0.05 -0.10 0.20 786.03 1.00\n", + " coefs[31] -0.75 0.58 -0.63 -1.63 0.06 5149.75 1.00\n", + " coefs[32] 0.09 0.09 0.09 -0.06 0.24 650.45 1.00\n", + " coefs[33] 0.13 0.14 0.13 -0.07 0.37 630.38 1.00\n", + " coefs[34] 0.14 0.06 0.13 0.03 0.24 1370.58 1.00\n", + " coefs[35] 0.35 0.25 0.36 -0.04 0.78 620.21 1.00\n", + " coefs[36] 0.36 0.32 0.36 -0.16 0.89 619.37 1.00\n", + " coefs[37] 0.19 0.20 0.19 -0.15 0.51 624.44 1.00\n", + " coefs[38] -0.04 0.05 -0.03 -0.11 0.04 1296.38 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 734.11 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.14 758.44 1.00\n", + " coefs[41] -0.79 0.59 -0.67 -1.65 0.02 5148.08 1.00\n", + " coefs[42] 0.12 0.43 0.13 -0.57 0.81 620.28 1.00\n", + " coefs[43] 0.03 0.24 0.03 -0.36 0.41 626.67 1.00\n", + " coefs[44] 0.15 0.22 0.16 -0.20 0.52 626.95 1.00\n", + " coefs[45] 0.10 0.31 0.11 -0.38 0.61 624.04 1.00\n", + " coefs[46] 0.22 0.29 0.23 -0.24 0.70 618.56 1.00\n", + " coefs[47] -0.06 0.07 -0.06 -0.18 0.05 994.64 1.00\n", + " coefs[48] -0.12 0.06 -0.12 -0.22 -0.01 668.23 1.00\n", + " coefs[49] -0.79 0.59 -0.68 -1.64 0.00 4915.15 1.00\n", + " coefs[50] -0.84 0.59 -0.71 -1.69 -0.05 4731.62 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.37 0.20 629.43 1.00\n", + " coefs[52] -0.05 0.16 -0.04 -0.31 0.22 625.15 1.00\n", + " coefs[53] -0.14 0.13 -0.13 -0.35 0.08 645.94 1.00\n", + " coefs[54] -1.73 0.19 -1.71 -2.03 -1.42 3867.53 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 13 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.06 0.06 2.06 1.96 2.16 10107.97 1.00\n", + " coefs[1] -0.07 0.04 -0.07 -0.12 -0.01 12223.43 1.00\n", + " coefs[2] -0.21 0.07 -0.21 -0.33 -0.08 3247.79 1.00\n", + " coefs[3] -0.34 0.03 -0.34 -0.40 -0.28 7744.39 1.00\n", + " coefs[4] -0.11 0.04 -0.11 -0.17 -0.05 8886.81 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.11 10594.79 1.00\n", + " coefs[6] -0.08 0.30 -0.08 -0.56 0.41 2710.82 1.00\n", + " coefs[7] -0.52 0.18 -0.52 -0.82 -0.23 2838.19 1.00\n", + " coefs[8] 0.17 0.35 0.17 -0.39 0.74 2697.80 1.00\n", + " coefs[9] -0.04 0.03 -0.04 -0.08 0.02 11093.40 1.00\n", + " coefs[10] 0.41 0.65 0.41 -0.67 1.48 3051.80 1.00\n", + " coefs[11] -0.04 0.29 -0.04 -0.52 0.43 3043.81 1.00\n", + " coefs[12] 0.06 0.65 0.06 -1.06 1.08 3055.42 1.00\n", + " coefs[13] -0.91 0.65 -0.86 -1.95 0.15 4747.74 1.00\n", + " coefs[14] -0.48 0.66 -0.37 -1.53 0.49 5540.97 1.00\n", + " coefs[15] -0.77 0.56 -0.67 -1.63 0.05 4870.06 1.00\n", + " coefs[16] -0.70 0.59 -0.58 -1.59 0.14 4957.56 1.00\n", + " coefs[17] -0.06 0.18 -0.05 -0.34 0.23 543.36 1.01\n", + " coefs[18] -0.56 0.66 -0.44 -1.57 0.40 5806.90 1.00\n", + " coefs[19] -0.49 0.67 -0.39 -1.56 0.58 5841.70 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.61 0.01 5195.52 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.05 0.06 1082.76 1.00\n", + " coefs[22] 0.05 0.06 0.05 -0.04 0.15 592.12 1.01\n", + " coefs[23] -0.10 0.26 -0.10 -0.52 0.32 461.09 1.01\n", + " coefs[24] 0.00 0.16 0.00 -0.26 0.26 453.93 1.01\n", + " coefs[25] -0.07 0.23 -0.07 -0.44 0.32 426.89 1.01\n", + " coefs[26] 0.06 0.18 0.06 -0.25 0.35 434.65 1.01\n", + " coefs[27] -0.72 0.61 -0.61 -1.61 0.14 5038.79 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.69 1.60 11808.60 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.10 0.16 486.47 1.01\n", + " coefs[30] -0.09 0.13 -0.08 -0.31 0.10 1023.19 1.01\n", + " coefs[31] 0.02 0.08 0.02 -0.11 0.15 677.56 1.01\n", + " coefs[32] 0.07 0.09 0.08 -0.07 0.22 442.33 1.01\n", + " coefs[33] 0.13 0.13 0.14 -0.08 0.35 431.07 1.01\n", + " coefs[34] 0.91 0.60 0.79 0.11 1.80 5008.02 1.00\n", + " coefs[35] 0.31 0.25 0.31 -0.09 0.70 419.67 1.01\n", + " coefs[36] 0.32 0.31 0.32 -0.21 0.81 421.90 1.01\n", + " coefs[37] 0.18 0.20 0.18 -0.15 0.49 426.28 1.01\n", + " coefs[38] -0.06 0.05 -0.05 -0.13 0.02 1113.26 1.00\n", + " coefs[39] 0.03 0.08 0.03 -0.09 0.16 480.00 1.01\n", + " coefs[40] 0.10 0.05 0.10 0.02 0.19 500.83 1.01\n", + " coefs[41] -0.02 0.07 -0.02 -0.13 0.09 1035.85 1.01\n", + " coefs[42] -0.00 0.42 0.00 -0.70 0.67 423.22 1.01\n", + " coefs[43] -0.02 0.23 -0.02 -0.40 0.36 427.20 1.01\n", + " coefs[44] 0.18 0.22 0.18 -0.17 0.53 421.49 1.01\n", + " coefs[45] 0.07 0.30 0.07 -0.42 0.56 416.39 1.01\n", + " coefs[46] 0.22 0.28 0.22 -0.25 0.66 423.39 1.01\n", + " coefs[47] -0.06 0.07 -0.06 -0.17 0.06 637.28 1.01\n", + " coefs[48] -0.08 0.06 -0.08 -0.19 0.02 457.03 1.01\n", + " coefs[49] -0.81 0.59 -0.69 -1.65 -0.00 4772.50 1.00\n", + " coefs[50] -0.86 0.58 -0.75 -1.69 -0.07 4318.31 1.00\n", + " coefs[51] -0.15 0.17 -0.15 -0.43 0.13 423.95 1.01\n", + " coefs[52] -0.14 0.16 -0.14 -0.39 0.13 434.85 1.01\n", + " coefs[53] -0.20 0.13 -0.19 -0.40 0.02 437.62 1.01\n", + " coefs[54] -1.71 0.19 -1.69 -2.01 -1.41 4099.94 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 14 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.97 0.06 1.97 1.87 2.08 9005.66 1.00\n", + " coefs[1] -0.02 0.03 -0.02 -0.07 0.04 11557.78 1.00\n", + " coefs[2] -0.06 0.07 -0.06 -0.16 0.05 4138.63 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.37 -0.26 7839.59 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.13 -0.02 8500.08 1.00\n", + " coefs[5] -0.20 0.03 -0.20 -0.25 -0.15 10663.93 1.00\n", + " coefs[6] 0.14 0.25 0.13 -0.25 0.55 3159.51 1.00\n", + " coefs[7] -0.61 0.15 -0.60 -0.85 -0.36 3309.15 1.00\n", + " coefs[8] 0.47 0.29 0.46 -0.03 0.91 3123.20 1.00\n", + " coefs[9] 0.01 0.03 0.01 -0.04 0.05 11937.39 1.00\n", + " coefs[10] 0.43 0.65 0.42 -0.71 1.44 3091.25 1.00\n", + " coefs[11] -0.05 0.29 -0.06 -0.57 0.39 3085.88 1.00\n", + " coefs[12] 0.07 0.65 0.06 -1.03 1.11 3094.82 1.00\n", + " coefs[13] -1.02 0.63 -0.96 -2.08 -0.04 5050.19 1.00\n", + " coefs[14] -0.47 0.68 -0.36 -1.53 0.53 5346.83 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.64 0.05 4722.58 1.00\n", + " coefs[16] -0.73 0.59 -0.62 -1.62 0.11 4855.77 1.00\n", + " coefs[17] -0.03 0.18 -0.03 -0.31 0.27 720.50 1.00\n", + " coefs[18] -0.55 0.66 -0.44 -1.55 0.43 6038.97 1.00\n", + " coefs[19] -0.47 0.69 -0.38 -1.51 0.66 5416.81 1.00\n", + " coefs[20] 0.02 0.98 0.01 -1.59 1.63 13208.44 1.00\n", + " coefs[21] 0.02 0.99 0.02 -1.54 1.70 10823.00 1.00\n", + " coefs[22] -0.02 0.07 -0.01 -0.13 0.10 1087.05 1.00\n", + " coefs[23] 0.05 0.25 0.05 -0.36 0.48 562.53 1.00\n", + " coefs[24] -0.06 0.17 -0.06 -0.34 0.21 601.03 1.00\n", + " coefs[25] -0.06 0.24 -0.05 -0.46 0.34 550.41 1.00\n", + " coefs[26] 0.07 0.19 0.07 -0.23 0.38 546.27 1.00\n", + " coefs[27] -0.72 0.61 -0.61 -1.61 0.15 4953.64 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.57 1.67 10744.99 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.06 0.20 590.76 1.00\n", + " coefs[30] 0.02 0.10 0.03 -0.14 0.18 710.84 1.00\n", + " coefs[31] -0.78 0.58 -0.66 -1.62 0.05 5056.04 1.00\n", + " coefs[32] 0.04 0.09 0.04 -0.11 0.20 568.43 1.00\n", + " coefs[33] 0.15 0.14 0.15 -0.06 0.39 546.49 1.00\n", + " coefs[34] 0.91 0.59 0.79 0.11 1.78 4921.83 1.00\n", + " coefs[35] 0.35 0.25 0.36 -0.08 0.74 542.19 1.00\n", + " coefs[36] 0.33 0.32 0.33 -0.19 0.88 538.22 1.00\n", + " coefs[37] 0.13 0.20 0.13 -0.19 0.48 539.85 1.00\n", + " coefs[38] 0.02 0.04 0.02 -0.05 0.10 1055.60 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.11 0.14 606.11 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.14 634.23 1.00\n", + " coefs[41] 0.02 0.06 0.03 -0.07 0.12 852.14 1.00\n", + " coefs[42] 0.07 0.43 0.08 -0.65 0.77 540.64 1.00\n", + " coefs[43] -0.04 0.24 -0.04 -0.44 0.35 546.56 1.00\n", + " coefs[44] 0.16 0.22 0.16 -0.19 0.53 536.30 1.00\n", + " coefs[45] 0.11 0.31 0.11 -0.39 0.64 535.15 1.00\n", + " coefs[46] 0.18 0.29 0.18 -0.30 0.65 540.24 1.00\n", + " coefs[47] -0.02 0.06 -0.01 -0.12 0.09 669.38 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.18 0.03 578.06 1.00\n", + " coefs[49] -0.79 0.60 -0.68 -1.66 0.02 4966.31 1.00\n", + " coefs[50] -0.84 0.58 -0.71 -1.69 -0.06 5157.37 1.00\n", + " coefs[51] -0.05 0.18 -0.04 -0.34 0.24 549.11 1.00\n", + " coefs[52] -0.13 0.17 -0.13 -0.41 0.13 546.42 1.00\n", + " coefs[53] -0.16 0.13 -0.16 -0.39 0.05 554.62 1.00\n", + " coefs[54] -1.64 0.19 -1.63 -1.95 -1.34 4052.25 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 15 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.05 0.06 2.05 1.94 2.14 9177.00 1.00\n", + " coefs[1] -0.06 0.03 -0.06 -0.12 -0.00 11743.81 1.00\n", + " coefs[2] -0.09 0.07 -0.09 -0.20 0.02 3628.73 1.00\n", + " coefs[3] -0.32 0.03 -0.32 -0.38 -0.27 7842.18 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.14 -0.03 8649.39 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.18 -0.07 10859.96 1.00\n", + " coefs[6] 0.37 0.27 0.36 -0.08 0.79 2752.83 1.00\n", + " coefs[7] -0.83 0.16 -0.83 -1.09 -0.56 2920.83 1.00\n", + " coefs[8] 0.83 0.31 0.82 0.31 1.33 2750.68 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.08 0.02 11841.94 1.00\n", + " coefs[10] 0.40 0.65 0.39 -0.70 1.44 3135.56 1.00\n", + " coefs[11] -0.01 0.29 -0.02 -0.49 0.47 3135.50 1.00\n", + " coefs[12] 0.15 0.65 0.14 -0.89 1.24 3127.87 1.00\n", + " coefs[13] -1.07 0.61 -1.01 -2.06 -0.10 5383.26 1.00\n", + " coefs[14] -0.45 0.66 -0.34 -1.47 0.56 5506.65 1.00\n", + " coefs[15] -0.80 0.57 -0.68 -1.68 0.01 4585.23 1.00\n", + " coefs[16] -0.72 0.59 -0.60 -1.59 0.12 5284.94 1.00\n", + " coefs[17] -0.27 0.22 -0.26 -0.63 0.09 1153.36 1.00\n", + " coefs[18] -0.52 0.67 -0.41 -1.54 0.47 5888.75 1.00\n", + " coefs[19] -0.45 0.68 -0.36 -1.55 0.63 6200.15 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.61 0.03 4811.83 1.00\n", + " coefs[21] -0.78 0.59 -0.67 -1.64 0.01 4300.73 1.00\n", + " coefs[22] 0.06 0.06 0.06 -0.04 0.15 790.42 1.01\n", + " coefs[23] 0.22 0.24 0.21 -0.16 0.62 521.03 1.01\n", + " coefs[24] -0.03 0.16 -0.03 -0.28 0.23 561.51 1.01\n", + " coefs[25] -0.05 0.23 -0.05 -0.42 0.32 512.26 1.01\n", + " coefs[26] 0.00 0.18 0.00 -0.28 0.29 515.81 1.01\n", + " coefs[27] -0.71 0.61 -0.59 -1.60 0.13 5153.89 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.60 1.67 11091.19 1.00\n", + " coefs[29] 0.01 0.08 0.01 -0.12 0.14 604.99 1.01\n", + " coefs[30] -0.09 0.13 -0.08 -0.29 0.12 1242.60 1.00\n", + " coefs[31] 0.04 0.07 0.04 -0.09 0.15 737.77 1.01\n", + " coefs[32] 0.05 0.09 0.05 -0.09 0.19 527.77 1.01\n", + " coefs[33] 0.14 0.13 0.14 -0.06 0.35 518.80 1.01\n", + " coefs[34] 0.92 0.59 0.80 0.10 1.76 4699.77 1.00\n", + " coefs[35] 0.31 0.24 0.31 -0.08 0.70 503.71 1.01\n", + " coefs[36] 0.31 0.31 0.31 -0.20 0.79 506.01 1.01\n", + " coefs[37] 0.10 0.19 0.10 -0.22 0.41 509.89 1.01\n", + " coefs[38] -0.01 0.04 -0.01 -0.08 0.05 903.45 1.01\n", + " coefs[39] 0.05 0.07 0.05 -0.06 0.17 542.48 1.01\n", + " coefs[40] 0.04 0.05 0.04 -0.05 0.12 655.54 1.01\n", + " coefs[41] 0.02 0.05 0.02 -0.07 0.10 905.27 1.01\n", + " coefs[42] 0.04 0.41 0.04 -0.61 0.71 503.61 1.01\n", + " coefs[43] -0.00 0.23 -0.00 -0.37 0.37 512.92 1.01\n", + " coefs[44] 0.16 0.21 0.15 -0.17 0.51 504.57 1.01\n", + " coefs[45] 0.07 0.29 0.07 -0.40 0.55 502.69 1.01\n", + " coefs[46] 0.18 0.27 0.18 -0.25 0.64 506.09 1.01\n", + " coefs[47] -0.07 0.07 -0.07 -0.18 0.04 782.66 1.01\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 544.83 1.01\n", + " coefs[49] -0.79 0.60 -0.67 -1.63 0.02 4838.35 1.00\n", + " coefs[50] -0.87 0.58 -0.75 -1.69 -0.08 4164.47 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.36 0.18 515.73 1.01\n", + " coefs[52] -0.12 0.16 -0.12 -0.38 0.13 507.39 1.01\n", + " coefs[53] -0.19 0.13 -0.19 -0.40 0.01 515.72 1.01\n", + " coefs[54] -1.66 0.18 -1.64 -1.96 -1.36 4343.76 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 16 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.99 0.06 1.99 1.89 2.09 9179.36 1.00\n", + " coefs[1] 0.01 0.03 0.01 -0.05 0.07 10791.72 1.00\n", + " coefs[2] 0.02 0.07 0.02 -0.10 0.14 3510.14 1.00\n", + " coefs[3] -0.36 0.03 -0.36 -0.42 -0.31 7615.67 1.00\n", + " coefs[4] -0.12 0.04 -0.12 -0.18 -0.06 8998.44 1.00\n", + " coefs[5] -0.14 0.03 -0.14 -0.19 -0.09 10867.82 1.00\n", + " coefs[6] 0.50 0.29 0.49 0.02 0.99 2920.24 1.00\n", + " coefs[7] -0.79 0.18 -0.79 -1.08 -0.48 3039.41 1.00\n", + " coefs[8] 0.87 0.35 0.86 0.27 1.42 2922.72 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 11173.31 1.00\n", + " coefs[10] 0.46 0.65 0.45 -0.57 1.54 3308.73 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.50 0.43 3324.22 1.00\n", + " coefs[12] 0.08 0.65 0.08 -0.96 1.14 3310.11 1.00\n", + " coefs[13] -1.05 0.62 -0.99 -2.00 -0.03 4531.52 1.00\n", + " coefs[14] -0.47 0.67 -0.36 -1.51 0.52 5577.25 1.00\n", + " coefs[15] -0.78 0.58 -0.68 -1.64 0.08 4391.98 1.00\n", + " coefs[16] -0.72 0.59 -0.60 -1.57 0.15 4813.23 1.00\n", + " coefs[17] -0.29 0.22 -0.28 -0.65 0.08 1050.49 1.00\n", + " coefs[18] -0.55 0.67 -0.43 -1.57 0.42 5579.16 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.60 0.54 5415.16 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.61 0.01 5013.34 1.00\n", + " coefs[21] -0.77 0.59 -0.65 -1.61 0.03 4630.94 1.00\n", + " coefs[22] 0.03 0.06 0.03 -0.06 0.13 831.29 1.00\n", + " coefs[23] 0.12 0.24 0.12 -0.28 0.51 565.03 1.01\n", + " coefs[24] 0.10 0.15 0.11 -0.14 0.36 566.50 1.01\n", + " coefs[25] -0.06 0.23 -0.06 -0.44 0.31 544.78 1.01\n", + " coefs[26] 0.04 0.18 0.04 -0.25 0.33 556.89 1.01\n", + " coefs[27] -0.72 0.61 -0.60 -1.59 0.13 4905.08 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.59 1.69 10411.65 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.09 0.17 596.47 1.01\n", + " coefs[30] 0.04 0.09 0.04 -0.11 0.18 684.25 1.00\n", + " coefs[31] 0.04 0.07 0.04 -0.07 0.15 717.08 1.01\n", + " coefs[32] 0.09 0.09 0.10 -0.06 0.23 560.88 1.01\n", + " coefs[33] 0.15 0.13 0.15 -0.06 0.36 550.32 1.01\n", + " coefs[34] 0.90 0.60 0.79 0.09 1.79 4522.53 1.00\n", + " coefs[35] 0.33 0.24 0.33 -0.06 0.72 542.54 1.01\n", + " coefs[36] 0.31 0.31 0.31 -0.19 0.81 538.21 1.01\n", + " coefs[37] 0.17 0.19 0.18 -0.16 0.47 545.27 1.01\n", + " coefs[38] 0.01 0.04 0.01 -0.05 0.07 873.71 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.11 0.15 679.04 1.00\n", + " coefs[40] 0.02 0.05 0.02 -0.05 0.10 628.08 1.01\n", + " coefs[41] -0.80 0.59 -0.67 -1.67 0.03 4771.75 1.00\n", + " coefs[42] 0.02 0.41 0.03 -0.65 0.68 537.69 1.01\n", + " coefs[43] -0.02 0.23 -0.02 -0.38 0.36 545.99 1.01\n", + " coefs[44] 0.19 0.21 0.19 -0.18 0.51 539.59 1.01\n", + " coefs[45] 0.07 0.30 0.07 -0.41 0.55 540.83 1.01\n", + " coefs[46] 0.22 0.28 0.23 -0.23 0.66 538.97 1.01\n", + " coefs[47] -0.02 0.07 -0.02 -0.13 0.09 789.16 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.17 0.04 598.54 1.01\n", + " coefs[49] -0.79 0.60 -0.67 -1.65 0.02 4719.61 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.70 -0.07 4374.23 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.38 0.17 547.36 1.01\n", + " coefs[52] -0.09 0.16 -0.09 -0.35 0.16 550.52 1.01\n", + " coefs[53] -0.12 0.13 -0.12 -0.33 0.08 546.83 1.01\n", + " coefs[54] -1.68 0.18 -1.67 -1.98 -1.38 3683.28 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 17 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.02 0.06 2.02 1.92 2.12 9825.76 1.00\n", + " coefs[1] -0.05 0.03 -0.05 -0.11 0.01 11491.29 1.00\n", + " coefs[2] -0.12 0.07 -0.12 -0.24 -0.02 4035.17 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.37 -0.26 7508.58 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.13 -0.02 8850.54 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.17 -0.07 10832.36 1.00\n", + " coefs[6] -0.03 0.25 -0.03 -0.43 0.39 3103.03 1.00\n", + " coefs[7] -0.49 0.15 -0.49 -0.74 -0.24 3302.29 1.00\n", + " coefs[8] 0.26 0.29 0.26 -0.20 0.74 3075.37 1.00\n", + " coefs[9] -0.08 0.03 -0.08 -0.12 -0.03 11096.54 1.00\n", + " coefs[10] 0.47 0.64 0.47 -0.61 1.49 3268.81 1.00\n", + " coefs[11] -0.08 0.29 -0.08 -0.59 0.35 3299.38 1.00\n", + " coefs[12] 0.07 0.64 0.06 -1.04 1.07 3296.69 1.00\n", + " coefs[13] -1.04 0.62 -0.98 -2.07 -0.09 4800.78 1.00\n", + " coefs[14] -0.45 0.67 -0.35 -1.51 0.52 5846.17 1.00\n", + " coefs[15] -0.79 0.57 -0.69 -1.62 0.06 4206.97 1.00\n", + " coefs[16] -0.71 0.58 -0.60 -1.58 0.14 5088.30 1.00\n", + " coefs[17] -0.05 0.18 -0.05 -0.33 0.24 599.68 1.01\n", + " coefs[18] -0.53 0.66 -0.41 -1.54 0.45 5927.75 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.59 0.58 5998.88 1.00\n", + " coefs[20] -0.78 0.59 -0.67 -1.62 0.01 4825.52 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1133.37 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.01 0.16 589.43 1.01\n", + " coefs[23] 0.15 0.25 0.15 -0.26 0.56 468.13 1.01\n", + " coefs[24] 0.13 0.16 0.13 -0.14 0.37 471.51 1.01\n", + " coefs[25] -0.03 0.23 -0.03 -0.41 0.36 459.24 1.01\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.33 473.85 1.01\n", + " coefs[27] -0.71 0.62 -0.59 -1.62 0.14 4955.11 1.00\n", + " coefs[28] 0.01 0.99 0.01 -1.53 1.73 10769.97 1.00\n", + " coefs[29] -0.00 0.08 -0.01 -0.13 0.13 522.04 1.01\n", + " coefs[30] 0.11 0.09 0.11 -0.04 0.25 527.10 1.01\n", + " coefs[31] 0.04 0.07 0.04 -0.08 0.16 648.90 1.01\n", + " coefs[32] 0.10 0.09 0.10 -0.04 0.25 479.99 1.01\n", + " coefs[33] 0.12 0.13 0.12 -0.10 0.34 472.55 1.01\n", + " coefs[34] 0.11 0.05 0.11 0.03 0.20 757.54 1.01\n", + " coefs[35] 0.29 0.25 0.29 -0.10 0.70 452.91 1.01\n", + " coefs[36] 0.34 0.31 0.34 -0.21 0.83 453.74 1.01\n", + " coefs[37] 0.16 0.20 0.16 -0.17 0.48 458.11 1.01\n", + " coefs[38] -0.01 0.04 -0.01 -0.08 0.05 759.34 1.01\n", + " coefs[39] -0.03 0.08 -0.03 -0.17 0.10 622.87 1.01\n", + " coefs[40] 0.08 0.05 0.08 -0.00 0.17 627.81 1.01\n", + " coefs[41] -0.78 0.60 -0.66 -1.68 0.02 5038.60 1.00\n", + " coefs[42] -0.02 0.42 -0.02 -0.68 0.70 454.27 1.01\n", + " coefs[43] -0.05 0.23 -0.05 -0.44 0.33 462.64 1.01\n", + " coefs[44] 0.19 0.22 0.18 -0.17 0.54 455.92 1.01\n", + " coefs[45] 0.11 0.30 0.11 -0.40 0.59 455.52 1.01\n", + " coefs[46] 0.20 0.28 0.20 -0.28 0.64 452.79 1.01\n", + " coefs[47] -0.03 0.07 -0.03 -0.14 0.08 647.18 1.01\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.02 503.96 1.01\n", + " coefs[49] -0.81 0.59 -0.69 -1.66 -0.01 4790.18 1.00\n", + " coefs[50] -0.85 0.59 -0.73 -1.69 -0.06 4353.25 1.00\n", + " coefs[51] -0.13 0.17 -0.13 -0.41 0.16 465.74 1.01\n", + " coefs[52] -0.13 0.16 -0.13 -0.39 0.14 460.95 1.01\n", + " coefs[53] -0.20 0.13 -0.20 -0.42 0.01 466.41 1.01\n", + " coefs[54] -1.69 0.18 -1.67 -1.97 -1.38 4247.42 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 18 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.01 0.06 2.01 1.91 2.11 9222.07 1.00\n", + " coefs[1] -0.07 0.03 -0.07 -0.13 -0.02 11037.73 1.00\n", + " coefs[2] -0.11 0.06 -0.11 -0.22 -0.01 3896.77 1.00\n", + " coefs[3] -0.38 0.03 -0.38 -0.44 -0.33 7697.55 1.00\n", + " coefs[4] -0.04 0.03 -0.05 -0.10 0.01 8703.86 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.10 10405.15 1.00\n", + " coefs[6] 0.12 0.23 0.12 -0.24 0.51 2968.23 1.00\n", + " coefs[7] -0.60 0.14 -0.60 -0.83 -0.36 3184.79 1.00\n", + " coefs[8] 0.42 0.27 0.42 -0.02 0.86 2967.49 1.00\n", + " coefs[9] 0.03 0.03 0.03 -0.02 0.08 11147.01 1.00\n", + " coefs[10] 0.44 0.65 0.44 -0.67 1.48 2962.23 1.00\n", + " coefs[11] -0.08 0.29 -0.08 -0.56 0.40 2974.48 1.00\n", + " coefs[12] 0.07 0.65 0.07 -1.00 1.15 2969.88 1.00\n", + " coefs[13] -0.99 0.64 -0.93 -2.05 0.01 4667.16 1.00\n", + " coefs[14] -0.47 0.66 -0.36 -1.50 0.52 5983.57 1.00\n", + " coefs[15] -0.78 0.58 -0.67 -1.66 0.06 4759.51 1.00\n", + " coefs[16] -0.70 0.58 -0.60 -1.57 0.13 5111.37 1.00\n", + " coefs[17] -0.02 0.17 -0.02 -0.30 0.25 723.30 1.01\n", + " coefs[18] -0.53 0.66 -0.41 -1.56 0.42 5519.08 1.00\n", + " coefs[19] -0.47 0.67 -0.38 -1.58 0.55 5869.82 1.00\n", + " coefs[20] -0.78 0.59 -0.67 -1.63 0.01 4721.83 1.00\n", + " coefs[21] -0.77 0.58 -0.66 -1.60 0.03 5203.05 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.01 0.16 742.09 1.01\n", + " coefs[23] 0.05 0.25 0.05 -0.36 0.45 635.21 1.01\n", + " coefs[24] -0.03 0.16 -0.03 -0.30 0.22 658.36 1.01\n", + " coefs[25] -0.07 0.23 -0.07 -0.46 0.30 612.30 1.01\n", + " coefs[26] 0.04 0.18 0.05 -0.26 0.33 624.90 1.01\n", + " coefs[27] -0.70 0.62 -0.58 -1.60 0.17 5010.88 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.62 1.66 10001.87 1.00\n", + " coefs[29] 0.03 0.08 0.03 -0.11 0.15 670.66 1.01\n", + " coefs[30] 0.07 0.09 0.07 -0.09 0.21 741.75 1.01\n", + " coefs[31] -0.00 0.08 -0.00 -0.13 0.12 871.75 1.01\n", + " coefs[32] 0.12 0.09 0.12 -0.03 0.26 641.81 1.01\n", + " coefs[33] 0.16 0.13 0.16 -0.06 0.37 606.63 1.01\n", + " coefs[34] 0.15 0.06 0.14 0.05 0.25 1321.74 1.00\n", + " coefs[35] 0.33 0.24 0.33 -0.08 0.71 602.00 1.01\n", + " coefs[36] 0.33 0.31 0.33 -0.17 0.84 599.72 1.01\n", + " coefs[37] 0.18 0.20 0.18 -0.14 0.50 607.37 1.01\n", + " coefs[38] 0.01 0.03 0.01 -0.05 0.07 825.58 1.01\n", + " coefs[39] 0.00 0.08 0.00 -0.12 0.13 688.22 1.01\n", + " coefs[40] 0.03 0.05 0.03 -0.05 0.11 737.72 1.01\n", + " coefs[41] 0.01 0.07 0.02 -0.10 0.12 1492.59 1.00\n", + " coefs[42] 0.02 0.41 0.02 -0.68 0.69 602.54 1.01\n", + " coefs[43] -0.03 0.23 -0.03 -0.42 0.34 613.82 1.01\n", + " coefs[44] 0.19 0.21 0.19 -0.16 0.54 604.50 1.01\n", + " coefs[45] 0.13 0.30 0.14 -0.39 0.59 603.75 1.01\n", + " coefs[46] 0.23 0.28 0.23 -0.23 0.68 609.11 1.01\n", + " coefs[47] -0.07 0.07 -0.06 -0.18 0.05 933.07 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 672.42 1.01\n", + " coefs[49] -0.80 0.59 -0.69 -1.65 0.00 4630.65 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.08 4276.88 1.00\n", + " coefs[51] -0.07 0.17 -0.07 -0.35 0.21 624.71 1.01\n", + " coefs[52] -0.13 0.16 -0.13 -0.40 0.12 615.24 1.01\n", + " coefs[53] -0.17 0.13 -0.17 -0.38 0.04 608.75 1.01\n", + " coefs[54] -1.65 0.19 -1.64 -1.94 -1.35 3844.77 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 19 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.09 0.06 2.09 1.99 2.20 9900.43 1.00\n", + " coefs[1] -0.09 0.04 -0.09 -0.15 -0.03 12225.38 1.00\n", + " coefs[2] -0.09 0.07 -0.09 -0.21 0.03 3777.37 1.00\n", + " coefs[3] -0.27 0.03 -0.27 -0.32 -0.21 8256.62 1.00\n", + " coefs[4] -0.13 0.04 -0.13 -0.18 -0.07 9095.25 1.00\n", + " coefs[5] -0.20 0.03 -0.20 -0.25 -0.15 11139.58 1.00\n", + " coefs[6] 0.43 0.28 0.42 -0.03 0.90 3032.91 1.00\n", + " coefs[7] -0.85 0.17 -0.84 -1.13 -0.56 3189.63 1.00\n", + " coefs[8] 0.87 0.33 0.86 0.30 1.40 3022.08 1.00\n", + " coefs[9] 0.00 0.03 0.00 -0.05 0.05 12442.31 1.00\n", + " coefs[10] 0.41 0.65 0.40 -0.72 1.41 3331.08 1.00\n", + " coefs[11] -0.06 0.29 -0.07 -0.54 0.41 3341.18 1.00\n", + " coefs[12] 0.12 0.65 0.11 -1.03 1.10 3333.96 1.00\n", + " coefs[13] -1.07 0.61 -1.01 -2.05 -0.08 5218.74 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.54 0.52 5822.97 1.00\n", + " coefs[15] -0.79 0.57 -0.68 -1.65 0.06 4591.28 1.00\n", + " coefs[16] -0.72 0.59 -0.61 -1.62 0.14 5379.81 1.00\n", + " coefs[17] 0.00 0.17 0.01 -0.26 0.29 769.45 1.00\n", + " coefs[18] -0.53 0.66 -0.41 -1.56 0.42 6037.22 1.00\n", + " coefs[19] -0.44 0.68 -0.36 -1.52 0.62 6056.28 1.00\n", + " coefs[20] -0.77 0.60 -0.65 -1.63 0.03 4989.46 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1593.75 1.00\n", + " coefs[22] 0.09 0.05 0.10 0.01 0.18 737.03 1.00\n", + " coefs[23] 0.20 0.25 0.21 -0.21 0.61 633.08 1.00\n", + " coefs[24] 0.08 0.16 0.09 -0.17 0.34 632.23 1.00\n", + " coefs[25] -0.10 0.24 -0.10 -0.46 0.31 630.33 1.00\n", + " coefs[26] 0.08 0.18 0.08 -0.21 0.39 615.33 1.00\n", + " coefs[27] -0.67 0.63 -0.55 -1.59 0.22 5405.23 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.67 1.63 11841.95 1.00\n", + " coefs[29] 0.01 0.08 0.01 -0.13 0.13 726.36 1.00\n", + " coefs[30] 0.10 0.09 0.10 -0.05 0.23 715.32 1.00\n", + " coefs[31] -0.03 0.10 -0.02 -0.18 0.13 1298.58 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.09 0.21 653.45 1.00\n", + " coefs[33] 0.11 0.13 0.11 -0.12 0.32 620.44 1.00\n", + " coefs[34] 0.93 0.59 0.82 0.12 1.77 4759.24 1.00\n", + " coefs[35] 0.35 0.25 0.36 -0.04 0.76 611.41 1.00\n", + " coefs[36] 0.34 0.31 0.35 -0.18 0.84 609.07 1.00\n", + " coefs[37] 0.18 0.20 0.18 -0.16 0.49 617.89 1.00\n", + " coefs[38] -0.01 0.03 -0.01 -0.07 0.05 798.81 1.00\n", + " coefs[39] -0.05 0.09 -0.05 -0.20 0.09 945.47 1.00\n", + " coefs[40] 0.08 0.05 0.08 -0.00 0.16 775.94 1.00\n", + " coefs[41] -0.79 0.59 -0.67 -1.68 0.02 5087.86 1.00\n", + " coefs[42] 0.02 0.42 0.03 -0.65 0.71 610.24 1.00\n", + " coefs[43] 0.01 0.23 0.01 -0.36 0.40 613.65 1.00\n", + " coefs[44] 0.16 0.22 0.16 -0.19 0.52 615.17 1.00\n", + " coefs[45] 0.04 0.30 0.05 -0.46 0.52 611.35 1.00\n", + " coefs[46] 0.18 0.28 0.19 -0.27 0.65 618.14 1.00\n", + " coefs[47] -0.86 0.56 -0.74 -1.70 -0.08 4596.20 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.19 0.02 670.20 1.00\n", + " coefs[49] 0.03 1.00 0.04 -1.57 1.71 11583.95 1.00\n", + " coefs[50] -0.87 0.57 -0.76 -1.69 -0.08 4887.46 1.00\n", + " coefs[51] -0.14 0.17 -0.14 -0.41 0.14 618.30 1.00\n", + " coefs[52] -0.19 0.16 -0.19 -0.45 0.08 619.52 1.00\n", + " coefs[53] -0.19 0.13 -0.18 -0.40 0.02 624.71 1.00\n", + " coefs[54] -1.69 0.19 -1.68 -1.99 -1.39 4128.48 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 20 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.89 0.06 1.89 1.79 1.99 9246.42 1.00\n", + " coefs[1] -0.08 0.03 -0.08 -0.13 -0.02 11208.54 1.00\n", + " coefs[2] 0.01 0.06 0.01 -0.09 0.11 3502.44 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.32 -0.21 7328.68 1.00\n", + " coefs[4] -0.08 0.04 -0.08 -0.14 -0.02 7942.68 1.00\n", + " coefs[5] -0.11 0.03 -0.11 -0.16 -0.06 11139.29 1.00\n", + " coefs[6] 0.47 0.24 0.45 0.07 0.84 2645.70 1.00\n", + " coefs[7] -0.73 0.15 -0.73 -0.97 -0.49 2807.38 1.00\n", + " coefs[8] 0.85 0.28 0.83 0.40 1.30 2626.09 1.00\n", + " coefs[9] -0.04 0.03 -0.04 -0.09 0.01 12620.86 1.00\n", + " coefs[10] 0.39 0.65 0.38 -0.73 1.44 2934.75 1.00\n", + " coefs[11] -0.04 0.29 -0.04 -0.51 0.45 2942.71 1.00\n", + " coefs[12] 0.11 0.65 0.10 -0.95 1.21 2939.57 1.00\n", + " coefs[13] -0.97 0.64 -0.91 -1.94 0.13 4606.51 1.00\n", + " coefs[14] -0.46 0.66 -0.35 -1.52 0.51 5983.50 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.65 0.07 3909.10 1.00\n", + " coefs[16] -0.72 0.58 -0.61 -1.62 0.11 5133.14 1.00\n", + " coefs[17] -0.27 0.23 -0.26 -0.65 0.09 826.22 1.00\n", + " coefs[18] -0.56 0.66 -0.44 -1.59 0.38 5573.30 1.00\n", + " coefs[19] -0.47 0.67 -0.38 -1.56 0.56 5610.96 1.00\n", + " coefs[20] 0.02 0.97 0.02 -1.57 1.63 10854.73 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 980.00 1.00\n", + " coefs[22] 0.05 0.06 0.05 -0.04 0.15 642.18 1.01\n", + " coefs[23] 0.01 0.25 0.01 -0.39 0.44 445.60 1.01\n", + " coefs[24] -0.04 0.16 -0.04 -0.30 0.23 464.65 1.01\n", + " coefs[25] -0.07 0.23 -0.07 -0.46 0.32 422.35 1.01\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.33 425.48 1.01\n", + " coefs[27] -0.70 0.61 -0.59 -1.58 0.16 5206.67 1.00\n", + " coefs[28] 0.03 0.99 0.04 -1.55 1.70 10690.05 1.00\n", + " coefs[29] 0.11 0.08 0.11 -0.02 0.23 447.83 1.01\n", + " coefs[30] -0.01 0.10 -0.01 -0.18 0.15 609.85 1.01\n", + " coefs[31] 0.03 0.08 0.03 -0.10 0.15 668.65 1.00\n", + " coefs[32] 0.10 0.09 0.10 -0.05 0.25 435.76 1.01\n", + " coefs[33] 0.15 0.13 0.15 -0.05 0.39 423.61 1.01\n", + " coefs[34] 0.92 0.59 0.80 0.10 1.77 4889.49 1.00\n", + " coefs[35] 0.35 0.24 0.35 -0.05 0.76 416.61 1.01\n", + " coefs[36] 0.32 0.31 0.32 -0.17 0.87 414.14 1.01\n", + " coefs[37] 0.18 0.20 0.18 -0.15 0.50 415.80 1.01\n", + " coefs[38] -0.04 0.05 -0.04 -0.12 0.04 964.69 1.00\n", + " coefs[39] -0.03 0.08 -0.02 -0.17 0.10 572.20 1.01\n", + " coefs[40] 0.07 0.05 0.07 -0.02 0.15 548.93 1.01\n", + " coefs[41] -0.78 0.59 -0.65 -1.66 0.03 4809.95 1.00\n", + " coefs[42] 0.10 0.42 0.10 -0.55 0.84 414.43 1.01\n", + " coefs[43] 0.00 0.23 0.01 -0.36 0.42 420.25 1.01\n", + " coefs[44] 0.18 0.22 0.19 -0.18 0.53 414.59 1.01\n", + " coefs[45] 0.13 0.30 0.13 -0.35 0.65 412.93 1.01\n", + " coefs[46] 0.22 0.28 0.22 -0.25 0.68 414.62 1.01\n", + " coefs[47] -0.12 0.09 -0.12 -0.27 0.01 846.25 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.18 0.02 450.84 1.01\n", + " coefs[49] -0.80 0.59 -0.69 -1.64 -0.00 5076.40 1.00\n", + " coefs[50] -0.83 0.58 -0.70 -1.66 -0.04 4703.44 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.37 0.19 420.59 1.01\n", + " coefs[52] -0.09 0.16 -0.09 -0.35 0.18 421.82 1.01\n", + " coefs[53] -0.16 0.13 -0.16 -0.38 0.05 430.31 1.01\n", + " coefs[54] -1.71 0.19 -1.70 -2.01 -1.40 3704.67 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 21 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.00 0.06 2.00 1.90 2.10 9762.19 1.00\n", + " coefs[1] -0.15 0.04 -0.15 -0.21 -0.09 11181.90 1.00\n", + " coefs[2] -0.09 0.07 -0.09 -0.21 0.03 3538.15 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.31 -0.21 7643.43 1.00\n", + " coefs[4] -0.11 0.03 -0.11 -0.16 -0.05 8365.70 1.00\n", + " coefs[5] -0.09 0.03 -0.09 -0.14 -0.04 10974.91 1.00\n", + " coefs[6] 0.16 0.29 0.16 -0.31 0.64 2862.26 1.00\n", + " coefs[7] -0.60 0.18 -0.60 -0.90 -0.32 2967.20 1.00\n", + " coefs[8] 0.53 0.34 0.52 -0.03 1.09 2843.52 1.00\n", + " coefs[9] 0.04 0.03 0.04 -0.01 0.09 11309.82 1.00\n", + " coefs[10] 0.41 0.65 0.40 -0.67 1.47 3281.18 1.00\n", + " coefs[11] 0.01 0.29 0.01 -0.48 0.47 3284.19 1.00\n", + " coefs[12] 0.09 0.65 0.09 -0.96 1.18 3281.82 1.00\n", + " coefs[13] -1.04 0.62 -0.98 -2.00 -0.03 4929.61 1.00\n", + " coefs[14] -0.45 0.67 -0.34 -1.51 0.55 6576.05 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.66 0.04 4629.92 1.00\n", + " coefs[16] -0.70 0.59 -0.59 -1.60 0.15 5257.19 1.00\n", + " coefs[17] -0.06 0.17 -0.06 -0.35 0.21 740.58 1.00\n", + " coefs[18] -0.54 0.66 -0.42 -1.55 0.44 5842.99 1.00\n", + " coefs[19] -0.43 0.67 -0.34 -1.50 0.63 5996.43 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.62 0.02 5050.51 1.00\n", + " coefs[21] -0.77 0.60 -0.66 -1.63 0.04 4806.38 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.01 0.17 781.54 1.00\n", + " coefs[23] 0.14 0.24 0.14 -0.25 0.54 588.58 1.00\n", + " coefs[24] 0.05 0.15 0.05 -0.21 0.30 592.89 1.00\n", + " coefs[25] -0.12 0.23 -0.12 -0.49 0.26 569.03 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.26 0.32 570.36 1.00\n", + " coefs[27] -0.70 0.62 -0.58 -1.59 0.18 5348.57 1.00\n", + " coefs[28] 0.03 0.99 0.02 -1.56 1.72 10094.24 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.04 0.21 603.97 1.00\n", + " coefs[30] 0.04 0.09 0.04 -0.12 0.19 749.44 1.00\n", + " coefs[31] -0.00 0.08 0.00 -0.13 0.13 924.25 1.00\n", + " coefs[32] 0.08 0.09 0.08 -0.07 0.22 588.87 1.00\n", + " coefs[33] 0.10 0.13 0.10 -0.11 0.31 568.07 1.00\n", + " coefs[34] 0.14 0.06 0.14 0.04 0.24 1356.03 1.00\n", + " coefs[35] 0.28 0.24 0.28 -0.09 0.69 556.98 1.00\n", + " coefs[36] 0.31 0.31 0.31 -0.18 0.82 553.33 1.00\n", + " coefs[37] 0.17 0.19 0.17 -0.14 0.49 559.88 1.00\n", + " coefs[38] 0.01 0.03 0.01 -0.04 0.07 757.07 1.00\n", + " coefs[39] 0.05 0.07 0.05 -0.07 0.17 647.92 1.00\n", + " coefs[40] 0.04 0.05 0.04 -0.04 0.12 641.85 1.00\n", + " coefs[41] -0.02 0.07 -0.02 -0.13 0.09 1297.18 1.00\n", + " coefs[42] 0.00 0.41 0.00 -0.64 0.69 553.97 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.34 0.40 559.55 1.00\n", + " coefs[44] 0.19 0.21 0.20 -0.15 0.54 560.54 1.00\n", + " coefs[45] 0.08 0.29 0.08 -0.39 0.56 556.92 1.00\n", + " coefs[46] 0.24 0.28 0.24 -0.18 0.72 555.62 1.00\n", + " coefs[47] -0.08 0.07 -0.08 -0.20 0.03 894.80 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 627.40 1.00\n", + " coefs[49] 0.04 1.01 0.03 -1.59 1.70 10909.59 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.09 4571.07 1.00\n", + " coefs[51] -0.15 0.17 -0.15 -0.41 0.13 561.78 1.00\n", + " coefs[52] -0.14 0.16 -0.14 -0.39 0.12 562.22 1.00\n", + " coefs[53] -0.17 0.13 -0.17 -0.37 0.05 562.71 1.00\n", + " coefs[54] -1.66 0.18 -1.65 -1.96 -1.38 4130.36 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 22 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.04 0.06 2.04 1.94 2.15 8792.94 1.00\n", + " coefs[1] -0.02 0.04 -0.02 -0.08 0.04 11601.13 1.00\n", + " coefs[2] -0.16 0.07 -0.16 -0.27 -0.05 4312.41 1.00\n", + " coefs[3] -0.32 0.03 -0.32 -0.37 -0.26 6939.66 1.00\n", + " coefs[4] -0.10 0.04 -0.10 -0.16 -0.05 7411.87 1.00\n", + " coefs[5] -0.15 0.03 -0.15 -0.20 -0.10 10025.50 1.00\n", + " coefs[6] -0.04 0.25 -0.04 -0.45 0.37 3331.37 1.00\n", + " coefs[7] -0.57 0.15 -0.57 -0.82 -0.32 3563.81 1.00\n", + " coefs[8] 0.29 0.29 0.29 -0.18 0.78 3339.59 1.00\n", + " coefs[9] 0.04 0.03 0.04 -0.00 0.09 10370.34 1.00\n", + " coefs[10] 0.39 0.66 0.39 -0.69 1.46 3233.84 1.00\n", + " coefs[11] -0.04 0.29 -0.04 -0.54 0.42 3237.79 1.00\n", + " coefs[12] 0.11 0.65 0.11 -1.03 1.12 3237.01 1.00\n", + " coefs[13] -1.01 0.63 -0.95 -2.04 -0.03 4483.64 1.00\n", + " coefs[14] -0.47 0.67 -0.36 -1.52 0.52 5759.36 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.65 0.04 4528.41 1.00\n", + " coefs[16] -0.72 0.59 -0.60 -1.60 0.14 4801.30 1.00\n", + " coefs[17] -0.07 0.17 -0.07 -0.35 0.22 832.85 1.00\n", + " coefs[18] -0.53 0.66 -0.42 -1.57 0.40 5510.81 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.54 0.60 5378.76 1.00\n", + " coefs[20] 0.02 0.98 0.02 -1.59 1.66 12635.21 1.00\n", + " coefs[21] 0.00 0.03 0.00 -0.05 0.05 1578.97 1.00\n", + " coefs[22] 0.07 0.06 0.07 -0.03 0.15 799.11 1.00\n", + " coefs[23] 0.08 0.25 0.08 -0.32 0.50 631.44 1.00\n", + " coefs[24] 0.03 0.16 0.03 -0.24 0.28 665.12 1.00\n", + " coefs[25] -0.16 0.23 -0.16 -0.52 0.25 629.61 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.33 649.75 1.00\n", + " coefs[27] -0.73 0.61 -0.61 -1.62 0.12 4951.62 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.63 1.60 9968.12 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.09 0.17 691.13 1.00\n", + " coefs[30] 0.04 0.09 0.04 -0.10 0.20 752.47 1.00\n", + " coefs[31] 0.01 0.08 0.02 -0.12 0.14 1127.34 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.09 0.20 667.50 1.00\n", + " coefs[33] 0.15 0.13 0.15 -0.07 0.37 635.17 1.00\n", + " coefs[34] 0.14 0.06 0.14 0.04 0.25 1416.76 1.00\n", + " coefs[35] 0.33 0.25 0.33 -0.09 0.72 623.44 1.00\n", + " coefs[36] 0.34 0.32 0.34 -0.16 0.87 612.20 1.00\n", + " coefs[37] 0.15 0.20 0.15 -0.19 0.46 622.84 1.00\n", + " coefs[38] -0.05 0.05 -0.05 -0.13 0.03 1609.92 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 723.00 1.00\n", + " coefs[40] 0.09 0.05 0.09 0.00 0.17 829.79 1.00\n", + " coefs[41] 0.03 0.05 0.03 -0.05 0.12 884.95 1.00\n", + " coefs[42] 0.05 0.42 0.05 -0.64 0.73 619.81 1.00\n", + " coefs[43] -0.03 0.24 -0.02 -0.43 0.34 621.58 1.00\n", + " coefs[44] 0.15 0.22 0.15 -0.20 0.51 617.23 1.00\n", + " coefs[45] 0.09 0.30 0.09 -0.39 0.60 618.28 1.00\n", + " coefs[46] 0.22 0.28 0.23 -0.23 0.69 608.95 1.00\n", + " coefs[47] -0.02 0.06 -0.02 -0.13 0.08 790.25 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.21 0.00 689.44 1.00\n", + " coefs[49] -0.81 0.60 -0.70 -1.67 0.00 4347.16 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.68 -0.08 4436.04 1.00\n", + " coefs[51] -0.14 0.17 -0.13 -0.41 0.15 622.46 1.00\n", + " coefs[52] -0.14 0.16 -0.14 -0.41 0.12 634.06 1.00\n", + " coefs[53] -0.11 0.13 -0.11 -0.32 0.11 641.85 1.00\n", + " coefs[54] -1.65 0.18 -1.63 -1.93 -1.33 3934.98 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 23 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.93 0.06 1.93 1.83 2.03 9689.88 1.00\n", + " coefs[1] -0.05 0.03 -0.05 -0.10 0.01 12545.20 1.00\n", + " coefs[2] -0.02 0.07 -0.02 -0.13 0.09 3898.07 1.00\n", + " coefs[3] -0.27 0.03 -0.27 -0.32 -0.21 7686.11 1.00\n", + " coefs[4] -0.10 0.03 -0.10 -0.16 -0.05 8700.67 1.00\n", + " coefs[5] -0.18 0.03 -0.18 -0.23 -0.13 10401.49 1.00\n", + " coefs[6] 0.26 0.25 0.25 -0.14 0.68 2980.05 1.00\n", + " coefs[7] -0.67 0.15 -0.67 -0.92 -0.42 3112.42 1.00\n", + " coefs[8] 0.57 0.29 0.56 0.11 1.07 2948.98 1.00\n", + " coefs[9] -0.05 0.03 -0.05 -0.10 0.00 12414.78 1.00\n", + " coefs[10] 0.44 0.65 0.43 -0.63 1.52 2846.10 1.00\n", + " coefs[11] -0.01 0.29 -0.02 -0.51 0.45 2871.59 1.00\n", + " coefs[12] 0.10 0.65 0.10 -0.98 1.17 2857.64 1.00\n", + " coefs[13] -1.09 0.63 -1.03 -2.05 -0.01 4990.59 1.00\n", + " coefs[14] -0.47 0.66 -0.36 -1.50 0.54 6165.47 1.00\n", + " coefs[15] -0.81 0.57 -0.71 -1.69 0.02 5048.22 1.00\n", + " coefs[16] -0.75 0.58 -0.64 -1.60 0.08 4824.68 1.00\n", + " coefs[17] -0.16 0.19 -0.15 -0.48 0.13 848.87 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.56 0.40 5827.61 1.00\n", + " coefs[19] -0.45 0.67 -0.36 -1.53 0.58 6544.98 1.00\n", + " coefs[20] -0.76 0.59 -0.65 -1.61 0.04 5423.70 1.00\n", + " coefs[21] 0.03 0.04 0.03 -0.03 0.09 1947.02 1.00\n", + " coefs[22] 0.03 0.06 0.03 -0.06 0.13 874.06 1.00\n", + " coefs[23] 0.07 0.24 0.07 -0.32 0.47 585.54 1.00\n", + " coefs[24] -0.02 0.16 -0.02 -0.28 0.23 603.12 1.00\n", + " coefs[25] -0.07 0.23 -0.08 -0.44 0.32 562.41 1.00\n", + " coefs[26] -0.00 0.18 -0.00 -0.28 0.31 574.26 1.00\n", + " coefs[27] -0.62 0.64 -0.50 -1.58 0.31 5547.06 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.58 1.68 10670.31 1.00\n", + " coefs[29] 0.08 0.08 0.08 -0.04 0.21 627.27 1.00\n", + " coefs[30] 0.01 0.09 0.01 -0.15 0.16 741.73 1.00\n", + " coefs[31] -0.00 0.08 0.00 -0.12 0.13 840.86 1.00\n", + " coefs[32] 0.07 0.09 0.06 -0.08 0.21 588.23 1.00\n", + " coefs[33] 0.17 0.13 0.16 -0.04 0.39 570.20 1.00\n", + " coefs[34] 0.92 0.59 0.80 0.10 1.77 5030.01 1.00\n", + " coefs[35] 0.31 0.24 0.31 -0.08 0.70 559.22 1.00\n", + " coefs[36] 0.30 0.31 0.29 -0.20 0.82 552.54 1.00\n", + " coefs[37] 0.15 0.19 0.14 -0.17 0.47 551.24 1.00\n", + " coefs[38] -0.02 0.04 -0.02 -0.08 0.05 1035.24 1.00\n", + " coefs[39] -0.00 0.08 -0.00 -0.13 0.12 664.01 1.00\n", + " coefs[40] -0.01 0.05 -0.01 -0.09 0.07 667.57 1.00\n", + " coefs[41] -0.03 0.07 -0.02 -0.13 0.09 1390.68 1.00\n", + " coefs[42] 0.02 0.41 0.01 -0.65 0.69 555.94 1.00\n", + " coefs[43] -0.03 0.23 -0.03 -0.42 0.33 561.70 1.00\n", + " coefs[44] 0.16 0.21 0.15 -0.18 0.51 561.34 1.00\n", + " coefs[45] 0.06 0.30 0.06 -0.43 0.54 558.07 1.00\n", + " coefs[46] 0.19 0.28 0.19 -0.27 0.63 558.31 1.00\n", + " coefs[47] -0.10 0.09 -0.10 -0.23 0.05 1359.88 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 608.20 1.00\n", + " coefs[49] 0.03 1.00 0.02 -1.51 1.75 12878.55 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.68 -0.07 4962.08 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.38 0.16 577.83 1.00\n", + " coefs[52] -0.08 0.16 -0.08 -0.35 0.17 562.72 1.00\n", + " coefs[53] -0.11 0.13 -0.11 -0.31 0.10 564.13 1.00\n", + " coefs[54] -1.61 0.18 -1.60 -1.89 -1.29 4385.25 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 24 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.07 0.06 2.07 1.97 2.18 9888.07 1.00\n", + " coefs[1] -0.04 0.04 -0.04 -0.10 0.02 10935.57 1.00\n", + " coefs[2] -0.22 0.07 -0.22 -0.34 -0.10 3416.86 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.36 -0.25 8028.48 1.00\n", + " coefs[4] -0.12 0.04 -0.12 -0.18 -0.06 8680.12 1.00\n", + " coefs[5] -0.14 0.03 -0.14 -0.19 -0.08 11561.50 1.00\n", + " coefs[6] -0.11 0.29 -0.11 -0.60 0.36 2742.04 1.00\n", + " coefs[7] -0.47 0.18 -0.47 -0.76 -0.17 2872.73 1.00\n", + " coefs[8] 0.11 0.34 0.11 -0.46 0.65 2724.86 1.00\n", + " coefs[9] -0.05 0.03 -0.05 -0.10 0.00 11593.39 1.00\n", + " coefs[10] 0.46 0.65 0.45 -0.61 1.52 3002.02 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.48 0.47 3004.38 1.00\n", + " coefs[12] 0.07 0.65 0.06 -0.97 1.17 2999.89 1.00\n", + " coefs[13] -1.05 0.62 -0.99 -2.05 -0.03 4368.86 1.00\n", + " coefs[14] -0.46 0.68 -0.34 -1.53 0.53 5985.35 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.70 0.01 4554.68 1.00\n", + " coefs[16] -0.71 0.60 -0.60 -1.63 0.13 5072.77 1.00\n", + " coefs[17] 0.08 0.16 0.08 -0.17 0.35 613.24 1.00\n", + " coefs[18] -0.56 0.66 -0.44 -1.57 0.41 5692.96 1.00\n", + " coefs[19] -0.46 0.68 -0.37 -1.57 0.59 5682.49 1.00\n", + " coefs[20] -0.78 0.58 -0.67 -1.61 0.01 4910.05 1.00\n", + " coefs[21] -0.00 0.03 0.00 -0.05 0.05 1340.87 1.00\n", + " coefs[22] -0.00 0.07 0.00 -0.12 0.11 1151.16 1.00\n", + " coefs[23] 0.19 0.25 0.19 -0.20 0.61 571.15 1.00\n", + " coefs[24] 0.07 0.15 0.07 -0.18 0.32 570.76 1.00\n", + " coefs[25] -0.12 0.23 -0.12 -0.52 0.25 570.00 1.00\n", + " coefs[26] 0.06 0.18 0.06 -0.24 0.36 570.92 1.00\n", + " coefs[27] -0.71 0.62 -0.59 -1.61 0.14 4857.10 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.63 1.63 11053.83 1.00\n", + " coefs[29] 0.02 0.08 0.02 -0.10 0.15 601.17 1.00\n", + " coefs[30] 0.08 0.09 0.08 -0.07 0.22 653.46 1.00\n", + " coefs[31] 0.02 0.07 0.02 -0.10 0.14 780.03 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.09 0.20 587.20 1.00\n", + " coefs[33] 0.11 0.13 0.11 -0.10 0.33 578.82 1.00\n", + " coefs[34] 0.91 0.59 0.78 0.09 1.76 4633.63 1.00\n", + " coefs[35] 0.32 0.24 0.32 -0.10 0.70 562.55 1.00\n", + " coefs[36] 0.24 0.31 0.24 -0.25 0.78 550.52 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.16 0.48 553.24 1.00\n", + " coefs[38] -0.06 0.04 -0.06 -0.12 0.00 887.46 1.00\n", + " coefs[39] 0.04 0.08 0.04 -0.08 0.17 641.10 1.00\n", + " coefs[40] 0.09 0.05 0.08 0.00 0.16 677.50 1.00\n", + " coefs[41] 0.03 0.05 0.03 -0.06 0.12 940.91 1.00\n", + " coefs[42] -0.06 0.42 -0.06 -0.71 0.66 556.19 1.00\n", + " coefs[43] -0.06 0.23 -0.06 -0.44 0.33 559.39 1.00\n", + " coefs[44] 0.14 0.21 0.14 -0.21 0.50 553.46 1.00\n", + " coefs[45] 0.07 0.30 0.07 -0.43 0.56 553.47 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.25 0.68 554.58 1.00\n", + " coefs[47] -0.04 0.07 -0.04 -0.15 0.07 783.37 1.00\n", + " coefs[48] -0.11 0.06 -0.11 -0.22 -0.01 604.14 1.00\n", + " coefs[49] -0.81 0.60 -0.68 -1.69 -0.01 4306.68 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.68 -0.06 4711.24 1.00\n", + " coefs[51] -0.16 0.17 -0.16 -0.43 0.13 568.23 1.00\n", + " coefs[52] -0.11 0.16 -0.11 -0.38 0.15 568.33 1.00\n", + " coefs[53] -0.16 0.13 -0.16 -0.38 0.05 579.79 1.00\n", + " coefs[54] -1.60 0.18 -1.58 -1.89 -1.30 3802.32 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 25 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.02 0.06 2.02 1.91 2.12 10309.61 1.00\n", + " coefs[1] -0.03 0.03 -0.03 -0.09 0.03 12124.19 1.00\n", + " coefs[2] -0.06 0.07 -0.06 -0.18 0.05 3571.48 1.00\n", + " coefs[3] -0.28 0.03 -0.28 -0.33 -0.22 7482.98 1.00\n", + " coefs[4] -0.14 0.04 -0.14 -0.20 -0.08 8459.79 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.10 10634.42 1.00\n", + " coefs[6] 0.38 0.27 0.38 -0.08 0.82 2778.57 1.00\n", + " coefs[7] -0.76 0.17 -0.76 -1.02 -0.47 2903.10 1.00\n", + " coefs[8] 0.74 0.32 0.74 0.20 1.26 2757.86 1.00\n", + " coefs[9] 0.02 0.03 0.02 -0.03 0.07 12221.01 1.00\n", + " coefs[10] 0.41 0.65 0.41 -0.69 1.46 3052.96 1.00\n", + " coefs[11] -0.06 0.29 -0.06 -0.53 0.42 3052.24 1.00\n", + " coefs[12] 0.13 0.65 0.12 -0.94 1.21 3059.80 1.00\n", + " coefs[13] -1.04 0.62 -0.98 -2.09 -0.09 4412.03 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.53 0.53 5862.03 1.00\n", + " coefs[15] -0.78 0.57 -0.68 -1.65 0.05 5014.93 1.00\n", + " coefs[16] -0.70 0.59 -0.58 -1.58 0.17 5030.84 1.00\n", + " coefs[17] -0.27 0.23 -0.25 -0.61 0.13 1177.44 1.00\n", + " coefs[18] -0.53 0.66 -0.41 -1.54 0.43 5614.50 1.00\n", + " coefs[19] -0.43 0.68 -0.34 -1.54 0.61 5929.27 1.00\n", + " coefs[20] 0.02 0.97 0.01 -1.48 1.69 12485.30 1.00\n", + " coefs[21] -0.00 0.03 0.00 -0.05 0.05 1268.53 1.00\n", + " coefs[22] 0.06 0.05 0.06 -0.03 0.15 729.52 1.00\n", + " coefs[23] 0.19 0.25 0.19 -0.24 0.57 558.82 1.00\n", + " coefs[24] 0.05 0.16 0.05 -0.21 0.31 580.78 1.00\n", + " coefs[25] -0.08 0.23 -0.08 -0.50 0.27 548.09 1.00\n", + " coefs[26] 0.09 0.18 0.09 -0.22 0.38 547.89 1.00\n", + " coefs[27] -0.70 0.61 -0.58 -1.60 0.15 5096.35 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.66 1.61 10390.05 1.00\n", + " coefs[29] 0.06 0.08 0.06 -0.06 0.19 580.62 1.00\n", + " coefs[30] 0.09 0.09 0.10 -0.05 0.24 628.19 1.00\n", + " coefs[31] -0.75 0.58 -0.63 -1.62 0.07 4801.85 1.00\n", + " coefs[32] 0.09 0.09 0.09 -0.05 0.24 565.21 1.00\n", + " coefs[33] 0.15 0.13 0.16 -0.06 0.37 550.40 1.00\n", + " coefs[34] 0.09 0.05 0.09 0.01 0.18 895.13 1.00\n", + " coefs[35] 0.33 0.24 0.34 -0.07 0.74 535.96 1.00\n", + " coefs[36] 0.32 0.31 0.33 -0.19 0.84 533.22 1.00\n", + " coefs[37] 0.14 0.20 0.14 -0.20 0.45 537.09 1.00\n", + " coefs[38] -0.02 0.04 -0.02 -0.09 0.04 939.95 1.00\n", + " coefs[39] 0.00 0.08 0.00 -0.12 0.13 647.96 1.00\n", + " coefs[40] 0.09 0.06 0.09 0.00 0.18 799.91 1.00\n", + " coefs[41] -0.02 0.07 -0.01 -0.12 0.10 1291.14 1.00\n", + " coefs[42] 0.07 0.42 0.08 -0.62 0.77 533.62 1.00\n", + " coefs[43] -0.02 0.23 -0.01 -0.40 0.37 534.58 1.00\n", + " coefs[44] 0.16 0.22 0.17 -0.20 0.51 534.54 1.00\n", + " coefs[45] 0.09 0.30 0.10 -0.41 0.58 533.79 1.00\n", + " coefs[46] 0.22 0.28 0.23 -0.26 0.66 535.06 1.00\n", + " coefs[47] -0.08 0.07 -0.08 -0.20 0.03 832.04 1.00\n", + " coefs[48] -0.04 0.06 -0.04 -0.15 0.06 617.55 1.00\n", + " coefs[49] -0.81 0.60 -0.69 -1.67 -0.01 4879.90 1.00\n", + " coefs[50] -0.86 0.58 -0.73 -1.68 -0.08 4615.40 1.00\n", + " coefs[51] -0.14 0.17 -0.13 -0.43 0.13 546.89 1.00\n", + " coefs[52] -0.11 0.16 -0.11 -0.38 0.16 536.48 1.00\n", + " coefs[53] -0.18 0.13 -0.18 -0.40 0.03 552.97 1.00\n", + " coefs[54] -1.76 0.19 -1.75 -2.06 -1.45 3911.71 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 26 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.95 0.06 1.95 1.85 2.05 9697.28 1.00\n", + " coefs[1] -0.01 0.03 -0.01 -0.07 0.04 12200.46 1.00\n", + " coefs[2] -0.18 0.07 -0.18 -0.28 -0.07 3835.72 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.36 -0.25 7753.40 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.14 -0.02 8914.41 1.00\n", + " coefs[5] -0.19 0.03 -0.19 -0.24 -0.13 9799.48 1.00\n", + " coefs[6] -0.44 0.25 -0.44 -0.83 -0.02 3083.93 1.00\n", + " coefs[7] -0.24 0.15 -0.24 -0.48 0.01 3272.49 1.00\n", + " coefs[8] -0.25 0.29 -0.24 -0.73 0.22 3069.29 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 11351.99 1.00\n", + " coefs[10] 0.42 0.65 0.41 -0.72 1.42 3244.67 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.50 0.46 3259.76 1.00\n", + " coefs[12] 0.12 0.65 0.11 -1.05 1.09 3243.82 1.00\n", + " coefs[13] -1.10 0.62 -1.04 -2.07 -0.06 4756.45 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.52 0.52 5832.99 1.00\n", + " coefs[15] -0.81 0.57 -0.70 -1.65 0.03 4664.33 1.00\n", + " coefs[16] -0.72 0.58 -0.60 -1.63 0.09 5437.49 1.00\n", + " coefs[17] -0.01 0.17 -0.01 -0.27 0.27 593.91 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.55 0.42 5946.46 1.00\n", + " coefs[19] -0.45 0.69 -0.35 -1.53 0.63 5809.86 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.62 0.02 4961.15 1.00\n", + " coefs[21] -0.77 0.58 -0.65 -1.61 0.02 5202.46 1.00\n", + " coefs[22] 0.05 0.05 0.05 -0.03 0.15 658.39 1.00\n", + " coefs[23] 0.17 0.25 0.17 -0.23 0.58 514.11 1.00\n", + " coefs[24] 0.08 0.16 0.08 -0.17 0.34 523.59 1.00\n", + " coefs[25] -0.08 0.24 -0.08 -0.46 0.32 507.06 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.32 507.58 1.00\n", + " coefs[27] -0.73 0.61 -0.60 -1.61 0.13 4905.48 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.60 1.69 10750.90 1.00\n", + " coefs[29] 0.06 0.08 0.06 -0.06 0.19 555.98 1.00\n", + " coefs[30] 0.01 0.10 0.01 -0.15 0.17 672.45 1.00\n", + " coefs[31] 0.01 0.08 0.01 -0.12 0.13 807.56 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.09 0.21 533.46 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.07 0.38 508.16 1.00\n", + " coefs[34] 0.93 0.60 0.80 0.11 1.79 4631.74 1.00\n", + " coefs[35] 0.30 0.24 0.30 -0.08 0.73 494.20 1.00\n", + " coefs[36] 0.34 0.31 0.34 -0.15 0.88 494.83 1.00\n", + " coefs[37] 0.15 0.20 0.15 -0.18 0.47 497.12 1.00\n", + " coefs[38] 0.04 0.04 0.04 -0.03 0.11 896.21 1.00\n", + " coefs[39] -0.01 0.08 -0.00 -0.14 0.12 622.27 1.00\n", + " coefs[40] 0.06 0.05 0.06 -0.01 0.15 578.36 1.00\n", + " coefs[41] -0.78 0.58 -0.66 -1.63 0.03 5017.98 1.00\n", + " coefs[42] 0.08 0.42 0.08 -0.62 0.76 493.89 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.34 0.43 499.52 1.00\n", + " coefs[44] 0.13 0.22 0.13 -0.21 0.50 496.38 1.00\n", + " coefs[45] 0.08 0.30 0.08 -0.44 0.56 492.93 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.28 0.65 498.64 1.00\n", + " coefs[47] -0.82 0.57 -0.71 -1.67 -0.05 4656.06 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.04 550.33 1.00\n", + " coefs[49] -0.80 0.59 -0.67 -1.65 -0.00 4704.70 1.00\n", + " coefs[50] -0.87 0.58 -0.74 -1.69 -0.07 4427.45 1.00\n", + " coefs[51] -0.11 0.17 -0.11 -0.40 0.17 502.20 1.00\n", + " coefs[52] -0.09 0.16 -0.09 -0.35 0.18 502.02 1.00\n", + " coefs[53] -0.16 0.13 -0.16 -0.38 0.05 512.18 1.00\n", + " coefs[54] -1.68 0.19 -1.66 -1.96 -1.36 3876.22 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 27 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.99 0.06 1.99 1.89 2.09 9664.80 1.00\n", + " coefs[1] -0.06 0.03 -0.06 -0.11 0.00 12273.76 1.00\n", + " coefs[2] -0.00 0.07 -0.00 -0.12 0.12 3990.60 1.00\n", + " coefs[3] -0.33 0.03 -0.33 -0.39 -0.28 8378.52 1.00\n", + " coefs[4] -0.08 0.04 -0.08 -0.14 -0.02 9122.81 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.22 -0.11 9835.89 1.00\n", + " coefs[6] 0.43 0.28 0.43 -0.05 0.88 3212.70 1.00\n", + " coefs[7] -0.79 0.17 -0.79 -1.08 -0.52 3328.05 1.00\n", + " coefs[8] 0.87 0.33 0.86 0.31 1.40 3201.38 1.00\n", + " coefs[9] 0.04 0.03 0.04 -0.01 0.09 12410.57 1.00\n", + " coefs[10] 0.39 0.65 0.38 -0.68 1.46 3077.07 1.00\n", + " coefs[11] -0.06 0.29 -0.06 -0.56 0.40 3088.73 1.00\n", + " coefs[12] 0.11 0.65 0.10 -0.94 1.19 3080.15 1.00\n", + " coefs[13] -1.00 0.63 -0.93 -2.05 -0.02 4853.41 1.00\n", + " coefs[14] -0.44 0.67 -0.33 -1.47 0.59 5749.68 1.00\n", + " coefs[15] -0.76 0.57 -0.66 -1.64 0.06 4580.98 1.00\n", + " coefs[16] -0.74 0.58 -0.63 -1.59 0.11 4965.06 1.00\n", + " coefs[17] 0.08 0.16 0.08 -0.20 0.33 757.62 1.00\n", + " coefs[18] -0.54 0.66 -0.42 -1.55 0.42 5849.73 1.00\n", + " coefs[19] -0.45 0.66 -0.36 -1.51 0.59 6230.51 1.00\n", + " coefs[20] -0.76 0.59 -0.64 -1.61 0.03 4981.49 1.00\n", + " coefs[21] 0.03 0.02 0.03 -0.01 0.07 1097.70 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.05 0.14 997.56 1.00\n", + " coefs[23] 0.11 0.25 0.11 -0.31 0.51 703.71 1.00\n", + " coefs[24] 0.01 0.16 0.01 -0.27 0.25 725.63 1.00\n", + " coefs[25] -0.05 0.23 -0.05 -0.44 0.32 685.14 1.00\n", + " coefs[26] 0.04 0.18 0.04 -0.26 0.33 689.06 1.00\n", + " coefs[27] -0.70 0.63 -0.58 -1.63 0.17 4768.90 1.00\n", + " coefs[28] 0.02 1.00 0.03 -1.60 1.70 11348.00 1.00\n", + " coefs[29] 0.02 0.08 0.02 -0.11 0.15 782.70 1.00\n", + " coefs[30] 0.00 0.10 0.00 -0.17 0.17 1066.32 1.00\n", + " coefs[31] -0.75 0.58 -0.63 -1.61 0.07 4989.76 1.00\n", + " coefs[32] 0.07 0.09 0.07 -0.08 0.21 711.07 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.06 0.37 689.21 1.00\n", + " coefs[34] 0.15 0.06 0.15 0.04 0.25 1520.05 1.00\n", + " coefs[35] 0.35 0.24 0.35 -0.05 0.75 671.45 1.00\n", + " coefs[36] 0.37 0.31 0.38 -0.15 0.87 674.78 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.16 0.49 677.33 1.00\n", + " coefs[38] 0.04 0.04 0.04 -0.02 0.10 942.01 1.00\n", + " coefs[39] -0.07 0.09 -0.06 -0.21 0.07 1046.12 1.00\n", + " coefs[40] 0.05 0.05 0.06 -0.03 0.14 837.95 1.00\n", + " coefs[41] -0.79 0.59 -0.66 -1.65 0.04 5069.57 1.00\n", + " coefs[42] 0.09 0.42 0.09 -0.60 0.76 671.11 1.00\n", + " coefs[43] 0.01 0.23 0.01 -0.37 0.40 680.37 1.00\n", + " coefs[44] 0.17 0.21 0.18 -0.18 0.53 673.74 1.00\n", + " coefs[45] 0.12 0.30 0.13 -0.35 0.64 669.63 1.00\n", + " coefs[46] 0.25 0.28 0.25 -0.19 0.73 674.48 1.00\n", + " coefs[47] -0.84 0.58 -0.71 -1.70 -0.04 4818.66 1.00\n", + " coefs[48] -0.05 0.06 -0.05 -0.16 0.05 730.24 1.00\n", + " coefs[49] -0.80 0.60 -0.68 -1.65 0.02 4871.11 1.00\n", + " coefs[50] -0.85 0.58 -0.73 -1.68 -0.08 4482.28 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.38 0.17 679.51 1.00\n", + " coefs[52] -0.12 0.16 -0.12 -0.39 0.13 679.23 1.00\n", + " coefs[53] -0.14 0.13 -0.14 -0.35 0.08 691.74 1.00\n", + " coefs[54] -1.77 0.19 -1.76 -2.05 -1.45 4110.31 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 28 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.06 0.06 2.06 1.95 2.16 10589.43 1.00\n", + " coefs[1] -0.01 0.04 -0.01 -0.07 0.05 12371.89 1.00\n", + " coefs[2] -0.00 0.07 -0.00 -0.12 0.12 3405.65 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 8382.81 1.00\n", + " coefs[4] -0.10 0.03 -0.10 -0.16 -0.05 9570.33 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.22 -0.11 11024.17 1.00\n", + " coefs[6] 0.43 0.29 0.43 -0.05 0.92 2818.87 1.00\n", + " coefs[7] -0.81 0.18 -0.80 -1.10 -0.52 2976.70 1.00\n", + " coefs[8] 0.78 0.34 0.77 0.23 1.36 2826.32 1.00\n", + " coefs[9] 0.01 0.03 0.01 -0.04 0.06 11133.18 1.00\n", + " coefs[10] 0.46 0.65 0.46 -0.62 1.50 3195.00 1.00\n", + " coefs[11] -0.09 0.29 -0.09 -0.56 0.39 3191.49 1.00\n", + " coefs[12] 0.07 0.65 0.06 -0.99 1.13 3197.02 1.00\n", + " coefs[13] -0.99 0.63 -0.93 -2.01 0.02 5157.05 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.50 0.55 6122.62 1.00\n", + " coefs[15] -0.78 0.57 -0.67 -1.63 0.08 4822.13 1.00\n", + " coefs[16] -0.72 0.58 -0.60 -1.60 0.12 5059.19 1.00\n", + " coefs[17] -0.10 0.19 -0.09 -0.41 0.20 945.77 1.00\n", + " coefs[18] -0.56 0.66 -0.44 -1.56 0.41 5737.00 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.54 0.60 5933.46 1.00\n", + " coefs[20] -0.77 0.59 -0.66 -1.62 0.02 4978.14 1.00\n", + " coefs[21] 0.03 0.03 0.03 -0.02 0.07 1257.64 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.05 0.13 949.70 1.00\n", + " coefs[23] 0.08 0.24 0.09 -0.31 0.49 632.12 1.00\n", + " coefs[24] -0.02 0.16 -0.02 -0.28 0.24 651.47 1.00\n", + " coefs[25] -0.11 0.23 -0.10 -0.48 0.27 596.53 1.00\n", + " coefs[26] 0.04 0.18 0.04 -0.26 0.32 596.33 1.00\n", + " coefs[27] -0.73 0.62 -0.60 -1.63 0.14 5089.50 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.63 1.64 10446.30 1.00\n", + " coefs[29] 0.02 0.08 0.02 -0.11 0.14 685.01 1.00\n", + " coefs[30] 0.01 0.10 0.01 -0.16 0.17 939.40 1.00\n", + " coefs[31] -0.03 0.10 -0.02 -0.17 0.13 1350.65 1.00\n", + " coefs[32] 0.05 0.09 0.05 -0.09 0.20 622.62 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.05 0.38 604.88 1.00\n", + " coefs[34] 0.14 0.06 0.13 0.04 0.24 1503.83 1.00\n", + " coefs[35] 0.34 0.24 0.34 -0.06 0.72 589.40 1.00\n", + " coefs[36] 0.32 0.31 0.33 -0.18 0.83 582.35 1.00\n", + " coefs[37] 0.14 0.19 0.15 -0.17 0.46 591.16 1.00\n", + " coefs[38] -0.03 0.04 -0.02 -0.09 0.04 968.98 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.13 743.97 1.00\n", + " coefs[40] 0.02 0.05 0.02 -0.06 0.11 730.94 1.00\n", + " coefs[41] -0.80 0.58 -0.68 -1.68 -0.02 5204.80 1.00\n", + " coefs[42] 0.01 0.41 0.02 -0.67 0.66 584.43 1.00\n", + " coefs[43] -0.07 0.23 -0.07 -0.44 0.30 588.94 1.00\n", + " coefs[44] 0.17 0.21 0.17 -0.18 0.51 582.84 1.00\n", + " coefs[45] 0.17 0.29 0.18 -0.32 0.64 585.86 1.00\n", + " coefs[46] 0.23 0.27 0.23 -0.25 0.65 586.24 1.00\n", + " coefs[47] -0.12 0.09 -0.11 -0.26 0.02 1237.70 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.18 0.02 645.34 1.00\n", + " coefs[49] -0.01 0.03 -0.01 -0.05 0.03 1713.26 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.68 -0.07 4466.26 1.00\n", + " coefs[51] -0.12 0.17 -0.11 -0.38 0.16 596.53 1.00\n", + " coefs[52] -0.13 0.16 -0.13 -0.38 0.13 593.47 1.00\n", + " coefs[53] -0.20 0.13 -0.19 -0.41 0.00 611.55 1.00\n", + " coefs[54] -1.71 0.19 -1.70 -2.01 -1.41 4242.11 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 29 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.99 0.06 1.99 1.89 2.09 10281.72 1.00\n", + " coefs[1] -0.08 0.03 -0.08 -0.14 -0.02 11111.60 1.00\n", + " coefs[2] -0.11 0.08 -0.11 -0.24 0.02 3283.15 1.00\n", + " coefs[3] -0.29 0.03 -0.29 -0.34 -0.23 7208.35 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.14 -0.03 8500.50 1.00\n", + " coefs[5] -0.10 0.03 -0.10 -0.16 -0.05 11522.62 1.00\n", + " coefs[6] -0.03 0.33 -0.03 -0.58 0.52 2779.03 1.00\n", + " coefs[7] -0.49 0.20 -0.49 -0.83 -0.17 2911.34 1.00\n", + " coefs[8] 0.24 0.39 0.24 -0.44 0.85 2776.23 1.00\n", + " coefs[9] -0.07 0.03 -0.07 -0.11 -0.02 10734.26 1.00\n", + " coefs[10] 0.41 0.65 0.41 -0.67 1.45 3176.70 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.51 0.44 3179.52 1.00\n", + " coefs[12] 0.10 0.65 0.09 -0.97 1.16 3177.55 1.00\n", + " coefs[13] -1.00 0.64 -0.94 -2.00 0.02 4659.78 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.52 0.54 5589.40 1.00\n", + " coefs[15] -0.80 0.57 -0.70 -1.67 0.03 4418.25 1.00\n", + " coefs[16] -0.72 0.59 -0.60 -1.61 0.12 5208.44 1.00\n", + " coefs[17] -0.17 0.19 -0.16 -0.47 0.15 943.32 1.00\n", + " coefs[18] -0.57 0.66 -0.45 -1.58 0.39 5903.46 1.00\n", + " coefs[19] -0.47 0.69 -0.38 -1.55 0.61 5385.20 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.63 0.02 5011.82 1.00\n", + " coefs[21] 0.04 0.03 0.04 -0.01 0.09 1530.86 1.00\n", + " coefs[22] 0.09 0.05 0.09 0.00 0.17 733.93 1.00\n", + " coefs[23] 0.04 0.25 0.04 -0.37 0.44 635.37 1.00\n", + " coefs[24] -0.00 0.16 -0.01 -0.27 0.25 647.37 1.00\n", + " coefs[25] -0.14 0.23 -0.14 -0.51 0.26 626.98 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.28 0.32 634.01 1.00\n", + " coefs[27] -0.71 0.62 -0.59 -1.61 0.16 4950.71 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.58 1.65 10491.51 1.00\n", + " coefs[29] 0.08 0.08 0.08 -0.06 0.20 667.60 1.00\n", + " coefs[30] 0.04 0.09 0.04 -0.11 0.19 785.86 1.00\n", + " coefs[31] 0.04 0.07 0.05 -0.07 0.17 933.56 1.00\n", + " coefs[32] 0.07 0.09 0.07 -0.08 0.21 650.23 1.00\n", + " coefs[33] 0.20 0.13 0.20 -0.01 0.43 626.70 1.00\n", + " coefs[34] 0.92 0.59 0.80 0.11 1.77 4818.61 1.00\n", + " coefs[35] 0.31 0.24 0.30 -0.10 0.70 609.88 1.00\n", + " coefs[36] 0.31 0.31 0.31 -0.21 0.82 613.54 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.16 0.48 621.85 1.00\n", + " coefs[38] -0.02 0.05 -0.02 -0.11 0.06 1553.81 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.13 739.41 1.00\n", + " coefs[40] 0.10 0.05 0.10 0.01 0.19 890.30 1.00\n", + " coefs[41] -0.01 0.07 -0.00 -0.12 0.10 1456.92 1.00\n", + " coefs[42] 0.02 0.42 0.01 -0.67 0.69 613.09 1.00\n", + " coefs[43] -0.00 0.23 -0.01 -0.40 0.37 621.98 1.00\n", + " coefs[44] 0.15 0.22 0.15 -0.21 0.50 614.00 1.00\n", + " coefs[45] 0.07 0.30 0.07 -0.43 0.55 621.21 1.00\n", + " coefs[46] 0.19 0.28 0.19 -0.26 0.66 620.99 1.00\n", + " coefs[47] -0.14 0.09 -0.13 -0.28 0.00 1359.24 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.16 0.04 644.79 1.00\n", + " coefs[49] -0.82 0.60 -0.70 -1.68 -0.01 4763.74 1.00\n", + " coefs[50] -0.84 0.59 -0.72 -1.69 -0.06 4904.38 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.41 0.15 629.04 1.00\n", + " coefs[52] -0.08 0.16 -0.08 -0.34 0.18 630.19 1.00\n", + " coefs[53] -0.17 0.13 -0.17 -0.39 0.03 631.24 1.00\n", + " coefs[54] -1.64 0.19 -1.62 -1.93 -1.34 3831.89 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 30 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.90 0.06 1.90 1.80 2.00 9019.97 1.00\n", + " coefs[1] -0.04 0.03 -0.04 -0.10 0.02 10767.61 1.00\n", + " coefs[2] 0.02 0.07 0.02 -0.10 0.14 3295.95 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.32 -0.21 7375.50 1.00\n", + " coefs[4] -0.08 0.04 -0.08 -0.14 -0.02 8457.63 1.00\n", + " coefs[5] -0.14 0.03 -0.14 -0.19 -0.09 10886.68 1.00\n", + " coefs[6] 0.50 0.29 0.50 0.03 0.97 2663.40 1.00\n", + " coefs[7] -0.78 0.18 -0.78 -1.08 -0.50 2793.04 1.00\n", + " coefs[8] 0.88 0.34 0.88 0.30 1.41 2672.27 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.07 0.02 10751.40 1.00\n", + " coefs[10] 0.42 0.65 0.41 -0.61 1.51 3393.24 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.48 0.47 3406.03 1.00\n", + " coefs[12] 0.07 0.65 0.07 -0.99 1.13 3403.50 1.00\n", + " coefs[13] -1.01 0.63 -0.95 -2.05 -0.03 4984.38 1.00\n", + " coefs[14] -0.46 0.66 -0.36 -1.47 0.53 5921.21 1.00\n", + " coefs[15] -0.78 0.57 -0.67 -1.64 0.05 4545.78 1.00\n", + " coefs[16] -0.73 0.57 -0.61 -1.58 0.10 5089.11 1.00\n", + " coefs[17] -0.14 0.19 -0.14 -0.44 0.17 1126.41 1.00\n", + " coefs[18] -0.55 0.66 -0.44 -1.55 0.41 5515.73 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.57 0.56 5501.46 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.61 0.03 5123.43 1.00\n", + " coefs[21] -0.76 0.59 -0.64 -1.61 0.05 4825.12 1.00\n", + " coefs[22] 0.02 0.07 0.03 -0.10 0.14 1548.35 1.00\n", + " coefs[23] 0.05 0.25 0.06 -0.35 0.47 783.10 1.00\n", + " coefs[24] 0.08 0.16 0.09 -0.16 0.35 779.21 1.00\n", + " coefs[25] -0.10 0.23 -0.09 -0.49 0.28 756.44 1.00\n", + " coefs[26] -0.00 0.18 0.00 -0.29 0.31 755.12 1.00\n", + " coefs[27] -0.71 0.63 -0.58 -1.63 0.17 4745.70 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.54 1.73 9981.61 1.00\n", + " coefs[29] 0.05 0.08 0.05 -0.08 0.18 854.92 1.00\n", + " coefs[30] -0.09 0.13 -0.08 -0.28 0.13 1528.49 1.00\n", + " coefs[31] -0.76 0.58 -0.64 -1.61 0.07 4759.95 1.00\n", + " coefs[32] 0.13 0.09 0.13 -0.02 0.27 775.07 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.05 0.39 764.75 1.00\n", + " coefs[34] 0.91 0.60 0.79 0.08 1.76 4523.52 1.00\n", + " coefs[35] 0.37 0.24 0.37 -0.02 0.79 745.02 1.01\n", + " coefs[36] 0.35 0.31 0.35 -0.13 0.90 743.92 1.00\n", + " coefs[37] 0.19 0.20 0.20 -0.13 0.52 747.52 1.00\n", + " coefs[38] -0.03 0.04 -0.02 -0.09 0.04 1238.03 1.00\n", + " coefs[39] 0.01 0.08 0.02 -0.11 0.14 874.10 1.00\n", + " coefs[40] 0.03 0.05 0.03 -0.06 0.11 917.48 1.00\n", + " coefs[41] 0.01 0.05 0.01 -0.08 0.10 1128.55 1.00\n", + " coefs[42] 0.05 0.41 0.05 -0.64 0.74 740.73 1.00\n", + " coefs[43] -0.04 0.23 -0.04 -0.41 0.36 744.09 1.00\n", + " coefs[44] 0.18 0.21 0.18 -0.16 0.55 748.09 1.00\n", + " coefs[45] 0.15 0.30 0.16 -0.32 0.67 742.57 1.00\n", + " coefs[46] 0.21 0.28 0.22 -0.24 0.68 748.05 1.00\n", + " coefs[47] -0.07 0.07 -0.07 -0.19 0.05 1192.87 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.03 845.74 1.00\n", + " coefs[49] -0.79 0.60 -0.68 -1.65 0.01 5087.76 1.00\n", + " coefs[50] -0.85 0.59 -0.72 -1.69 -0.05 4519.70 1.00\n", + " coefs[51] -0.09 0.17 -0.08 -0.37 0.19 749.63 1.00\n", + " coefs[52] -0.09 0.16 -0.09 -0.38 0.15 752.57 1.00\n", + " coefs[53] -0.13 0.13 -0.13 -0.36 0.07 766.61 1.00\n", + " coefs[54] -1.70 0.19 -1.69 -2.00 -1.40 4002.84 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 31 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.00 0.06 2.00 1.89 2.10 10506.43 1.00\n", + " coefs[1] -0.02 0.04 -0.02 -0.08 0.04 11576.31 1.00\n", + " coefs[2] -0.09 0.07 -0.09 -0.20 0.03 3713.76 1.00\n", + " coefs[3] -0.36 0.03 -0.36 -0.42 -0.31 8843.21 1.00\n", + " coefs[4] -0.05 0.04 -0.05 -0.10 0.01 9500.03 1.00\n", + " coefs[5] -0.09 0.03 -0.09 -0.14 -0.04 10864.35 1.00\n", + " coefs[6] 0.33 0.27 0.32 -0.10 0.76 2852.16 1.00\n", + " coefs[7] -0.76 0.16 -0.75 -1.01 -0.48 2964.01 1.00\n", + " coefs[8] 0.69 0.31 0.68 0.19 1.20 2847.07 1.00\n", + " coefs[9] 0.00 0.03 0.00 -0.05 0.05 11519.52 1.00\n", + " coefs[10] 0.39 0.65 0.39 -0.70 1.46 3245.63 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.50 0.46 3261.90 1.00\n", + " coefs[12] 0.11 0.65 0.11 -0.92 1.23 3256.33 1.00\n", + " coefs[13] -1.01 0.63 -0.95 -2.04 -0.03 5056.56 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.49 0.54 6112.69 1.00\n", + " coefs[15] -0.78 0.57 -0.68 -1.60 0.08 4585.07 1.00\n", + " coefs[16] -0.72 0.58 -0.61 -1.61 0.11 5040.88 1.00\n", + " coefs[17] -0.26 0.23 -0.25 -0.62 0.12 1111.71 1.00\n", + " coefs[18] -0.54 0.66 -0.42 -1.56 0.42 5994.44 1.00\n", + " coefs[19] -0.45 0.67 -0.35 -1.57 0.57 5768.92 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.62 0.01 5062.81 1.00\n", + " coefs[21] -0.77 0.59 -0.65 -1.61 0.02 5297.12 1.00\n", + " coefs[22] 0.06 0.06 0.06 -0.04 0.16 832.32 1.00\n", + " coefs[23] 0.14 0.25 0.14 -0.27 0.54 553.00 1.01\n", + " coefs[24] 0.09 0.16 0.09 -0.18 0.33 554.02 1.01\n", + " coefs[25] -0.12 0.24 -0.12 -0.51 0.26 538.13 1.01\n", + " coefs[26] 0.03 0.18 0.03 -0.28 0.32 545.03 1.01\n", + " coefs[27] -0.68 0.63 -0.56 -1.63 0.18 4961.27 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.62 1.65 10677.03 1.00\n", + " coefs[29] 0.09 0.08 0.09 -0.04 0.22 593.65 1.01\n", + " coefs[30] 0.07 0.09 0.07 -0.08 0.21 650.49 1.01\n", + " coefs[31] -0.02 0.10 -0.02 -0.18 0.13 1189.70 1.00\n", + " coefs[32] 0.11 0.09 0.11 -0.04 0.25 571.81 1.01\n", + " coefs[33] 0.16 0.13 0.16 -0.06 0.38 540.11 1.01\n", + " coefs[34] 0.15 0.07 0.14 0.04 0.25 1289.56 1.00\n", + " coefs[35] 0.35 0.25 0.35 -0.06 0.74 528.74 1.01\n", + " coefs[36] 0.31 0.31 0.31 -0.22 0.81 527.93 1.01\n", + " coefs[37] 0.15 0.20 0.15 -0.18 0.47 535.58 1.01\n", + " coefs[38] -0.82 0.58 -0.69 -1.66 -0.03 5038.93 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 632.38 1.01\n", + " coefs[40] 0.07 0.05 0.07 -0.01 0.15 644.97 1.01\n", + " coefs[41] -0.79 0.59 -0.67 -1.66 0.03 4898.98 1.00\n", + " coefs[42] 0.04 0.42 0.05 -0.68 0.69 530.13 1.01\n", + " coefs[43] 0.00 0.23 0.01 -0.38 0.38 535.88 1.01\n", + " coefs[44] 0.18 0.22 0.18 -0.19 0.52 531.17 1.01\n", + " coefs[45] 0.11 0.30 0.11 -0.39 0.60 527.06 1.01\n", + " coefs[46] 0.26 0.28 0.26 -0.21 0.71 527.83 1.01\n", + " coefs[47] -0.04 0.07 -0.04 -0.15 0.07 742.72 1.01\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.03 592.25 1.01\n", + " coefs[49] -0.80 0.59 -0.68 -1.65 0.01 4900.71 1.00\n", + " coefs[50] -0.87 0.58 -0.75 -1.71 -0.09 4640.27 1.00\n", + " coefs[51] -0.11 0.17 -0.11 -0.40 0.16 539.58 1.01\n", + " coefs[52] -0.10 0.16 -0.10 -0.38 0.15 540.36 1.01\n", + " coefs[53] -0.17 0.13 -0.17 -0.38 0.04 553.93 1.01\n", + " coefs[54] -1.79 0.19 -1.77 -2.09 -1.49 4183.29 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 32 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.04 0.06 2.04 1.93 2.14 10125.47 1.00\n", + " coefs[1] -0.03 0.04 -0.03 -0.09 0.03 11574.62 1.00\n", + " coefs[2] -0.05 0.08 -0.05 -0.17 0.08 3281.43 1.00\n", + " coefs[3] -0.35 0.03 -0.35 -0.41 -0.29 7593.31 1.00\n", + " coefs[4] -0.07 0.04 -0.07 -0.13 -0.01 8084.89 1.00\n", + " coefs[5] -0.13 0.03 -0.13 -0.19 -0.08 10905.67 1.00\n", + " coefs[6] -0.31 0.31 -0.30 -0.82 0.18 2706.12 1.00\n", + " coefs[7] -0.31 0.19 -0.31 -0.64 -0.02 2873.98 1.00\n", + " coefs[8] -0.05 0.36 -0.04 -0.64 0.54 2711.99 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.08 0.01 11662.00 1.00\n", + " coefs[10] 0.36 0.65 0.35 -0.70 1.45 3104.82 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.55 0.40 3113.43 1.00\n", + " coefs[12] 0.13 0.65 0.11 -0.91 1.23 3110.90 1.00\n", + " coefs[13] -0.92 0.65 -0.85 -1.98 0.10 4557.60 1.00\n", + " coefs[14] -0.48 0.67 -0.37 -1.53 0.52 5472.45 1.00\n", + " coefs[15] -0.77 0.57 -0.67 -1.66 0.05 4497.69 1.00\n", + " coefs[16] -0.75 0.58 -0.64 -1.60 0.10 5133.58 1.00\n", + " coefs[17] -0.19 0.19 -0.18 -0.49 0.11 650.98 1.00\n", + " coefs[18] -0.56 0.66 -0.45 -1.58 0.38 5533.20 1.00\n", + " coefs[19] -0.48 0.68 -0.39 -1.60 0.56 5797.66 1.00\n", + " coefs[20] -0.77 0.58 -0.65 -1.62 0.02 5225.53 1.00\n", + " coefs[21] 0.85 0.59 0.73 0.05 1.69 4743.33 1.00\n", + " coefs[22] 0.08 0.06 0.08 -0.01 0.17 616.41 1.00\n", + " coefs[23] -0.12 0.26 -0.12 -0.55 0.27 509.35 1.00\n", + " coefs[24] 0.01 0.16 0.01 -0.26 0.26 505.07 1.00\n", + " coefs[25] -0.06 0.23 -0.06 -0.46 0.31 470.64 1.00\n", + " coefs[26] -0.01 0.18 -0.01 -0.32 0.28 466.27 1.00\n", + " coefs[27] -0.73 0.61 -0.61 -1.62 0.11 4885.26 1.00\n", + " coefs[28] 0.02 1.00 0.03 -1.53 1.77 10588.75 1.00\n", + " coefs[29] 0.06 0.08 0.06 -0.07 0.18 499.21 1.00\n", + " coefs[30] 0.00 0.10 0.00 -0.16 0.17 651.77 1.00\n", + " coefs[31] -0.02 0.09 -0.01 -0.17 0.13 974.28 1.00\n", + " coefs[32] 0.13 0.09 0.13 -0.02 0.28 487.05 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.06 0.37 456.31 1.00\n", + " coefs[34] 0.91 0.59 0.79 0.10 1.78 4689.58 1.00\n", + " coefs[35] 0.36 0.24 0.36 -0.03 0.77 458.75 1.00\n", + " coefs[36] 0.36 0.31 0.36 -0.15 0.86 453.29 1.00\n", + " coefs[37] 0.13 0.20 0.13 -0.18 0.46 457.34 1.00\n", + " coefs[38] 0.00 0.05 0.01 -0.08 0.09 1270.06 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.10 0.15 528.49 1.00\n", + " coefs[40] 0.06 0.05 0.06 -0.02 0.14 533.76 1.00\n", + " coefs[41] -0.02 0.07 -0.02 -0.13 0.09 1041.39 1.00\n", + " coefs[42] 0.09 0.42 0.08 -0.61 0.74 455.70 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.35 0.40 460.85 1.00\n", + " coefs[44] 0.14 0.22 0.15 -0.22 0.49 447.48 1.00\n", + " coefs[45] 0.10 0.30 0.10 -0.39 0.58 452.15 1.00\n", + " coefs[46] 0.17 0.28 0.17 -0.28 0.63 450.76 1.00\n", + " coefs[47] -0.14 0.09 -0.13 -0.28 0.00 959.11 1.00\n", + " coefs[48] -0.04 0.06 -0.04 -0.14 0.07 493.15 1.00\n", + " coefs[49] -0.81 0.59 -0.69 -1.65 -0.01 4845.43 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.07 4590.09 1.00\n", + " coefs[51] -0.14 0.17 -0.15 -0.43 0.12 466.09 1.00\n", + " coefs[52] -0.11 0.16 -0.11 -0.37 0.15 465.86 1.00\n", + " coefs[53] -0.13 0.13 -0.13 -0.34 0.08 473.04 1.00\n", + " coefs[54] -1.67 0.19 -1.66 -1.97 -1.36 4072.51 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 33 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.91 0.06 1.91 1.81 2.01 10511.47 1.00\n", + " coefs[1] -0.06 0.03 -0.06 -0.12 -0.01 12220.55 1.00\n", + " coefs[2] -0.07 0.07 -0.07 -0.19 0.04 3687.76 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.35 -0.24 7665.75 1.00\n", + " coefs[4] -0.06 0.03 -0.06 -0.11 -0.00 9077.63 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.18 -0.07 11684.74 1.00\n", + " coefs[6] 0.26 0.29 0.25 -0.20 0.75 2923.46 1.00\n", + " coefs[7] -0.61 0.18 -0.61 -0.89 -0.31 3050.64 1.00\n", + " coefs[8] 0.61 0.34 0.60 0.07 1.20 2919.52 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.08 0.02 11351.45 1.00\n", + " coefs[10] 0.39 0.65 0.38 -0.73 1.41 3228.80 1.00\n", + " coefs[11] -0.04 0.29 -0.04 -0.54 0.41 3241.45 1.00\n", + " coefs[12] 0.11 0.64 0.11 -1.00 1.13 3238.02 1.00\n", + " coefs[13] -0.97 0.64 -0.91 -1.98 0.07 5249.99 1.00\n", + " coefs[14] -0.47 0.66 -0.37 -1.48 0.54 6066.89 1.00\n", + " coefs[15] -0.77 0.56 -0.67 -1.64 0.04 4986.07 1.00\n", + " coefs[16] -0.73 0.58 -0.62 -1.61 0.09 5444.07 1.00\n", + " coefs[17] -0.14 0.19 -0.14 -0.44 0.17 776.12 1.00\n", + " coefs[18] -0.53 0.67 -0.42 -1.55 0.44 6209.21 1.00\n", + " coefs[19] -0.47 0.67 -0.39 -1.57 0.55 6230.36 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.62 0.02 5067.27 1.00\n", + " coefs[21] -0.76 0.58 -0.65 -1.59 0.05 5458.41 1.00\n", + " coefs[22] -0.00 0.07 0.00 -0.12 0.12 1121.18 1.00\n", + " coefs[23] 0.03 0.25 0.04 -0.37 0.44 541.73 1.00\n", + " coefs[24] 0.02 0.16 0.02 -0.24 0.27 539.71 1.00\n", + " coefs[25] -0.05 0.23 -0.06 -0.43 0.33 515.63 1.00\n", + " coefs[26] 0.05 0.18 0.05 -0.24 0.35 517.55 1.00\n", + " coefs[27] -0.72 0.61 -0.59 -1.60 0.15 5250.27 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.58 1.68 11408.51 1.00\n", + " coefs[29] 0.10 0.08 0.10 -0.03 0.22 537.16 1.00\n", + " coefs[30] 0.03 0.09 0.04 -0.11 0.18 614.05 1.00\n", + " coefs[31] -0.03 0.10 -0.02 -0.18 0.13 1169.25 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.08 0.21 546.97 1.00\n", + " coefs[33] 0.17 0.13 0.17 -0.04 0.39 519.49 1.00\n", + " coefs[34] 0.92 0.59 0.80 0.11 1.76 4777.97 1.00\n", + " coefs[35] 0.37 0.25 0.37 -0.01 0.78 501.98 1.00\n", + " coefs[36] 0.36 0.31 0.36 -0.17 0.85 498.97 1.00\n", + " coefs[37] 0.20 0.20 0.20 -0.13 0.51 509.05 1.00\n", + " coefs[38] -0.03 0.04 -0.03 -0.09 0.04 846.24 1.00\n", + " coefs[39] -0.02 0.08 -0.02 -0.14 0.12 639.66 1.00\n", + " coefs[40] 0.02 0.05 0.02 -0.06 0.10 608.38 1.00\n", + " coefs[41] -0.80 0.59 -0.68 -1.66 0.01 4980.95 1.00\n", + " coefs[42] 0.09 0.42 0.09 -0.57 0.79 505.92 1.00\n", + " coefs[43] 0.01 0.23 0.00 -0.37 0.39 510.07 1.00\n", + " coefs[44] 0.17 0.22 0.17 -0.17 0.53 501.53 1.00\n", + " coefs[45] 0.08 0.30 0.08 -0.42 0.56 499.88 1.00\n", + " coefs[46] 0.19 0.28 0.19 -0.29 0.62 505.21 1.00\n", + " coefs[47] -0.86 0.57 -0.74 -1.70 -0.06 4649.67 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.16 0.04 529.40 1.00\n", + " coefs[49] 0.04 1.00 0.02 -1.59 1.66 12157.87 1.00\n", + " coefs[50] -0.86 0.58 -0.73 -1.71 -0.08 4732.51 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.40 0.16 504.47 1.00\n", + " coefs[52] -0.08 0.16 -0.08 -0.33 0.19 511.03 1.00\n", + " coefs[53] -0.14 0.13 -0.14 -0.35 0.07 515.84 1.00\n", + " coefs[54] -1.71 0.19 -1.70 -2.01 -1.40 4097.08 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 34 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.05 0.06 2.05 1.95 2.16 10000.30 1.00\n", + " coefs[1] -0.02 0.04 -0.01 -0.07 0.05 10626.97 1.00\n", + " coefs[2] -0.14 0.07 -0.14 -0.26 -0.02 3772.39 1.00\n", + " coefs[3] -0.36 0.03 -0.36 -0.41 -0.30 7420.44 1.00\n", + " coefs[4] -0.05 0.03 -0.05 -0.11 0.01 8047.09 1.00\n", + " coefs[5] -0.19 0.03 -0.19 -0.24 -0.13 10672.51 1.00\n", + " coefs[6] -0.17 0.28 -0.17 -0.63 0.30 3074.31 1.00\n", + " coefs[7] -0.40 0.17 -0.40 -0.69 -0.13 3264.91 1.00\n", + " coefs[8] 0.07 0.33 0.07 -0.46 0.63 3067.33 1.00\n", + " coefs[9] 0.00 0.03 0.00 -0.05 0.05 11678.49 1.00\n", + " coefs[10] 0.45 0.65 0.44 -0.61 1.54 3198.32 1.00\n", + " coefs[11] -0.06 0.29 -0.06 -0.57 0.39 3220.36 1.00\n", + " coefs[12] 0.08 0.65 0.08 -1.01 1.14 3215.87 1.00\n", + " coefs[13] -1.07 0.62 -1.01 -2.06 -0.07 4551.88 1.00\n", + " coefs[14] -0.45 0.67 -0.35 -1.51 0.54 6254.49 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.63 0.06 4416.51 1.00\n", + " coefs[16] -0.71 0.59 -0.60 -1.60 0.13 4831.45 1.00\n", + " coefs[17] 0.01 0.17 0.01 -0.26 0.28 591.23 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.55 0.42 6005.73 1.00\n", + " coefs[19] -0.45 0.69 -0.36 -1.53 0.63 5509.96 1.00\n", + " coefs[20] -0.77 0.59 -0.66 -1.61 0.02 5084.54 1.00\n", + " coefs[21] 0.05 0.03 0.04 -0.01 0.10 1382.99 1.00\n", + " coefs[22] 0.10 0.05 0.10 0.02 0.19 596.70 1.00\n", + " coefs[23] 0.12 0.25 0.12 -0.30 0.51 508.75 1.00\n", + " coefs[24] 0.03 0.16 0.03 -0.23 0.28 514.96 1.00\n", + " coefs[25] -0.10 0.24 -0.11 -0.49 0.27 492.31 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.32 498.67 1.00\n", + " coefs[27] -0.71 0.61 -0.60 -1.61 0.13 4956.76 1.00\n", + " coefs[28] 0.01 0.99 0.01 -1.54 1.69 11010.12 1.00\n", + " coefs[29] 0.05 0.08 0.05 -0.08 0.18 556.65 1.00\n", + " coefs[30] 0.09 0.09 0.10 -0.05 0.24 614.00 1.00\n", + " coefs[31] 0.01 0.08 0.01 -0.12 0.14 795.57 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.08 0.21 512.23 1.00\n", + " coefs[33] 0.13 0.13 0.13 -0.09 0.35 502.30 1.00\n", + " coefs[34] 0.91 0.59 0.80 0.12 1.77 4902.15 1.00\n", + " coefs[35] 0.30 0.25 0.29 -0.11 0.70 491.25 1.00\n", + " coefs[36] 0.32 0.32 0.32 -0.20 0.82 483.51 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.17 0.47 490.31 1.00\n", + " coefs[38] -0.03 0.04 -0.03 -0.09 0.03 803.24 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.10 0.15 590.41 1.00\n", + " coefs[40] 0.06 0.05 0.06 -0.02 0.14 588.34 1.00\n", + " coefs[41] 0.01 0.07 0.01 -0.10 0.12 1292.79 1.00\n", + " coefs[42] -0.02 0.42 -0.02 -0.71 0.65 487.70 1.00\n", + " coefs[43] -0.03 0.23 -0.04 -0.42 0.34 497.84 1.00\n", + " coefs[44] 0.15 0.22 0.15 -0.20 0.51 490.22 1.00\n", + " coefs[45] 0.10 0.30 0.10 -0.39 0.60 486.10 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.27 0.64 490.41 1.00\n", + " coefs[47] -0.86 0.56 -0.75 -1.70 -0.08 4880.99 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.16 0.05 543.91 1.00\n", + " coefs[49] -0.81 0.60 -0.70 -1.66 0.01 4856.94 1.00\n", + " coefs[50] -0.84 0.59 -0.72 -1.70 -0.06 4479.77 1.00\n", + " coefs[51] -0.15 0.17 -0.15 -0.43 0.12 499.77 1.00\n", + " coefs[52] -0.12 0.16 -0.13 -0.38 0.14 497.92 1.00\n", + " coefs[53] -0.20 0.13 -0.20 -0.41 0.02 497.46 1.00\n", + " coefs[54] -1.64 0.18 -1.62 -1.92 -1.33 3835.59 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 35 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.97 0.06 1.97 1.87 2.07 9742.14 1.00\n", + " coefs[1] -0.06 0.04 -0.06 -0.12 -0.00 10941.17 1.00\n", + " coefs[2] -0.15 0.07 -0.15 -0.27 -0.04 3797.76 1.00\n", + " coefs[3] -0.37 0.03 -0.37 -0.42 -0.31 7795.70 1.00\n", + " coefs[4] -0.03 0.03 -0.03 -0.09 0.03 8579.09 1.00\n", + " coefs[5] -0.18 0.03 -0.18 -0.24 -0.13 10418.88 1.00\n", + " coefs[6] 0.05 0.28 0.05 -0.39 0.52 2999.81 1.00\n", + " coefs[7] -0.57 0.17 -0.57 -0.85 -0.29 3099.11 1.00\n", + " coefs[8] 0.46 0.33 0.46 -0.08 0.99 3002.13 1.00\n", + " coefs[9] -0.08 0.03 -0.08 -0.13 -0.03 10895.90 1.00\n", + " coefs[10] 0.47 0.64 0.48 -0.58 1.53 3303.11 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.49 0.44 3312.49 1.00\n", + " coefs[12] 0.07 0.64 0.07 -1.00 1.10 3315.68 1.00\n", + " coefs[13] -1.07 0.61 -1.00 -2.06 -0.09 4977.49 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.45 0.58 5820.49 1.00\n", + " coefs[15] -0.78 0.57 -0.67 -1.65 0.06 4544.59 1.00\n", + " coefs[16] -0.72 0.58 -0.60 -1.59 0.10 4799.76 1.00\n", + " coefs[17] 0.03 0.16 0.04 -0.24 0.30 739.13 1.01\n", + " coefs[18] -0.53 0.66 -0.41 -1.58 0.40 6011.13 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.59 0.56 5503.24 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.63 0.02 4644.05 1.00\n", + " coefs[21] -0.78 0.58 -0.66 -1.63 0.01 4745.88 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.01 0.17 873.25 1.01\n", + " coefs[23] 0.09 0.25 0.09 -0.31 0.51 688.44 1.01\n", + " coefs[24] 0.03 0.16 0.03 -0.22 0.30 737.69 1.01\n", + " coefs[25] -0.05 0.23 -0.04 -0.42 0.36 662.47 1.01\n", + " coefs[26] 0.05 0.18 0.06 -0.24 0.36 675.97 1.01\n", + " coefs[27] -0.71 0.61 -0.59 -1.61 0.11 4795.73 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.61 1.69 10020.48 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.06 0.20 720.56 1.01\n", + " coefs[30] 0.05 0.09 0.05 -0.10 0.20 833.72 1.01\n", + " coefs[31] 0.02 0.08 0.02 -0.11 0.15 1020.81 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.08 0.21 684.55 1.01\n", + " coefs[33] 0.14 0.13 0.14 -0.07 0.36 677.90 1.01\n", + " coefs[34] 0.13 0.06 0.12 0.03 0.23 1738.80 1.00\n", + " coefs[35] 0.28 0.24 0.29 -0.13 0.67 646.54 1.01\n", + " coefs[36] 0.28 0.31 0.29 -0.23 0.81 657.65 1.01\n", + " coefs[37] 0.21 0.20 0.21 -0.11 0.54 652.29 1.01\n", + " coefs[38] 0.01 0.03 0.01 -0.05 0.07 862.31 1.01\n", + " coefs[39] -0.02 0.08 -0.02 -0.15 0.12 869.75 1.01\n", + " coefs[40] 0.05 0.05 0.05 -0.04 0.13 755.29 1.01\n", + " coefs[41] 0.03 0.05 0.03 -0.06 0.12 1142.51 1.00\n", + " coefs[42] -0.00 0.42 0.00 -0.67 0.72 652.36 1.01\n", + " coefs[43] -0.02 0.23 -0.02 -0.41 0.36 663.81 1.01\n", + " coefs[44] 0.14 0.22 0.14 -0.22 0.50 651.86 1.01\n", + " coefs[45] 0.07 0.30 0.07 -0.44 0.56 654.79 1.01\n", + " coefs[46] 0.19 0.28 0.20 -0.25 0.68 656.43 1.01\n", + " coefs[47] -0.07 0.07 -0.07 -0.19 0.05 993.49 1.00\n", + " coefs[48] -0.11 0.06 -0.11 -0.22 -0.01 734.51 1.01\n", + " coefs[49] -0.79 0.60 -0.67 -1.64 0.03 4950.47 1.00\n", + " coefs[50] -0.87 0.58 -0.74 -1.69 -0.08 4526.96 1.00\n", + " coefs[51] -0.13 0.17 -0.13 -0.41 0.15 668.74 1.01\n", + " coefs[52] -0.12 0.16 -0.11 -0.38 0.15 669.40 1.01\n", + " coefs[53] -0.20 0.13 -0.20 -0.41 0.02 676.97 1.01\n", + " coefs[54] -1.65 0.18 -1.64 -1.93 -1.34 4116.09 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 36 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.96 0.06 1.96 1.86 2.06 9372.47 1.00\n", + " coefs[1] -0.05 0.03 -0.05 -0.11 0.00 10822.01 1.00\n", + " coefs[2] -0.17 0.06 -0.17 -0.27 -0.07 3864.52 1.00\n", + " coefs[3] -0.33 0.03 -0.33 -0.39 -0.28 7410.99 1.00\n", + " coefs[4] -0.05 0.03 -0.05 -0.10 0.01 8105.01 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.17 -0.06 10915.47 1.00\n", + " coefs[6] -0.03 0.22 -0.03 -0.40 0.33 2760.58 1.00\n", + " coefs[7] -0.48 0.13 -0.48 -0.69 -0.26 3090.19 1.00\n", + " coefs[8] 0.28 0.25 0.27 -0.12 0.72 2820.91 1.00\n", + " coefs[9] -0.02 0.03 -0.02 -0.07 0.03 11238.51 1.00\n", + " coefs[10] 0.40 0.65 0.40 -0.71 1.44 3232.80 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.50 0.46 3242.27 1.00\n", + " coefs[12] 0.12 0.65 0.11 -0.97 1.18 3245.95 1.00\n", + " coefs[13] -1.05 0.63 -1.00 -2.09 -0.07 5192.61 1.00\n", + " coefs[14] -0.44 0.68 -0.33 -1.49 0.58 5836.55 1.00\n", + " coefs[15] -0.79 0.57 -0.69 -1.65 0.04 4569.53 1.00\n", + " coefs[16] -0.73 0.59 -0.62 -1.65 0.09 5300.47 1.00\n", + " coefs[17] -0.02 0.17 -0.02 -0.29 0.28 807.36 1.01\n", + " coefs[18] -0.56 0.66 -0.44 -1.59 0.38 5962.50 1.00\n", + " coefs[19] -0.47 0.67 -0.38 -1.57 0.57 5232.08 1.00\n", + " coefs[20] 0.02 0.98 0.03 -1.59 1.63 12107.78 1.00\n", + " coefs[21] -0.77 0.60 -0.64 -1.63 0.05 4698.56 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.00 0.17 756.90 1.01\n", + " coefs[23] 0.11 0.26 0.11 -0.32 0.52 701.29 1.01\n", + " coefs[24] 0.06 0.16 0.06 -0.21 0.31 635.73 1.01\n", + " coefs[25] -0.06 0.24 -0.06 -0.48 0.31 644.03 1.01\n", + " coefs[26] -0.01 0.19 -0.01 -0.31 0.30 665.28 1.01\n", + " coefs[27] -0.72 0.61 -0.61 -1.59 0.12 5029.47 1.00\n", + " coefs[28] 0.03 1.00 0.02 -1.63 1.65 10008.37 1.00\n", + " coefs[29] 0.01 0.08 0.01 -0.12 0.15 712.05 1.01\n", + " coefs[30] 0.03 0.09 0.03 -0.12 0.18 801.77 1.01\n", + " coefs[31] -0.05 0.10 -0.05 -0.20 0.11 1444.46 1.01\n", + " coefs[32] 0.13 0.09 0.13 -0.03 0.27 721.44 1.01\n", + " coefs[33] 0.11 0.14 0.12 -0.12 0.32 656.94 1.01\n", + " coefs[34] 0.91 0.60 0.78 0.09 1.79 4477.44 1.00\n", + " coefs[35] 0.29 0.25 0.29 -0.14 0.68 652.55 1.01\n", + " coefs[36] 0.30 0.32 0.30 -0.27 0.78 645.31 1.01\n", + " coefs[37] 0.12 0.20 0.13 -0.22 0.44 649.06 1.01\n", + " coefs[38] 0.00 0.03 0.00 -0.06 0.06 814.07 1.01\n", + " coefs[39] -0.01 0.08 -0.01 -0.15 0.13 885.40 1.01\n", + " coefs[40] 0.03 0.05 0.03 -0.06 0.11 786.68 1.01\n", + " coefs[41] 0.01 0.06 0.01 -0.08 0.10 1079.71 1.01\n", + " coefs[42] 0.03 0.43 0.03 -0.71 0.69 657.11 1.01\n", + " coefs[43] -0.04 0.24 -0.04 -0.45 0.34 660.02 1.01\n", + " coefs[44] 0.12 0.22 0.12 -0.26 0.46 643.07 1.01\n", + " coefs[45] 0.07 0.31 0.08 -0.44 0.56 656.44 1.01\n", + " coefs[46] 0.22 0.29 0.22 -0.26 0.68 652.23 1.01\n", + " coefs[47] -0.05 0.07 -0.05 -0.17 0.07 1065.65 1.01\n", + " coefs[48] -0.10 0.06 -0.09 -0.20 0.01 689.46 1.01\n", + " coefs[49] -0.81 0.60 -0.69 -1.67 -0.00 4683.36 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.08 4867.74 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.41 0.16 682.73 1.01\n", + " coefs[52] -0.14 0.17 -0.14 -0.43 0.11 670.78 1.01\n", + " coefs[53] -0.17 0.13 -0.17 -0.39 0.05 678.49 1.01\n", + " coefs[54] -1.63 0.18 -1.61 -1.92 -1.32 3991.08 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 37 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.02 0.06 2.02 1.92 2.12 10190.29 1.00\n", + " coefs[1] 0.03 0.04 0.03 -0.03 0.09 11618.83 1.00\n", + " coefs[2] -0.08 0.07 -0.08 -0.19 0.04 3901.96 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.35 -0.24 8168.46 1.00\n", + " coefs[4] -0.06 0.04 -0.06 -0.12 -0.00 9352.54 1.00\n", + " coefs[5] -0.17 0.03 -0.17 -0.23 -0.12 11575.01 1.00\n", + " coefs[6] 0.44 0.27 0.42 -0.00 0.87 3054.71 1.00\n", + " coefs[7] -0.85 0.16 -0.84 -1.11 -0.58 3227.23 1.00\n", + " coefs[8] 0.81 0.31 0.80 0.29 1.31 3054.83 1.00\n", + " coefs[9] 0.04 0.03 0.04 -0.01 0.09 11497.32 1.00\n", + " coefs[10] 0.43 0.65 0.42 -0.66 1.50 3059.84 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.57 0.39 3069.11 1.00\n", + " coefs[12] 0.05 0.65 0.04 -1.03 1.12 3065.23 1.00\n", + " coefs[13] -0.95 0.64 -0.89 -1.95 0.10 5155.64 1.00\n", + " coefs[14] -0.45 0.67 -0.34 -1.46 0.60 6013.74 1.00\n", + " coefs[15] -0.76 0.58 -0.65 -1.62 0.10 4813.79 1.00\n", + " coefs[16] -0.70 0.59 -0.58 -1.57 0.16 5147.70 1.00\n", + " coefs[17] -0.85 0.55 -0.76 -1.68 -0.01 4545.60 1.00\n", + " coefs[18] -0.56 0.66 -0.43 -1.54 0.44 6040.82 1.00\n", + " coefs[19] -0.47 0.67 -0.37 -1.57 0.55 6180.31 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.60 0.04 5180.47 1.00\n", + " coefs[21] -0.78 0.59 -0.66 -1.62 0.03 5257.24 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.06 0.13 996.95 1.00\n", + " coefs[23] 0.05 0.24 0.05 -0.38 0.42 686.43 1.00\n", + " coefs[24] 0.14 0.15 0.14 -0.12 0.38 671.57 1.00\n", + " coefs[25] -0.12 0.23 -0.11 -0.49 0.26 670.77 1.00\n", + " coefs[26] 0.11 0.18 0.12 -0.18 0.39 661.76 1.00\n", + " coefs[27] -0.70 0.62 -0.59 -1.60 0.17 5031.16 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.63 1.68 10507.75 1.00\n", + " coefs[29] 0.03 0.08 0.03 -0.10 0.16 760.67 1.00\n", + " coefs[30] 0.10 0.09 0.10 -0.05 0.24 811.00 1.00\n", + " coefs[31] -0.76 0.59 -0.63 -1.60 0.08 4563.06 1.00\n", + " coefs[32] 0.11 0.09 0.11 -0.04 0.25 686.24 1.00\n", + " coefs[33] 0.18 0.13 0.18 -0.03 0.39 665.40 1.00\n", + " coefs[34] 0.93 0.59 0.81 0.13 1.80 4500.21 1.00\n", + " coefs[35] 0.39 0.24 0.40 -0.02 0.76 645.92 1.00\n", + " coefs[36] 0.43 0.31 0.43 -0.11 0.90 646.61 1.00\n", + " coefs[37] 0.20 0.19 0.20 -0.13 0.50 649.74 1.00\n", + " coefs[38] 0.04 0.04 0.04 -0.02 0.10 945.88 1.00\n", + " coefs[39] 0.04 0.08 0.04 -0.09 0.16 786.82 1.00\n", + " coefs[40] 0.12 0.05 0.12 0.03 0.20 849.33 1.00\n", + " coefs[41] -0.78 0.59 -0.65 -1.66 0.03 5036.10 1.00\n", + " coefs[42] 0.02 0.41 0.03 -0.70 0.64 646.14 1.00\n", + " coefs[43] 0.01 0.23 0.01 -0.39 0.36 650.33 1.00\n", + " coefs[44] 0.23 0.21 0.23 -0.16 0.53 641.32 1.00\n", + " coefs[45] 0.16 0.29 0.17 -0.35 0.62 645.40 1.00\n", + " coefs[46] 0.28 0.27 0.28 -0.20 0.70 644.22 1.00\n", + " coefs[47] -0.04 0.07 -0.04 -0.16 0.07 992.72 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.17 0.03 734.82 1.00\n", + " coefs[49] -0.01 0.03 -0.01 -0.05 0.04 1801.99 1.00\n", + " coefs[50] -0.85 0.59 -0.74 -1.69 -0.05 4857.12 1.00\n", + " coefs[51] -0.08 0.17 -0.08 -0.38 0.17 656.17 1.00\n", + " coefs[52] -0.06 0.16 -0.06 -0.34 0.17 660.34 1.00\n", + " coefs[53] -0.15 0.13 -0.15 -0.36 0.05 673.66 1.00\n", + " coefs[54] -1.86 0.20 -1.84 -2.17 -1.51 4098.42 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 38 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.97 0.06 1.96 1.87 2.07 10096.48 1.00\n", + " coefs[1] -0.06 0.03 -0.06 -0.12 -0.01 12244.36 1.00\n", + " coefs[2] -0.04 0.06 -0.04 -0.15 0.07 4159.98 1.00\n", + " coefs[3] -0.33 0.03 -0.33 -0.38 -0.27 7749.88 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.14 -0.02 8882.58 1.00\n", + " coefs[5] -0.11 0.03 -0.11 -0.16 -0.06 11482.48 1.00\n", + " coefs[6] 0.07 0.24 0.06 -0.32 0.47 3120.93 1.00\n", + " coefs[7] -0.51 0.15 -0.51 -0.75 -0.26 3283.63 1.00\n", + " coefs[8] 0.42 0.28 0.42 -0.05 0.87 3098.35 1.00\n", + " coefs[9] -0.06 0.03 -0.06 -0.11 -0.01 11951.39 1.00\n", + " coefs[10] 0.45 0.65 0.44 -0.62 1.53 3260.72 1.00\n", + " coefs[11] -0.04 0.29 -0.05 -0.56 0.40 3274.76 1.00\n", + " coefs[12] 0.06 0.65 0.05 -1.00 1.15 3282.00 1.00\n", + " coefs[13] -1.05 0.62 -1.00 -2.12 -0.12 5389.23 1.00\n", + " coefs[14] -0.46 0.68 -0.35 -1.52 0.56 6658.42 1.00\n", + " coefs[15] -0.79 0.56 -0.69 -1.65 0.05 5438.21 1.00\n", + " coefs[16] -0.70 0.59 -0.59 -1.60 0.15 5338.59 1.00\n", + " coefs[17] -0.27 0.23 -0.25 -0.63 0.11 1265.14 1.00\n", + " coefs[18] -0.57 0.66 -0.46 -1.59 0.38 5781.56 1.00\n", + " coefs[19] -0.46 0.68 -0.36 -1.53 0.61 6188.61 1.00\n", + " coefs[20] -0.76 0.59 -0.64 -1.62 0.04 5486.01 1.00\n", + " coefs[21] 0.03 0.04 0.03 -0.03 0.09 1964.40 1.00\n", + " coefs[22] 0.01 0.07 0.01 -0.11 0.13 1235.89 1.00\n", + " coefs[23] 0.10 0.25 0.10 -0.32 0.49 591.69 1.00\n", + " coefs[24] 0.08 0.16 0.08 -0.19 0.32 595.98 1.00\n", + " coefs[25] -0.08 0.23 -0.08 -0.47 0.30 576.69 1.00\n", + " coefs[26] 0.03 0.18 0.03 -0.26 0.33 584.84 1.00\n", + " coefs[27] -0.71 0.61 -0.59 -1.60 0.14 5240.14 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.59 1.68 11781.73 1.00\n", + " coefs[29] 0.06 0.08 0.07 -0.06 0.19 634.64 1.00\n", + " coefs[30] 0.04 0.09 0.04 -0.12 0.18 665.09 1.00\n", + " coefs[31] -0.76 0.58 -0.64 -1.62 0.05 4939.89 1.00\n", + " coefs[32] 0.04 0.09 0.04 -0.10 0.19 595.34 1.00\n", + " coefs[33] 0.15 0.13 0.15 -0.05 0.38 588.17 1.00\n", + " coefs[34] 0.91 0.59 0.79 0.10 1.77 4449.06 1.00\n", + " coefs[35] 0.29 0.24 0.30 -0.12 0.68 566.20 1.00\n", + " coefs[36] 0.35 0.31 0.35 -0.19 0.84 565.96 1.00\n", + " coefs[37] 0.19 0.20 0.19 -0.12 0.52 569.22 1.00\n", + " coefs[38] -0.06 0.04 -0.05 -0.12 0.01 935.97 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 737.66 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.04 0.13 682.67 1.00\n", + " coefs[41] -0.02 0.07 -0.01 -0.12 0.10 1363.24 1.00\n", + " coefs[42] 0.05 0.42 0.05 -0.64 0.72 564.74 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.38 0.39 570.94 1.00\n", + " coefs[44] 0.18 0.21 0.19 -0.18 0.53 568.55 1.00\n", + " coefs[45] 0.15 0.30 0.15 -0.35 0.63 562.05 1.00\n", + " coefs[46] 0.23 0.28 0.23 -0.24 0.68 565.69 1.00\n", + " coefs[47] -0.84 0.57 -0.72 -1.69 -0.04 4863.24 1.00\n", + " coefs[48] -0.10 0.06 -0.09 -0.20 0.01 649.56 1.00\n", + " coefs[49] 0.03 1.01 0.02 -1.55 1.72 11743.21 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.68 -0.06 5084.52 1.00\n", + " coefs[51] -0.09 0.17 -0.09 -0.38 0.18 574.15 1.00\n", + " coefs[52] -0.13 0.16 -0.13 -0.41 0.12 576.37 1.00\n", + " coefs[53] -0.18 0.13 -0.17 -0.39 0.03 578.29 1.00\n", + " coefs[54] -1.71 0.19 -1.69 -2.00 -1.38 4122.53 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 39 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.02 0.06 2.02 1.92 2.13 10022.35 1.00\n", + " coefs[1] -0.07 0.04 -0.07 -0.13 -0.02 11930.67 1.00\n", + " coefs[2] 0.09 0.07 0.09 -0.03 0.21 3565.47 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 7874.95 1.00\n", + " coefs[4] -0.10 0.04 -0.10 -0.16 -0.04 8677.59 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.11 11143.46 1.00\n", + " coefs[6] 0.64 0.30 0.63 0.17 1.14 2850.68 1.00\n", + " coefs[7] -0.90 0.18 -0.89 -1.21 -0.61 3006.07 1.00\n", + " coefs[8] 1.05 0.35 1.04 0.50 1.63 2848.02 1.00\n", + " coefs[9] 0.05 0.03 0.05 0.00 0.10 11434.28 1.00\n", + " coefs[10] 0.38 0.65 0.37 -0.73 1.41 3027.13 1.00\n", + " coefs[11] -0.05 0.29 -0.05 -0.56 0.40 3049.82 1.00\n", + " coefs[12] 0.14 0.65 0.14 -0.93 1.20 3039.84 1.00\n", + " coefs[13] -1.01 0.63 -0.94 -2.00 -0.00 4993.50 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.52 0.53 5614.94 1.00\n", + " coefs[15] -0.78 0.57 -0.68 -1.63 0.06 4675.04 1.00\n", + " coefs[16] -0.70 0.58 -0.59 -1.57 0.15 5153.50 1.00\n", + " coefs[17] -0.05 0.17 -0.04 -0.32 0.23 652.24 1.01\n", + " coefs[18] -0.52 0.66 -0.40 -1.52 0.44 6037.65 1.00\n", + " coefs[19] -0.46 0.68 -0.36 -1.55 0.61 6114.54 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.60 0.02 4987.38 1.00\n", + " coefs[21] -0.75 0.59 -0.64 -1.59 0.05 4951.24 1.00\n", + " coefs[22] -0.75 0.60 -0.63 -1.63 0.05 4435.53 1.00\n", + " coefs[23] 0.12 0.24 0.12 -0.27 0.51 500.82 1.01\n", + " coefs[24] 0.03 0.15 0.03 -0.24 0.26 526.83 1.01\n", + " coefs[25] -0.04 0.23 -0.04 -0.42 0.33 494.40 1.01\n", + " coefs[26] 0.01 0.17 0.01 -0.28 0.30 506.35 1.01\n", + " coefs[27] -0.71 0.62 -0.59 -1.59 0.16 5403.79 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.55 1.70 10861.75 1.00\n", + " coefs[29] 0.06 0.08 0.06 -0.06 0.19 543.44 1.01\n", + " coefs[30] 0.08 0.09 0.08 -0.06 0.22 601.06 1.01\n", + " coefs[31] -0.02 0.09 -0.01 -0.17 0.13 1105.50 1.00\n", + " coefs[32] 0.08 0.09 0.08 -0.06 0.23 526.65 1.01\n", + " coefs[33] 0.12 0.13 0.12 -0.10 0.32 494.20 1.01\n", + " coefs[34] 0.93 0.59 0.81 0.12 1.79 4585.26 1.00\n", + " coefs[35] 0.34 0.24 0.34 -0.05 0.72 491.75 1.01\n", + " coefs[36] 0.37 0.30 0.37 -0.14 0.86 486.39 1.01\n", + " coefs[37] 0.15 0.19 0.15 -0.16 0.47 488.15 1.01\n", + " coefs[38] -0.01 0.03 -0.01 -0.07 0.05 676.92 1.01\n", + " coefs[39] 0.05 0.07 0.05 -0.07 0.17 570.31 1.01\n", + " coefs[40] 0.02 0.05 0.03 -0.05 0.11 563.75 1.01\n", + " coefs[41] -0.78 0.59 -0.66 -1.63 0.03 4822.95 1.00\n", + " coefs[42] 0.05 0.40 0.06 -0.59 0.74 487.94 1.01\n", + " coefs[43] 0.01 0.23 0.01 -0.36 0.38 491.71 1.01\n", + " coefs[44] 0.19 0.21 0.20 -0.17 0.52 491.92 1.01\n", + " coefs[45] 0.07 0.29 0.08 -0.42 0.53 489.32 1.01\n", + " coefs[46] 0.20 0.27 0.20 -0.26 0.63 486.73 1.01\n", + " coefs[47] -0.10 0.07 -0.10 -0.21 0.01 773.52 1.01\n", + " coefs[48] -0.12 0.06 -0.12 -0.22 -0.02 540.35 1.01\n", + " coefs[49] -0.81 0.60 -0.69 -1.66 -0.02 4748.32 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.70 -0.08 4705.07 1.00\n", + " coefs[51] -0.13 0.16 -0.13 -0.40 0.14 498.31 1.01\n", + " coefs[52] -0.13 0.16 -0.13 -0.38 0.13 504.10 1.01\n", + " coefs[53] -0.15 0.13 -0.14 -0.35 0.06 502.86 1.01\n", + " coefs[54] -1.75 0.19 -1.74 -2.05 -1.45 4340.91 1.00\n", + "\n", + "\n" + ] + } + ], + "source": [ + "rngs = random.split(random.PRNGKey(1), K)\n", + "subposteriors = []\n", + "for i, (rng, shard) in enumerate(zip(rngs, shards)):\n", + " sep = '=' * 31\n", + " print('\\n ' + sep + ' SUBPOSTERIOR {:02d} '.format(i) + sep, end='')\n", + " samples = get_subposterior(rng, shard, K)\n", + " if not os.path.exists('.results'):\n", + " os.makedir('.results')\n", + " np.save('.results/subposterior_{:02d}.npy'.format(i), samples)\n", + " subposteriors.append(samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### merge subposteriors" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "consensus_samples = consensus(subposteriors, 10000)\n", + "parametric_samples = parametric_draws(subposteriors, 10000)\n", + "np.save('.results/consensus_samples.npy', consensus_samples)\n", + "np.save('.results/parametric_samples.npy', parametric_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### predict" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def predict(model, X, rng, sample):\n", + " model = substitute(seed(model, rng), sample)\n", + " model_trace = trace(model).get_trace(X, None)\n", + " return model_trace['y']['value']" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Consensus accuaracy: 0.771\n", + "Parametric accuaracy: 0.771\n" + ] + } + ], + "source": [ + "rngs = random.split(random.PRNGKey(2), 10000)\n", + "\n", + "y_consensus = vmap(partial(predict, model, X_test))(rngs, consensus_samples)\n", + "y_consensus = (y_consensus.sum(axis=0) / y_consensus.shape[0]) >= 0.5\n", + "acc = (y_consensus == y_test).sum() / y_test.shape[0]\n", + "print('Consensus accuaracy: {}'.format(round(acc.item(), 4)))\n", + "\n", + "y_parametric = vmap(partial(predict, model, X_test))(rngs, parametric_samples)\n", + "y_parametric = (y_parametric.sum(axis=0) / y_parametric.shape[0]) >= 0.5\n", + "acc = (y_parametric == y_test).sum() / y_test.shape[0]\n", + "print('Parametric accuaracy: {}'.format(round(acc.item(), 4)))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python (test)", + "language": "python", + "name": "test" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 0fcfb1dcbe007e0f55c11746fe0498263b2921dc Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Fri, 9 Aug 2019 08:49:07 -0400 Subject: [PATCH 20/35] temporary save --- notebooks/source/covtype.ipynb | 89 +++++++++++++++++++++++++++++++--- 1 file changed, 81 insertions(+), 8 deletions(-) diff --git a/notebooks/source/covtype.ipynb b/notebooks/source/covtype.ipynb index e3975a88b..8d3982e5c 100644 --- a/notebooks/source/covtype.ipynb +++ b/notebooks/source/covtype.ipynb @@ -2,24 +2,28 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "from functools import partial\n", "import os; os.environ['XLA_FLAGS'] = '--xla_force_host_platform_device_count=4'\n", "\n", + "import matplotlib.pyplot as plt\n", "import numpy as onp\n", "\n", - "from jax import jit, random, vmap\n", + "from jax import jit, lax, random, vmap\n", "from jax.config import config; config.update('jax_platform_name', 'cpu')\n", + "from jax.experimental import optimizers\n", "import jax.numpy as np\n", "\n", + "from numpyro.contrib.autoguide import AutoIAFNormal\n", "import numpyro.distributions as dist\n", "from numpyro.examples.datasets import COVTYPE, load_dataset\n", "from numpyro.handlers import sample, scale, seed, substitute, trace\n", "from numpyro.hmc_util import consensus, initialize_model, parametric_draws\n", - "from numpyro.mcmc import mcmc" + "from numpyro.mcmc import mcmc\n", + "from numpyro.svi import elbo, svi" ] }, { @@ -96,11 +100,12 @@ " shards = []\n", " for i in range(K):\n", " shards.append((X[i * N: (i + 1) * N], y[i * N: (i + 1) * N]))\n", + " train_data = (X[:K * N], y[:K * N])\n", " test_data = (X[K * N:], y[K * N:])\n", - " return shards, test_data\n", + " return shards, train_data, test_data\n", "\n", "K, N = 40, 10000\n", - "shards, (X_test, y_test) = get_train_shards_and_test_data(\n", + "shards, (X_train, y_train), (X_test, y_test) = get_train_shards_and_test_data(\n", " X_full, y_full, K, N, random.PRNGKey(0))\n", "print(\"Train set contains {} ({}%) data points.\".format(\n", " K * N, round(K * N / X_full.shape[0] * 100, 2)))\n", @@ -2679,13 +2684,81 @@ "acc = (y_parametric == y_test).sum() / y_test.shape[0]\n", "print('Parametric accuaracy: {}'.format(round(acc.item(), 4)))" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### train iaf" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "def model(X, y):\n", + " coefs = sample('coefs', dist.Normal(np.zeros(X.shape[-1]), np.ones(X.shape[-1])))\n", + " with scale(X_train.shape[0] / X.shape[0]):\n", + " return sample('y', dist.Bernoulli(logits=np.dot(X, coefs)), obs=y)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "rng_guide, rng_init, rng_train = random.split(random.PRNGKey(3), 3)\n", + "opt_init, opt_update, get_params = optimizers.adam(0.001)\n", + "guide = AutoIAFNormal(rng_guide, model, get_params)\n", + "svi_init, svi_update, _ = svi(model, guide, elbo, opt_init, opt_update, get_params)\n", + "batch_size = 1000\n", + "num_epochs = 10\n", + "\n", + "def epoch_train(X, y, opt_state, rng):\n", + " # shuffle data\n", + " rng, rng_shuffle = random.split(rng)\n", + " idx = random.shuffle(rng_shuffle, np.arange(X.shape[0]))\n", + " X = X[idx]\n", + " y = y[idx]\n", + "\n", + " def body_fn(val, i):\n", + " batch_X = lax.dynamic_slice_in_dim(X, i * batch_size, batch_size)\n", + " batch_y = lax.dynamic_slice_in_dim(y, i * batch_size, batch_size)\n", + " opt_state_, rng_ = val\n", + " loss, opt_state_, rng_ = svi_update(i, rng_, opt_state_,\n", + " (batch_X, batch_y), (batch_X, batch_y))\n", + " return (opt_state_, rng_), loss\n", + "\n", + " (opt_state, _), losses = lax.scan(body_fn, (opt_state, rng),\n", + " np.arange(X.shape[0] // batch_size))\n", + " return opt_state, np.mean(losses)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "opt_state, _ = svi_init(rng_init,\n", + " (X_train[:batch_size], y_train[:batch_size]),\n", + " (X_train[:batch_size], y_train[:batch_size]))\n", + "\n", + "losses = []\n", + "for epoch in range(num_epochs):\n", + " rng = random.fold_in(rng_train, epoch)\n", + " opt_state, losses = epoch_train(X_train, y_train, opt_state, rng)" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python (test)", + "display_name": "Python (pydata)", "language": "python", - "name": "test" + "name": "pydata" }, "language_info": { "codemirror_mode": { @@ -2697,7 +2770,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.6.9" } }, "nbformat": 4, From c3a9438c08cbddab112fe53747b073b9bd6f1a09 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Sat, 10 Aug 2019 16:05:40 -0400 Subject: [PATCH 21/35] add iaf result --- notebooks/source/covtype.ipynb | 271 +++++++++++++++++++++++++++++---- 1 file changed, 240 insertions(+), 31 deletions(-) diff --git a/notebooks/source/covtype.ipynb b/notebooks/source/covtype.ipynb index 8d3982e5c..51180dcfc 100644 --- a/notebooks/source/covtype.ipynb +++ b/notebooks/source/covtype.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 19, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -79,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -122,14 +122,15 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ - "def model(X, y, K=1):\n", - " with scale(1 / K):\n", + "def model(X, y, prior_scale=1, likelihood_scale=1):\n", + " with scale(prior_scale):\n", " coefs = sample('coefs', dist.Normal(np.zeros(X.shape[-1]), np.ones(X.shape[-1])))\n", - " return sample('y', dist.Bernoulli(logits=np.dot(X, coefs)), obs=y)" + " with scale(likelihood_scale):\n", + " return sample('y', dist.Bernoulli(logits=np.dot(X, coefs)), obs=y)" ] }, { @@ -148,7 +149,7 @@ "def get_subposterior(rng, shard, K):\n", " rngs = random.split(rng, 4)\n", " X, y = shard\n", - " init_params, potential_fn, _ = initialize_model(rngs, model, X, y, K=K)\n", + " init_params, potential_fn, _ = initialize_model(rngs, model, X, y, prior_scale=1 / K)\n", " samples = mcmc(num_warmup=1000, num_samples=2500, init_params=init_params,\n", " num_chains=4, potential_fn=potential_fn)\n", " return samples" @@ -2647,7 +2648,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -2694,64 +2695,272 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ - "def model(X, y):\n", - " coefs = sample('coefs', dist.Normal(np.zeros(X.shape[-1]), np.ones(X.shape[-1])))\n", - " with scale(X_train.shape[0] / X.shape[0]):\n", - " return sample('y', dist.Bernoulli(logits=np.dot(X, coefs)), obs=y)" + "from jax.experimental import stax" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "rng_guide, rng_init, rng_train = random.split(random.PRNGKey(3), 3)\n", "opt_init, opt_update, get_params = optimizers.adam(0.001)\n", - "guide = AutoIAFNormal(rng_guide, model, get_params)\n", - "svi_init, svi_update, _ = svi(model, guide, elbo, opt_init, opt_update, get_params)\n", + "guide = AutoIAFNormal(rng_guide, model, get_params, nonlinearity=stax.Elu,\n", + " skip_connections=False)\n", + "ll_scale = X_train.shape[0] // batch_size\n", + "svi_init, svi_update, _ = svi(model, guide, elbo, opt_init, opt_update, get_params,\n", + " likelihood_scale=ll_scale)\n", "batch_size = 1000\n", - "num_epochs = 10\n", + "num_iters = ll_scale\n", "\n", - "def epoch_train(X, y, opt_state, rng):\n", + "def epoch_train(epoch, opt_state, rng):\n", " # shuffle data\n", " rng, rng_shuffle = random.split(rng)\n", - " idx = random.shuffle(rng_shuffle, np.arange(X.shape[0]))\n", - " X = X[idx]\n", - " y = y[idx]\n", + " idx = random.shuffle(rng_shuffle, np.arange(X_train.shape[0]))\n", + " X = X_train[idx]\n", + " y = y_train[idx]\n", + " offset = epoch * num_iters\n", "\n", " def body_fn(val, i):\n", " batch_X = lax.dynamic_slice_in_dim(X, i * batch_size, batch_size)\n", " batch_y = lax.dynamic_slice_in_dim(y, i * batch_size, batch_size)\n", " opt_state_, rng_ = val\n", - " loss, opt_state_, rng_ = svi_update(i, rng_, opt_state_,\n", + " loss, opt_state_, rng_ = svi_update(offset + i, rng_, opt_state_,\n", " (batch_X, batch_y), (batch_X, batch_y))\n", " return (opt_state_, rng_), loss\n", "\n", - " (opt_state, _), losses = lax.scan(body_fn, (opt_state, rng),\n", - " np.arange(X.shape[0] // batch_size))\n", - " return opt_state, np.mean(losses)" + " (opt_state, _), losses = lax.scan(body_fn, (opt_state, rng), np.arange(num_iters))\n", + " return opt_state, losses" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "opt_state, _ = svi_init(rng_init,\n", " (X_train[:batch_size], y_train[:batch_size]),\n", - " (X_train[:batch_size], y_train[:batch_size]))\n", - "\n", - "losses = []\n", + " (X_train[:batch_size], y_train[:batch_size]))" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00 - loss 1883.5496 - acc 0.7612\n", + "Epoch 01 - loss 688.8702 - acc 0.7706\n", + "Epoch 02 - loss 617.3635 - acc 0.7685\n", + "Epoch 03 - loss 601.3757 - acc 0.7711\n", + "Epoch 04 - loss 598.3813 - acc 0.7687\n", + "Epoch 05 - loss 593.7759 - acc 0.7708\n", + "Epoch 06 - loss 593.0955 - acc 0.7692\n", + "Epoch 07 - loss 590.5724 - acc 0.7714\n", + "Epoch 08 - loss 589.2113 - acc 0.7693\n", + "Epoch 09 - loss 588.8226 - acc 0.7721\n" + ] + } + ], + "source": [ + "losses = np.array([])\n", + "num_epochs = 10\n", + "rngs = random.split(random.PRNGKey(2), 10000)\n", + "for epoch in range(num_epochs):\n", + " rng = random.fold_in(rng_train, epoch)\n", + " opt_state, epoch_loss = epoch_train(epoch, opt_state, rng)\n", + " iaf_samples = guide.sample_posterior(random.PRNGKey(4), opt_state, sample_shape=(10000,))\n", + " y_iaf = vmap(partial(predict, model, X_test))(rngs, iaf_samples)\n", + " y_iaf = (y_iaf.sum(axis=0) / y_iaf.shape[0]) >= 0.5\n", + " acc = (y_iaf == y_test).sum() / y_test.shape[0]\n", + " print(\"Epoch {:02d} - loss {:.4f} - acc {}\".format(\n", + " epoch, np.mean(epoch_loss), round(acc.item(), 4)))\n", + " losses = np.concatenate([losses, epoch_loss])" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00 - loss 254534.3438 - acc 0.6719\n", + "Epoch 01 - loss 65498.4805 - acc 0.6963\n", + "Epoch 02 - loss 58030.9766 - acc 0.6833\n", + "Epoch 03 - loss 11353.0801 - acc 0.697\n", + "Epoch 04 - loss 10766.7871 - acc 0.7035\n", + "Epoch 05 - loss 5903.0508 - acc 0.6917\n", + "Epoch 06 - loss 4735.4136 - acc 0.7204\n", + "Epoch 07 - loss 3767.8457 - acc 0.7249\n", + "Epoch 08 - loss 2702.3569 - acc 0.7115\n", + "Epoch 09 - loss 4246.7715 - acc 0.7243\n", + "Epoch 10 - loss 2887.8103 - acc 0.7419\n", + "Epoch 11 - loss 1575.2468 - acc 0.7423\n", + "Epoch 12 - loss 3265.4502 - acc 0.7482\n", + "Epoch 13 - loss 1635.4376 - acc 0.7575\n", + "Epoch 14 - loss 2030.9865 - acc 0.7576\n", + "Epoch 15 - loss 1211.5005 - acc 0.747\n", + "Epoch 16 - loss 1234.9969 - acc 0.7586\n", + "Epoch 17 - loss 1120.3951 - acc 0.7628\n", + "Epoch 18 - loss 1038.1304 - acc 0.7655\n", + "Epoch 19 - loss 1188.7095 - acc 0.7434\n", + "Epoch 20 - loss 1023.7824 - acc 0.7597\n", + "Epoch 21 - loss 1024.2365 - acc 0.7727\n", + "Epoch 22 - loss 1002.4470 - acc 0.759\n", + "Epoch 23 - loss 1038.4382 - acc 0.768\n", + "Epoch 24 - loss 940.9832 - acc 0.7611\n", + "Epoch 25 - loss 895.9312 - acc 0.7674\n", + "Epoch 26 - loss 1345.1897 - acc 0.7639\n", + "Epoch 27 - loss 917.5681 - acc 0.76\n", + "Epoch 28 - loss 934.0630 - acc 0.7578\n", + "Epoch 29 - loss 881.1840 - acc 0.7477\n", + "Epoch 30 - loss 945.5895 - acc 0.7615\n", + "Epoch 31 - loss 881.6766 - acc 0.7651\n", + "Epoch 32 - loss 856.6132 - acc 0.7531\n", + "Epoch 33 - loss 977.1152 - acc 0.7651\n", + "Epoch 34 - loss 860.5390 - acc 0.757\n", + "Epoch 35 - loss 860.3196 - acc 0.7687\n", + "Epoch 36 - loss 841.2369 - acc 0.7647\n", + "Epoch 37 - loss 851.6643 - acc 0.7592\n", + "Epoch 38 - loss 813.6900 - acc 0.7679\n", + "Epoch 39 - loss 812.2313 - acc 0.7544\n", + "Epoch 40 - loss 808.4932 - acc 0.7634\n", + "Epoch 41 - loss 886.4514 - acc 0.7698\n", + "Epoch 42 - loss 817.3934 - acc 0.7537\n", + "Epoch 43 - loss 789.4904 - acc 0.7707\n", + "Epoch 44 - loss 790.3774 - acc 0.7612\n", + "Epoch 45 - loss 770.7787 - acc 0.7664\n", + "Epoch 46 - loss 764.3374 - acc 0.7694\n", + "Epoch 47 - loss 742.7781 - acc 0.7739\n", + "Epoch 48 - loss 734.4012 - acc 0.7643\n", + "Epoch 49 - loss 725.6569 - acc 0.7688\n", + "Epoch 50 - loss 713.1312 - acc 0.7696\n", + "Epoch 51 - loss 702.3688 - acc 0.7701\n", + "Epoch 52 - loss 694.8310 - acc 0.768\n", + "Epoch 53 - loss 690.0838 - acc 0.7679\n", + "Epoch 54 - loss 680.3116 - acc 0.7689\n", + "Epoch 55 - loss 688.9963 - acc 0.7622\n", + "Epoch 56 - loss 671.6235 - acc 0.7716\n", + "Epoch 57 - loss 661.0634 - acc 0.7642\n", + "Epoch 58 - loss 654.5287 - acc 0.7706\n", + "Epoch 59 - loss 719.4338 - acc 0.7696\n", + "Epoch 60 - loss 667.0007 - acc 0.7694\n", + "Epoch 61 - loss 649.3066 - acc 0.7701\n", + "Epoch 62 - loss 639.6379 - acc 0.7712\n", + "Epoch 63 - loss 634.2900 - acc 0.7695\n", + "Epoch 64 - loss 630.7141 - acc 0.7666\n", + "Epoch 65 - loss 628.7311 - acc 0.7717\n", + "Epoch 66 - loss 622.4650 - acc 0.7671\n", + "Epoch 67 - loss 619.6395 - acc 0.7696\n", + "Epoch 68 - loss 618.3934 - acc 0.7711\n", + "Epoch 69 - loss 613.0114 - acc 0.7702\n", + "Epoch 70 - loss 613.1573 - acc 0.7714\n", + "Epoch 71 - loss 608.6863 - acc 0.7656\n", + "Epoch 72 - loss 603.2803 - acc 0.7718\n", + "Epoch 73 - loss 604.5390 - acc 0.7671\n", + "Epoch 74 - loss 599.7892 - acc 0.7716\n", + "Epoch 75 - loss 598.3097 - acc 0.7695\n", + "Epoch 76 - loss 597.3398 - acc 0.77\n", + "Epoch 77 - loss 592.6534 - acc 0.7698\n", + "Epoch 78 - loss 590.7097 - acc 0.7686\n", + "Epoch 79 - loss 590.5514 - acc 0.7692\n", + "Epoch 80 - loss 588.7484 - acc 0.7694\n", + "Epoch 81 - loss 589.0543 - acc 0.7723\n", + "Epoch 82 - loss 586.3735 - acc 0.7697\n", + "Epoch 83 - loss 589.2031 - acc 0.7659\n", + "Epoch 84 - loss 587.5204 - acc 0.7697\n", + "Epoch 85 - loss 586.9933 - acc 0.7679\n", + "Epoch 86 - loss 586.1766 - acc 0.7689\n", + "Epoch 87 - loss 584.0955 - acc 0.7702\n", + "Epoch 88 - loss 584.7559 - acc 0.7699\n", + "Epoch 89 - loss 583.4180 - acc 0.7715\n", + "Epoch 90 - loss 583.9426 - acc 0.7715\n", + "Epoch 91 - loss 582.8043 - acc 0.7687\n", + "Epoch 92 - loss 582.0665 - acc 0.7677\n", + "Epoch 93 - loss 582.5842 - acc 0.7703\n", + "Epoch 94 - loss 583.2501 - acc 0.7711\n", + "Epoch 95 - loss 582.0706 - acc 0.7708\n", + "Epoch 96 - loss 581.0920 - acc 0.77\n", + "Epoch 97 - loss 581.4358 - acc 0.7716\n", + "Epoch 98 - loss 582.6833 - acc 0.7713\n", + "Epoch 99 - loss 581.7660 - acc 0.7716\n" + ] + } + ], + "source": [ + "losses = np.array([])\n", + "num_epochs = 100\n", + "rngs = random.split(random.PRNGKey(2), 10000)\n", "for epoch in range(num_epochs):\n", " rng = random.fold_in(rng_train, epoch)\n", - " opt_state, losses = epoch_train(X_train, y_train, opt_state, rng)" + " opt_state, epoch_loss = epoch_train(epoch, opt_state, rng)\n", + " iaf_samples = guide.sample_posterior(random.PRNGKey(4), opt_state, sample_shape=(10000,))\n", + " y_iaf = vmap(partial(predict, model, X_test))(rngs, iaf_samples)\n", + " y_iaf = (y_iaf.sum(axis=0) / y_iaf.shape[0]) >= 0.5\n", + " acc = (y_iaf == y_test).sum() / y_test.shape[0]\n", + " print(\"Epoch {:02d} - loss {:.4f} - acc {}\".format(\n", + " epoch, np.mean(epoch_loss), round(acc.item(), 4)))\n", + " losses = np.concatenate([losses, epoch_loss])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flow HMC" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "transform = guide.get_transform(opt_state)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "unpack_fn = guide.unpack_latent" ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def make_transformed_pe(potential_fn, transform, unpack_fn):\n", + " def transformed_potential_fn(z):\n", + " u, intermediates = transform.call_with_intermediates(z)\n", + " logdet = transform.log_abs_det_jacobian(z, u, intermediates=intermediates)\n", + " return potential_fn(unpack_fn(u)) + logdet\n", + "\n", + " return transformed_potential_fn" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -2774,5 +2983,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 493ca87828c3f272b38ab3a75be929cda0a72b75 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Sun, 11 Aug 2019 02:52:10 -0400 Subject: [PATCH 22/35] temp delete --- notebooks/source/covtype.ipynb | 2987 -------------------------------- 1 file changed, 2987 deletions(-) delete mode 100644 notebooks/source/covtype.ipynb diff --git a/notebooks/source/covtype.ipynb b/notebooks/source/covtype.ipynb deleted file mode 100644 index 51180dcfc..000000000 --- a/notebooks/source/covtype.ipynb +++ /dev/null @@ -1,2987 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from functools import partial\n", - "import os; os.environ['XLA_FLAGS'] = '--xla_force_host_platform_device_count=4'\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as onp\n", - "\n", - "from jax import jit, lax, random, vmap\n", - "from jax.config import config; config.update('jax_platform_name', 'cpu')\n", - "from jax.experimental import optimizers\n", - "import jax.numpy as np\n", - "\n", - "from numpyro.contrib.autoguide import AutoIAFNormal\n", - "import numpyro.distributions as dist\n", - "from numpyro.examples.datasets import COVTYPE, load_dataset\n", - "from numpyro.handlers import sample, scale, seed, substitute, trace\n", - "from numpyro.hmc_util import consensus, initialize_model, parametric_draws\n", - "from numpyro.mcmc import mcmc\n", - "from numpyro.svi import elbo, svi" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### load data" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape: (581012, 55)\n", - "Label distribution: 211840 has label 1, 369172 has label 0\n" - ] - } - ], - "source": [ - "def _load_dataset():\n", - " _, fetch = load_dataset(COVTYPE, shuffle=False)\n", - " features, labels = fetch()\n", - "\n", - " # normalize features and add intercept\n", - " features = (features - features.mean(0)) / features.std(0)\n", - " features = np.hstack([features, np.ones((features.shape[0], 1))])\n", - "\n", - " # make binary feature\n", - " _, counts = onp.unique(labels, return_counts=True)\n", - " specific_category = np.argmax(counts)\n", - " labels = (labels == specific_category)\n", - "\n", - " N, dim = features.shape\n", - " print(\"Data shape:\", features.shape)\n", - " print(\"Label distribution: {} has label 1, {} has label 0\"\n", - " .format(labels.sum(), N - labels.sum()))\n", - " return features, labels\n", - "\n", - "X_full, y_full = _load_dataset()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### prepare train shards and test set" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train set contains 400000 (68.85%) data points.\n", - "Test set contains 181012 (31.15%) data points.\n" - ] - } - ], - "source": [ - "def get_train_shards_and_test_data(X, y, K, N, rng=None):\n", - " if rng is not None:\n", - " idxs = random.shuffle(rng, np.arange(X.shape[0]))\n", - " X = X[idxs]\n", - " y = y[idxs]\n", - " shards = []\n", - " for i in range(K):\n", - " shards.append((X[i * N: (i + 1) * N], y[i * N: (i + 1) * N]))\n", - " train_data = (X[:K * N], y[:K * N])\n", - " test_data = (X[K * N:], y[K * N:])\n", - " return shards, train_data, test_data\n", - "\n", - "K, N = 40, 10000\n", - "shards, (X_train, y_train), (X_test, y_test) = get_train_shards_and_test_data(\n", - " X_full, y_full, K, N, random.PRNGKey(0))\n", - "print(\"Train set contains {} ({}%) data points.\".format(\n", - " K * N, round(K * N / X_full.shape[0] * 100, 2)))\n", - "print(\"Test set contains {} ({}%) data points.\".format(\n", - " X_full.shape[0] - K * N, round(100 - K * N / X_full.shape[0] * 100, 2)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### model" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "def model(X, y, prior_scale=1, likelihood_scale=1):\n", - " with scale(prior_scale):\n", - " coefs = sample('coefs', dist.Normal(np.zeros(X.shape[-1]), np.ones(X.shape[-1])))\n", - " with scale(likelihood_scale):\n", - " return sample('y', dist.Bernoulli(logits=np.dot(X, coefs)), obs=y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### sampling" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def get_subposterior(rng, shard, K):\n", - " rngs = random.split(rng, 4)\n", - " X, y = shard\n", - " init_params, potential_fn, _ = initialize_model(rngs, model, X, y, prior_scale=1 / K)\n", - " samples = mcmc(num_warmup=1000, num_samples=2500, init_params=init_params,\n", - " num_chains=4, potential_fn=potential_fn)\n", - " return samples" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " =============================== SUBPOSTERIOR 00 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.94 0.06 1.94 1.84 2.04 10596.19 1.00\n", - " coefs[1] 0.00 0.03 0.00 -0.06 0.06 13018.15 1.00\n", - " coefs[2] -0.05 0.07 -0.05 -0.15 0.06 3962.76 1.00\n", - " coefs[3] -0.26 0.03 -0.26 -0.32 -0.21 8349.60 1.00\n", - " coefs[4] -0.13 0.04 -0.13 -0.19 -0.07 9673.05 1.00\n", - " coefs[5] -0.09 0.03 -0.09 -0.15 -0.04 11774.95 1.00\n", - " coefs[6] 0.33 0.25 0.32 -0.08 0.73 3044.25 1.00\n", - " coefs[7] -0.70 0.15 -0.69 -0.94 -0.45 3230.34 1.00\n", - " coefs[8] 0.61 0.29 0.60 0.12 1.08 3048.04 1.00\n", - " coefs[9] -0.04 0.03 -0.04 -0.08 0.01 11912.89 1.00\n", - " coefs[10] 0.38 0.65 0.37 -0.66 1.50 3045.41 1.00\n", - " coefs[11] -0.05 0.29 -0.06 -0.54 0.42 3041.88 1.00\n", - " coefs[12] 0.12 0.65 0.11 -0.99 1.17 3040.15 1.00\n", - " coefs[13] -0.94 0.65 -0.88 -2.00 0.08 5089.97 1.00\n", - " coefs[14] -0.48 0.67 -0.37 -1.51 0.56 5935.95 1.00\n", - " coefs[15] -0.80 0.56 -0.69 -1.65 0.03 5174.92 1.00\n", - " coefs[16] -0.71 0.60 -0.59 -1.63 0.11 4779.67 1.00\n", - " coefs[17] -0.28 0.22 -0.27 -0.65 0.08 1027.92 1.00\n", - " coefs[18] -0.57 0.66 -0.46 -1.58 0.40 5873.46 1.00\n", - " coefs[19] -0.49 0.67 -0.39 -1.61 0.53 5699.48 1.00\n", - " coefs[20] -0.77 0.59 -0.66 -1.62 0.03 5339.04 1.00\n", - " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1357.53 1.00\n", - " coefs[22] -0.01 0.07 -0.00 -0.13 0.11 1117.18 1.00\n", - " coefs[23] -0.07 0.25 -0.07 -0.47 0.34 537.29 1.00\n", - " coefs[24] -0.04 0.16 -0.04 -0.31 0.21 542.14 1.00\n", - " coefs[25] -0.01 0.23 -0.02 -0.39 0.35 498.36 1.00\n", - " coefs[26] -0.01 0.18 -0.01 -0.31 0.27 506.74 1.00\n", - " coefs[27] -0.72 0.61 -0.61 -1.61 0.12 5016.54 1.00\n", - " coefs[28] 0.03 1.00 0.03 -1.59 1.71 11735.13 1.00\n", - " coefs[29] 0.09 0.08 0.09 -0.04 0.21 522.46 1.00\n", - " coefs[30] 0.11 0.09 0.11 -0.04 0.25 581.10 1.00\n", - " coefs[31] 0.04 0.08 0.04 -0.09 0.16 822.05 1.00\n", - " coefs[32] 0.11 0.09 0.11 -0.03 0.26 518.96 1.00\n", - " coefs[33] 0.13 0.13 0.13 -0.08 0.34 494.96 1.00\n", - " coefs[34] 0.06 0.05 0.06 -0.02 0.15 858.21 1.00\n", - " coefs[35] 0.38 0.24 0.38 -0.01 0.77 488.03 1.00\n", - " coefs[36] 0.40 0.31 0.40 -0.10 0.90 484.06 1.00\n", - " coefs[37] 0.17 0.19 0.17 -0.13 0.50 491.13 1.00\n", - " coefs[38] -0.02 0.04 -0.02 -0.08 0.05 833.97 1.00\n", - " coefs[39] -0.01 0.08 -0.01 -0.14 0.11 601.79 1.00\n", - " coefs[40] 0.03 0.05 0.03 -0.05 0.11 632.43 1.00\n", - " coefs[41] -0.77 0.58 -0.65 -1.62 0.05 5172.22 1.00\n", - " coefs[42] 0.11 0.41 0.11 -0.56 0.77 485.90 1.00\n", - " coefs[43] -0.04 0.23 -0.04 -0.40 0.34 487.10 1.00\n", - " coefs[44] 0.16 0.21 0.16 -0.19 0.50 486.21 1.00\n", - " coefs[45] 0.12 0.30 0.12 -0.36 0.61 485.58 1.00\n", - " coefs[46] 0.20 0.28 0.20 -0.26 0.64 488.71 1.00\n", - " coefs[47] -0.03 0.07 -0.03 -0.14 0.08 688.12 1.00\n", - " coefs[48] -0.08 0.06 -0.08 -0.18 0.03 530.56 1.00\n", - " coefs[49] 0.02 1.00 0.01 -1.59 1.68 11841.74 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.68 -0.08 4715.49 1.00\n", - " coefs[51] -0.10 0.17 -0.10 -0.37 0.17 496.97 1.00\n", - " coefs[52] -0.13 0.16 -0.13 -0.38 0.13 491.79 1.00\n", - " coefs[53] -0.13 0.13 -0.13 -0.34 0.08 498.09 1.00\n", - " coefs[54] -1.71 0.19 -1.70 -2.01 -1.40 4068.47 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 01 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.03 0.06 2.03 1.93 2.13 6297.01 1.00\n", - " coefs[1] -0.10 0.03 -0.10 -0.16 -0.05 6696.79 1.00\n", - " coefs[2] -0.04 0.07 -0.04 -0.16 0.09 2407.61 1.00\n", - " coefs[3] -0.23 0.03 -0.24 -0.29 -0.18 5620.77 1.00\n", - " coefs[4] -0.12 0.04 -0.12 -0.18 -0.06 5804.19 1.00\n", - " coefs[5] -0.18 0.03 -0.18 -0.23 -0.13 6953.33 1.00\n", - " coefs[6] 0.23 0.30 0.23 -0.26 0.72 2060.03 1.00\n", - " coefs[7] -0.64 0.18 -0.64 -0.94 -0.34 2165.40 1.00\n", - " coefs[8] 0.68 0.35 0.67 0.11 1.27 2051.67 1.00\n", - " coefs[9] -0.04 0.03 -0.04 -0.09 0.02 7364.88 1.00\n", - " coefs[10] 0.42 0.65 0.42 -0.69 1.45 2455.62 1.00\n", - " coefs[11] -0.05 0.29 -0.05 -0.54 0.41 2496.49 1.00\n", - " coefs[12] 0.07 0.65 0.06 -1.06 1.08 2474.35 1.00\n", - " coefs[13] -1.02 0.64 -0.97 -2.04 0.02 3633.72 1.00\n", - " coefs[14] -0.46 0.67 -0.36 -1.51 0.55 3974.22 1.00\n", - " coefs[15] -0.78 0.56 -0.68 -1.61 0.05 3326.03 1.00\n", - " coefs[16] -0.74 0.58 -0.63 -1.61 0.10 3931.39 1.00\n", - " coefs[17] -0.11 0.18 -0.10 -0.41 0.20 716.27 1.01\n", - " coefs[18] -0.54 0.67 -0.44 -1.55 0.44 4309.01 1.00\n", - " coefs[19] -0.44 0.68 -0.35 -1.56 0.59 4171.46 1.00\n", - " coefs[20] -0.78 0.59 -0.66 -1.63 0.02 3801.33 1.00\n", - " coefs[21] 0.03 0.03 0.03 -0.01 0.07 928.09 1.00\n", - " coefs[22] 0.04 0.06 0.04 -0.06 0.14 821.22 1.01\n", - " coefs[23] 0.03 0.24 0.04 -0.38 0.40 486.42 1.01\n", - " coefs[24] 0.05 0.15 0.05 -0.20 0.29 508.69 1.01\n", - " coefs[25] -0.08 0.23 -0.08 -0.43 0.31 474.61 1.01\n", - " coefs[26] 0.01 0.18 0.02 -0.27 0.31 482.02 1.01\n", - " coefs[27] -0.68 0.63 -0.56 -1.60 0.18 3544.17 1.00\n", - " coefs[28] -0.78 0.60 -0.66 -1.60 0.03 3720.32 1.00\n", - " coefs[29] 0.09 0.08 0.09 -0.03 0.21 525.53 1.01\n", - " coefs[30] 0.00 0.10 0.00 -0.16 0.17 779.43 1.01\n", - " coefs[31] -0.04 0.10 -0.03 -0.19 0.11 1169.81 1.00\n", - " coefs[32] 0.12 0.09 0.12 -0.03 0.26 512.40 1.01\n", - " coefs[33] 0.15 0.13 0.15 -0.05 0.37 482.55 1.01\n", - " coefs[34] 0.93 0.59 0.82 0.11 1.79 3574.15 1.00\n", - " coefs[35] 0.34 0.24 0.34 -0.05 0.72 473.55 1.01\n", - " coefs[36] 0.30 0.30 0.30 -0.21 0.78 470.35 1.01\n", - " coefs[37] 0.17 0.19 0.17 -0.16 0.47 467.05 1.01\n", - " coefs[38] -0.04 0.04 -0.04 -0.11 0.02 769.86 1.01\n", - " coefs[39] 0.01 0.08 0.01 -0.11 0.14 578.20 1.01\n", - " coefs[40] -0.01 0.05 -0.01 -0.09 0.08 612.50 1.01\n", - " coefs[41] -0.80 0.59 -0.67 -1.64 0.04 3531.23 1.00\n", - " coefs[42] 0.02 0.41 0.02 -0.64 0.68 469.07 1.01\n", - " coefs[43] 0.02 0.23 0.02 -0.35 0.39 472.51 1.01\n", - " coefs[44] 0.16 0.21 0.16 -0.19 0.49 471.76 1.01\n", - " coefs[45] 0.09 0.29 0.09 -0.40 0.55 469.03 1.01\n", - " coefs[46] 0.23 0.27 0.23 -0.22 0.67 471.88 1.01\n", - " coefs[47] -0.07 0.07 -0.07 -0.19 0.04 839.36 1.01\n", - " coefs[48] -0.08 0.06 -0.08 -0.18 0.02 510.68 1.01\n", - " coefs[49] 0.03 1.01 0.03 -1.59 1.76 7599.21 1.00\n", - " coefs[50] -0.85 0.58 -0.72 -1.67 -0.07 3259.83 1.00\n", - " coefs[51] -0.13 0.17 -0.13 -0.41 0.12 472.94 1.01\n", - " coefs[52] -0.15 0.16 -0.15 -0.40 0.11 473.82 1.01\n", - " coefs[53] -0.17 0.13 -0.17 -0.38 0.03 488.46 1.01\n", - " coefs[54] -1.64 0.18 -1.63 -1.94 -1.34 2819.50 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 02 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.97 0.06 1.97 1.87 2.07 10141.39 1.00\n", - " coefs[1] -0.07 0.03 -0.07 -0.13 -0.01 11681.33 1.00\n", - " coefs[2] 0.05 0.08 0.05 -0.08 0.18 3349.04 1.00\n", - " coefs[3] -0.27 0.03 -0.27 -0.32 -0.22 8028.85 1.00\n", - " coefs[4] -0.12 0.03 -0.12 -0.18 -0.06 9352.06 1.00\n", - " coefs[5] -0.13 0.03 -0.13 -0.18 -0.07 11348.87 1.00\n", - " coefs[6] 0.80 0.32 0.80 0.28 1.32 2779.37 1.00\n", - " coefs[7] -1.06 0.19 -1.06 -1.37 -0.74 2899.08 1.00\n", - " coefs[8] 1.32 0.37 1.32 0.71 1.93 2786.07 1.00\n", - " coefs[9] -0.08 0.03 -0.08 -0.13 -0.03 12106.53 1.00\n", - " coefs[10] 0.45 0.65 0.44 -0.64 1.50 2853.02 1.00\n", - " coefs[11] -0.07 0.29 -0.08 -0.56 0.39 2876.41 1.00\n", - " coefs[12] 0.13 0.65 0.13 -0.96 1.18 2851.32 1.00\n", - " coefs[13] -1.08 0.62 -1.02 -2.08 -0.10 4547.27 1.00\n", - " coefs[14] -0.45 0.67 -0.34 -1.51 0.56 5752.40 1.00\n", - " coefs[15] -0.79 0.57 -0.68 -1.63 0.06 4399.13 1.00\n", - " coefs[16] -0.70 0.59 -0.59 -1.58 0.16 5696.39 1.00\n", - " coefs[17] -0.14 0.19 -0.13 -0.44 0.18 742.08 1.00\n", - " coefs[18] -0.55 0.66 -0.43 -1.58 0.39 5940.96 1.00\n", - " coefs[19] -0.44 0.68 -0.35 -1.54 0.62 5852.71 1.00\n", - " coefs[20] -0.77 0.58 -0.65 -1.62 0.02 5257.50 1.00\n", - " coefs[21] -0.76 0.58 -0.64 -1.60 0.03 5145.51 1.00\n", - " coefs[22] 0.03 0.08 0.03 -0.08 0.16 1171.01 1.00\n", - " coefs[23] 0.16 0.25 0.15 -0.26 0.57 534.48 1.00\n", - " coefs[24] 0.02 0.16 0.02 -0.25 0.28 535.89 1.00\n", - " coefs[25] -0.15 0.24 -0.16 -0.56 0.23 527.60 1.00\n", - " coefs[26] 0.06 0.18 0.06 -0.25 0.36 526.14 1.00\n", - " coefs[27] -0.72 0.61 -0.59 -1.61 0.13 5205.52 1.00\n", - " coefs[28] 0.03 1.00 0.04 -1.61 1.65 10712.86 1.00\n", - " coefs[29] 0.07 0.08 0.07 -0.06 0.21 607.37 1.00\n", - " coefs[30] -0.00 0.10 -0.00 -0.16 0.15 652.04 1.00\n", - " coefs[31] -0.02 0.10 -0.01 -0.17 0.13 1134.64 1.00\n", - " coefs[32] 0.10 0.09 0.10 -0.05 0.25 535.91 1.00\n", - " coefs[33] 0.15 0.14 0.15 -0.08 0.36 527.35 1.00\n", - " coefs[34] 0.91 0.59 0.79 0.10 1.78 4974.60 1.00\n", - " coefs[35] 0.38 0.25 0.38 -0.04 0.78 520.29 1.00\n", - " coefs[36] 0.37 0.32 0.37 -0.14 0.92 516.69 1.00\n", - " coefs[37] 0.18 0.20 0.17 -0.17 0.49 518.95 1.00\n", - " coefs[38] -0.80 0.58 -0.68 -1.65 -0.01 5323.77 1.00\n", - " coefs[39] 0.01 0.08 0.01 -0.12 0.14 622.80 1.00\n", - " coefs[40] 0.07 0.05 0.07 -0.01 0.15 571.08 1.01\n", - " coefs[41] -0.01 0.07 -0.01 -0.12 0.10 1236.93 1.00\n", - " coefs[42] 0.07 0.43 0.07 -0.61 0.79 513.79 1.00\n", - " coefs[43] 0.01 0.24 0.01 -0.38 0.41 521.37 1.00\n", - " coefs[44] 0.16 0.22 0.16 -0.21 0.52 511.80 1.00\n", - " coefs[45] 0.08 0.31 0.08 -0.43 0.58 514.38 1.00\n", - " coefs[46] 0.23 0.29 0.23 -0.23 0.71 515.12 1.00\n", - " coefs[47] -0.13 0.09 -0.13 -0.27 0.01 1051.75 1.00\n", - " coefs[48] -0.08 0.06 -0.08 -0.18 0.03 574.66 1.00\n", - " coefs[49] -0.80 0.59 -0.68 -1.63 0.02 5085.05 1.00\n", - " coefs[50] -0.85 0.58 -0.73 -1.67 -0.07 4703.61 1.00\n", - " coefs[51] -0.12 0.17 -0.12 -0.40 0.17 522.50 1.00\n", - " coefs[52] -0.08 0.16 -0.07 -0.34 0.20 518.37 1.00\n", - " coefs[53] -0.18 0.13 -0.18 -0.40 0.03 526.44 1.00\n", - " coefs[54] -1.67 0.19 -1.65 -1.95 -1.36 3894.03 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 03 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.93 0.06 1.93 1.84 2.04 9308.68 1.00\n", - " coefs[1] -0.03 0.04 -0.03 -0.08 0.04 11831.11 1.00\n", - " coefs[2] -0.08 0.06 -0.08 -0.18 0.03 3625.92 1.00\n", - " coefs[3] -0.27 0.03 -0.27 -0.33 -0.22 7283.21 1.00\n", - " coefs[4] -0.09 0.03 -0.09 -0.14 -0.03 8157.44 1.00\n", - " coefs[5] -0.09 0.03 -0.09 -0.14 -0.04 10004.68 1.00\n", - " coefs[6] 0.04 0.24 0.04 -0.35 0.44 2665.26 1.00\n", - " coefs[7] -0.57 0.15 -0.57 -0.80 -0.31 2781.87 1.00\n", - " coefs[8] 0.33 0.28 0.33 -0.12 0.80 2642.32 1.00\n", - " coefs[9] 0.02 0.03 0.02 -0.03 0.07 11808.21 1.00\n", - " coefs[10] 0.37 0.65 0.37 -0.72 1.45 2985.63 1.00\n", - " coefs[11] -0.00 0.29 -0.01 -0.48 0.49 2998.92 1.00\n", - " coefs[12] 0.11 0.65 0.10 -0.95 1.21 2991.93 1.00\n", - " coefs[13] -0.99 0.63 -0.92 -1.99 0.04 4876.03 1.00\n", - " coefs[14] -0.47 0.67 -0.36 -1.53 0.50 5544.85 1.00\n", - " coefs[15] -0.80 0.57 -0.69 -1.65 0.06 4454.60 1.00\n", - " coefs[16] -0.71 0.59 -0.60 -1.61 0.13 4989.00 1.00\n", - " coefs[17] 0.05 0.17 0.05 -0.23 0.32 633.85 1.00\n", - " coefs[18] -0.54 0.66 -0.42 -1.54 0.43 5998.03 1.00\n", - " coefs[19] -0.45 0.68 -0.35 -1.52 0.63 5489.12 1.00\n", - " coefs[20] -0.77 0.58 -0.65 -1.61 0.02 5007.75 1.00\n", - " coefs[21] 0.03 0.04 0.03 -0.03 0.09 1821.60 1.00\n", - " coefs[22] -0.00 0.08 0.00 -0.13 0.11 1044.03 1.00\n", - " coefs[23] 0.02 0.26 0.02 -0.40 0.45 600.96 1.00\n", - " coefs[24] 0.01 0.16 0.01 -0.24 0.30 591.14 1.00\n", - " coefs[25] -0.05 0.24 -0.05 -0.45 0.34 569.65 1.00\n", - " coefs[26] -0.00 0.19 -0.00 -0.29 0.33 572.75 1.00\n", - " coefs[27] -0.72 0.61 -0.60 -1.60 0.14 4787.94 1.00\n", - " coefs[28] 0.03 0.99 0.04 -1.57 1.67 9415.44 1.00\n", - " coefs[29] 0.07 0.08 0.07 -0.06 0.21 615.59 1.00\n", - " coefs[30] 0.03 0.10 0.03 -0.13 0.19 749.84 1.00\n", - " coefs[31] 0.01 0.08 0.01 -0.11 0.15 937.97 1.00\n", - " coefs[32] 0.12 0.09 0.12 -0.03 0.27 585.50 1.00\n", - " coefs[33] 0.14 0.14 0.14 -0.08 0.37 578.11 1.00\n", - " coefs[34] 0.15 0.07 0.14 0.04 0.25 1184.94 1.00\n", - " coefs[35] 0.34 0.25 0.34 -0.08 0.75 562.89 1.00\n", - " coefs[36] 0.36 0.32 0.36 -0.15 0.92 562.32 1.00\n", - " coefs[37] 0.16 0.20 0.16 -0.16 0.51 564.23 1.00\n", - " coefs[38] -0.03 0.04 -0.03 -0.10 0.03 914.20 1.00\n", - " coefs[39] -0.83 0.57 -0.71 -1.68 -0.05 4856.42 1.00\n", - " coefs[40] 0.09 0.05 0.09 -0.00 0.17 716.14 1.00\n", - " coefs[41] -0.78 0.59 -0.66 -1.62 0.04 5147.75 1.00\n", - " coefs[42] 0.06 0.43 0.06 -0.63 0.80 560.74 1.00\n", - " coefs[43] 0.04 0.24 0.04 -0.36 0.44 567.24 1.00\n", - " coefs[44] 0.23 0.22 0.23 -0.14 0.59 562.82 1.00\n", - " coefs[45] 0.13 0.31 0.13 -0.38 0.65 562.89 1.00\n", - " coefs[46] 0.21 0.29 0.21 -0.26 0.69 560.89 1.00\n", - " coefs[47] -0.06 0.07 -0.06 -0.17 0.07 884.93 1.00\n", - " coefs[48] -0.01 0.07 -0.01 -0.11 0.11 642.70 1.00\n", - " coefs[49] -0.79 0.60 -0.67 -1.66 0.01 4636.00 1.00\n", - " coefs[50] -0.85 0.59 -0.72 -1.68 -0.06 4578.95 1.00\n", - " coefs[51] -0.07 0.18 -0.07 -0.36 0.22 573.25 1.00\n", - " coefs[52] -0.11 0.17 -0.11 -0.39 0.15 567.32 1.00\n", - " coefs[53] -0.19 0.13 -0.19 -0.40 0.04 584.89 1.00\n", - " coefs[54] -1.73 0.19 -1.71 -2.03 -1.43 3787.09 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 04 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.00 0.06 2.00 1.90 2.10 9663.05 1.00\n", - " coefs[1] 0.01 0.03 0.01 -0.04 0.07 12229.09 1.00\n", - " coefs[2] -0.05 0.08 -0.05 -0.18 0.08 3518.69 1.00\n", - " coefs[3] -0.27 0.03 -0.26 -0.32 -0.21 7811.88 1.00\n", - " coefs[4] -0.14 0.03 -0.14 -0.20 -0.09 8939.99 1.00\n", - " coefs[5] -0.21 0.03 -0.21 -0.26 -0.15 10756.10 1.00\n", - " coefs[6] 0.29 0.32 0.28 -0.22 0.82 2819.50 1.00\n", - " coefs[7] -0.72 0.19 -0.72 -1.04 -0.41 2925.77 1.00\n", - " coefs[8] 0.69 0.37 0.69 0.08 1.29 2825.15 1.00\n", - " coefs[9] 0.03 0.03 0.03 -0.02 0.08 12007.14 1.00\n", - " coefs[10] 0.43 0.65 0.42 -0.67 1.47 3220.08 1.00\n", - " coefs[11] -0.07 0.29 -0.08 -0.55 0.40 3229.13 1.00\n", - " coefs[12] 0.10 0.65 0.09 -1.05 1.08 3214.88 1.00\n", - " coefs[13] -1.04 0.62 -0.99 -2.05 -0.06 5156.93 1.00\n", - " coefs[14] -0.45 0.68 -0.35 -1.52 0.56 5786.49 1.00\n", - " coefs[15] -0.76 0.58 -0.65 -1.65 0.08 4260.86 1.00\n", - " coefs[16] -0.72 0.58 -0.61 -1.60 0.12 5213.66 1.00\n", - " coefs[17] -0.04 0.17 -0.04 -0.31 0.23 558.39 1.00\n", - " coefs[18] -0.52 0.68 -0.40 -1.59 0.44 6109.99 1.00\n", - " coefs[19] -0.47 0.68 -0.38 -1.58 0.58 5597.20 1.00\n", - " coefs[20] -0.77 0.59 -0.66 -1.61 0.02 5070.21 1.00\n", - " coefs[21] -0.78 0.59 -0.66 -1.63 0.01 4634.14 1.00\n", - " coefs[22] 0.10 0.06 0.10 0.01 0.19 642.58 1.00\n", - " coefs[23] 0.12 0.24 0.11 -0.29 0.51 465.45 1.00\n", - " coefs[24] 0.09 0.15 0.09 -0.15 0.35 470.90 1.00\n", - " coefs[25] -0.11 0.23 -0.11 -0.48 0.27 454.80 1.00\n", - " coefs[26] 0.00 0.18 0.00 -0.30 0.29 466.84 1.00\n", - " coefs[27] -0.72 0.61 -0.60 -1.60 0.14 5204.11 1.00\n", - " coefs[28] 0.02 0.99 0.02 -1.60 1.66 11259.68 1.00\n", - " coefs[29] 0.09 0.08 0.08 -0.03 0.22 488.93 1.00\n", - " coefs[30] 0.02 0.09 0.03 -0.13 0.18 610.00 1.00\n", - " coefs[31] -0.75 0.59 -0.63 -1.60 0.08 4911.00 1.00\n", - " coefs[32] 0.09 0.09 0.09 -0.05 0.23 463.51 1.00\n", - " coefs[33] 0.15 0.13 0.15 -0.06 0.37 460.50 1.00\n", - " coefs[34] 0.93 0.59 0.80 0.12 1.77 4713.75 1.00\n", - " coefs[35] 0.32 0.24 0.32 -0.07 0.72 450.32 1.00\n", - " coefs[36] 0.32 0.31 0.32 -0.19 0.82 446.76 1.00\n", - " coefs[37] 0.17 0.19 0.17 -0.14 0.49 449.21 1.00\n", - " coefs[38] -0.05 0.05 -0.05 -0.13 0.02 1126.07 1.00\n", - " coefs[39] 0.02 0.08 0.02 -0.11 0.14 542.39 1.00\n", - " coefs[40] 0.05 0.05 0.05 -0.03 0.12 514.96 1.00\n", - " coefs[41] -0.01 0.07 -0.01 -0.12 0.10 1089.97 1.00\n", - " coefs[42] 0.05 0.41 0.05 -0.65 0.69 447.89 1.00\n", - " coefs[43] 0.03 0.23 0.03 -0.36 0.39 451.39 1.00\n", - " coefs[44] 0.18 0.21 0.18 -0.16 0.53 448.32 1.00\n", - " coefs[45] 0.12 0.30 0.12 -0.36 0.60 447.13 1.00\n", - " coefs[46] 0.20 0.28 0.20 -0.23 0.67 449.59 1.00\n", - " coefs[47] -0.12 0.09 -0.11 -0.25 0.03 961.34 1.00\n", - " coefs[48] -0.10 0.06 -0.10 -0.20 0.00 482.43 1.00\n", - " coefs[49] -0.01 0.03 -0.01 -0.05 0.03 1292.54 1.00\n", - " coefs[50] -0.84 0.58 -0.73 -1.68 -0.06 5019.30 1.00\n", - " coefs[51] -0.09 0.17 -0.09 -0.36 0.19 453.50 1.00\n", - " coefs[52] -0.12 0.16 -0.12 -0.38 0.14 453.09 1.00\n", - " coefs[53] -0.16 0.13 -0.16 -0.37 0.05 458.05 1.00\n", - " coefs[54] -1.69 0.19 -1.68 -2.00 -1.40 4062.23 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 05 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.98 0.06 1.98 1.88 2.08 10055.48 1.00\n", - " coefs[1] -0.09 0.03 -0.09 -0.15 -0.03 13343.50 1.00\n", - " coefs[2] -0.06 0.07 -0.06 -0.18 0.06 3771.35 1.00\n", - " coefs[3] -0.26 0.03 -0.26 -0.31 -0.20 8377.00 1.00\n", - " coefs[4] -0.12 0.03 -0.12 -0.18 -0.07 9458.58 1.00\n", - " coefs[5] -0.19 0.03 -0.19 -0.24 -0.13 11099.64 1.00\n", - " coefs[6] 0.16 0.28 0.16 -0.28 0.65 2986.01 1.00\n", - " coefs[7] -0.68 0.17 -0.67 -0.95 -0.39 3098.70 1.00\n", - " coefs[8] 0.53 0.33 0.53 0.01 1.08 2974.13 1.00\n", - " coefs[9] -0.03 0.03 -0.03 -0.07 0.02 12492.35 1.00\n", - " coefs[10] 0.43 0.65 0.42 -0.63 1.52 3281.51 1.00\n", - " coefs[11] -0.04 0.29 -0.05 -0.53 0.44 3280.68 1.00\n", - " coefs[12] 0.09 0.65 0.08 -0.95 1.20 3275.10 1.00\n", - " coefs[13] -1.02 0.62 -0.96 -1.99 0.03 5048.16 1.00\n", - " coefs[14] -0.45 0.66 -0.34 -1.48 0.55 6484.69 1.00\n", - " coefs[15] -0.76 0.57 -0.66 -1.64 0.07 4874.24 1.00\n", - " coefs[16] -0.71 0.59 -0.59 -1.60 0.13 5196.60 1.00\n", - " coefs[17] -0.85 0.54 -0.75 -1.71 -0.04 4288.80 1.00\n", - " coefs[18] -0.53 0.66 -0.41 -1.55 0.42 5984.25 1.00\n", - " coefs[19] -0.43 0.68 -0.34 -1.52 0.61 6184.44 1.00\n", - " coefs[20] -0.78 0.59 -0.66 -1.61 0.02 5183.95 1.00\n", - " coefs[21] -0.76 0.60 -0.65 -1.61 0.06 5107.29 1.00\n", - " coefs[22] 0.04 0.06 0.04 -0.06 0.14 931.40 1.00\n", - " coefs[23] 0.12 0.25 0.12 -0.29 0.53 654.15 1.00\n", - " coefs[24] 0.03 0.16 0.03 -0.24 0.28 661.51 1.00\n", - " coefs[25] 0.02 0.24 0.02 -0.38 0.39 640.94 1.00\n", - " coefs[26] 0.08 0.18 0.08 -0.22 0.38 650.77 1.00\n", - " coefs[27] -0.72 0.61 -0.60 -1.59 0.13 5054.07 1.00\n", - " coefs[28] 0.02 1.00 0.02 -1.60 1.71 12236.32 1.00\n", - " coefs[29] 0.05 0.08 0.05 -0.08 0.18 716.26 1.00\n", - " coefs[30] 0.07 0.09 0.07 -0.09 0.21 819.35 1.00\n", - " coefs[31] -0.76 0.58 -0.63 -1.63 0.05 5197.70 1.00\n", - " coefs[32] 0.11 0.09 0.11 -0.04 0.25 664.44 1.00\n", - " coefs[33] 0.15 0.13 0.16 -0.07 0.37 636.44 1.00\n", - " coefs[34] 0.08 0.05 0.08 0.00 0.16 913.04 1.00\n", - " coefs[35] 0.38 0.25 0.38 -0.04 0.76 631.09 1.00\n", - " coefs[36] 0.41 0.32 0.42 -0.11 0.91 625.04 1.00\n", - " coefs[37] 0.16 0.20 0.17 -0.17 0.47 634.99 1.00\n", - " coefs[38] -0.01 0.05 -0.01 -0.10 0.07 1734.43 1.00\n", - " coefs[39] 0.06 0.08 0.06 -0.07 0.18 733.19 1.00\n", - " coefs[40] 0.05 0.05 0.05 -0.03 0.13 751.19 1.00\n", - " coefs[41] -0.77 0.58 -0.64 -1.64 0.04 5405.80 1.00\n", - " coefs[42] 0.13 0.42 0.13 -0.55 0.82 630.46 1.00\n", - " coefs[43] 0.06 0.24 0.07 -0.32 0.44 631.90 1.00\n", - " coefs[44] 0.19 0.22 0.19 -0.18 0.53 624.94 1.00\n", - " coefs[45] 0.17 0.30 0.17 -0.33 0.65 625.77 1.00\n", - " coefs[46] 0.25 0.28 0.25 -0.22 0.70 622.20 1.00\n", - " coefs[47] -0.12 0.09 -0.12 -0.25 0.03 1352.86 1.00\n", - " coefs[48] -0.07 0.06 -0.07 -0.17 0.04 690.67 1.00\n", - " coefs[49] 0.01 0.03 0.01 -0.04 0.06 2201.81 1.00\n", - " coefs[50] -0.85 0.58 -0.73 -1.68 -0.07 4536.52 1.00\n", - " coefs[51] -0.07 0.17 -0.07 -0.36 0.19 638.33 1.00\n", - " coefs[52] -0.06 0.16 -0.05 -0.32 0.21 633.89 1.00\n", - " coefs[53] -0.13 0.13 -0.12 -0.34 0.08 644.18 1.00\n", - " coefs[54] -1.83 0.20 -1.82 -2.15 -1.50 4430.47 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 06 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.95 0.06 1.95 1.85 2.05 10029.37 1.00\n", - " coefs[1] -0.08 0.04 -0.08 -0.14 -0.02 12149.78 1.00\n", - " coefs[2] -0.07 0.07 -0.07 -0.18 0.04 3538.75 1.00\n", - " coefs[3] -0.28 0.03 -0.28 -0.33 -0.23 7831.87 1.00\n", - " coefs[4] -0.08 0.04 -0.08 -0.13 -0.02 8546.42 1.00\n", - " coefs[5] -0.15 0.03 -0.15 -0.20 -0.10 11509.36 1.00\n", - " coefs[6] 0.22 0.26 0.21 -0.20 0.65 2659.06 1.00\n", - " coefs[7] -0.68 0.16 -0.68 -0.94 -0.42 2786.69 1.00\n", - " coefs[8] 0.62 0.30 0.61 0.14 1.13 2692.12 1.00\n", - " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 12142.73 1.00\n", - " coefs[10] 0.44 0.66 0.43 -0.66 1.52 3204.45 1.00\n", - " coefs[11] -0.03 0.29 -0.03 -0.53 0.44 3207.91 1.00\n", - " coefs[12] 0.10 0.66 0.10 -1.00 1.17 3206.53 1.00\n", - " coefs[13] -1.07 0.62 -1.02 -2.08 -0.09 4936.60 1.00\n", - " coefs[14] -0.47 0.68 -0.35 -1.47 0.58 5590.17 1.00\n", - " coefs[15] -0.79 0.57 -0.68 -1.63 0.08 4904.63 1.00\n", - " coefs[16] -0.73 0.57 -0.62 -1.60 0.10 5217.49 1.00\n", - " coefs[17] 0.01 0.16 0.01 -0.25 0.27 685.60 1.00\n", - " coefs[18] -0.53 0.66 -0.41 -1.55 0.43 5794.67 1.00\n", - " coefs[19] -0.45 0.68 -0.35 -1.55 0.59 5598.62 1.00\n", - " coefs[20] -0.78 0.58 -0.67 -1.61 0.01 4899.15 1.00\n", - " coefs[21] -0.79 0.59 -0.66 -1.64 0.01 4949.36 1.00\n", - " coefs[22] 0.05 0.05 0.05 -0.04 0.14 761.87 1.00\n", - " coefs[23] 0.13 0.24 0.13 -0.25 0.54 591.47 1.00\n", - " coefs[24] 0.13 0.15 0.13 -0.11 0.38 583.33 1.00\n", - " coefs[25] -0.16 0.23 -0.16 -0.54 0.21 579.37 1.00\n", - " coefs[26] 0.02 0.18 0.02 -0.27 0.30 591.59 1.00\n", - " coefs[27] -0.71 0.62 -0.59 -1.60 0.16 5125.28 1.00\n", - " coefs[28] 0.03 0.99 0.03 -1.60 1.64 11076.76 1.00\n", - " coefs[29] -0.03 0.09 -0.03 -0.17 0.10 762.71 1.00\n", - " coefs[30] 0.05 0.09 0.05 -0.09 0.20 775.29 1.00\n", - " coefs[31] 0.01 0.08 0.01 -0.11 0.13 865.56 1.00\n", - " coefs[32] 0.06 0.09 0.06 -0.08 0.20 593.73 1.00\n", - " coefs[33] 0.14 0.13 0.14 -0.08 0.35 568.23 1.00\n", - " coefs[34] 0.11 0.05 0.10 0.03 0.19 939.36 1.00\n", - " coefs[35] 0.34 0.24 0.34 -0.04 0.73 567.29 1.00\n", - " coefs[36] 0.33 0.31 0.33 -0.16 0.83 557.88 1.00\n", - " coefs[37] 0.18 0.19 0.18 -0.12 0.50 561.91 1.00\n", - " coefs[38] -0.01 0.04 -0.01 -0.07 0.06 987.06 1.00\n", - " coefs[39] 0.03 0.08 0.03 -0.09 0.16 660.49 1.00\n", - " coefs[40] 0.05 0.05 0.05 -0.03 0.13 719.50 1.00\n", - " coefs[41] -0.78 0.58 -0.66 -1.62 0.03 5507.11 1.00\n", - " coefs[42] 0.02 0.41 0.02 -0.66 0.66 565.26 1.00\n", - " coefs[43] 0.03 0.23 0.03 -0.34 0.40 572.24 1.00\n", - " coefs[44] 0.17 0.21 0.17 -0.19 0.49 559.31 1.00\n", - " coefs[45] 0.13 0.29 0.13 -0.35 0.61 560.67 1.00\n", - " coefs[46] 0.23 0.27 0.24 -0.22 0.67 565.95 1.00\n", - " coefs[47] -0.06 0.07 -0.06 -0.18 0.05 932.54 1.00\n", - " coefs[48] -0.08 0.06 -0.08 -0.18 0.02 626.56 1.00\n", - " coefs[49] -0.81 0.60 -0.69 -1.67 -0.00 4698.19 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.69 -0.07 4890.12 1.00\n", - " coefs[51] -0.15 0.17 -0.15 -0.43 0.11 581.16 1.00\n", - " coefs[52] -0.12 0.16 -0.12 -0.37 0.13 576.92 1.00\n", - " coefs[53] -0.13 0.13 -0.13 -0.34 0.07 586.00 1.00\n", - " coefs[54] -1.69 0.18 -1.68 -1.98 -1.39 4293.06 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 07 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.93 0.06 1.93 1.84 2.04 9250.39 1.00\n", - " coefs[1] -0.09 0.03 -0.09 -0.14 -0.03 11900.57 1.00\n", - " coefs[2] -0.07 0.06 -0.07 -0.18 0.03 3382.04 1.00\n", - " coefs[3] -0.30 0.03 -0.30 -0.35 -0.25 7273.45 1.00\n", - " coefs[4] -0.12 0.03 -0.12 -0.18 -0.07 8136.64 1.00\n", - " coefs[5] -0.08 0.03 -0.08 -0.14 -0.03 10454.22 1.00\n", - " coefs[6] 0.18 0.25 0.17 -0.21 0.59 2678.54 1.00\n", - " coefs[7] -0.60 0.15 -0.60 -0.86 -0.37 2847.50 1.00\n", - " coefs[8] 0.58 0.29 0.57 0.13 1.08 2654.20 1.00\n", - " coefs[9] -0.00 0.03 -0.00 -0.05 0.05 11135.80 1.00\n", - " coefs[10] 0.41 0.65 0.40 -0.64 1.49 2891.96 1.00\n", - " coefs[11] -0.05 0.29 -0.06 -0.54 0.40 2908.39 1.00\n", - " coefs[12] 0.12 0.65 0.11 -0.96 1.18 2906.43 1.00\n", - " coefs[13] -1.06 0.62 -1.00 -1.98 0.01 4513.52 1.00\n", - " coefs[14] -0.45 0.68 -0.33 -1.50 0.58 5874.76 1.00\n", - " coefs[15] -0.80 0.56 -0.70 -1.69 0.00 4266.13 1.00\n", - " coefs[16] -0.72 0.59 -0.61 -1.61 0.10 5034.41 1.00\n", - " coefs[17] 0.03 0.17 0.03 -0.25 0.29 583.94 1.01\n", - " coefs[18] -0.55 0.67 -0.42 -1.56 0.41 5785.31 1.00\n", - " coefs[19] -0.45 0.68 -0.36 -1.58 0.56 5403.98 1.00\n", - " coefs[20] -0.76 0.58 -0.65 -1.60 0.04 5347.55 1.00\n", - " coefs[21] -0.00 0.03 0.00 -0.05 0.05 1203.81 1.00\n", - " coefs[22] -0.01 0.07 -0.00 -0.13 0.11 999.08 1.00\n", - " coefs[23] 0.18 0.25 0.19 -0.23 0.60 524.80 1.01\n", - " coefs[24] 0.08 0.16 0.08 -0.19 0.33 540.04 1.01\n", - " coefs[25] -0.14 0.24 -0.14 -0.53 0.25 519.78 1.01\n", - " coefs[26] -0.01 0.18 -0.01 -0.33 0.28 528.60 1.01\n", - " coefs[27] -0.71 0.62 -0.58 -1.60 0.15 5063.80 1.00\n", - " coefs[28] 0.03 0.99 0.03 -1.60 1.66 10397.30 1.00\n", - " coefs[29] 0.04 0.08 0.04 -0.09 0.17 558.96 1.01\n", - " coefs[30] -0.02 0.10 -0.02 -0.19 0.15 764.55 1.01\n", - " coefs[31] -0.03 0.09 -0.03 -0.18 0.13 1073.59 1.00\n", - " coefs[32] 0.06 0.09 0.06 -0.10 0.20 533.20 1.01\n", - " coefs[33] 0.11 0.14 0.12 -0.10 0.34 521.92 1.01\n", - " coefs[34] 0.92 0.59 0.79 0.10 1.77 4646.56 1.00\n", - " coefs[35] 0.33 0.25 0.33 -0.08 0.73 510.92 1.01\n", - " coefs[36] 0.32 0.32 0.32 -0.22 0.83 510.46 1.01\n", - " coefs[37] 0.14 0.20 0.14 -0.21 0.45 510.92 1.01\n", - " coefs[38] -0.07 0.05 -0.07 -0.15 0.01 1144.95 1.00\n", - " coefs[39] -0.07 0.09 -0.07 -0.23 0.07 802.88 1.00\n", - " coefs[40] 0.07 0.05 0.07 -0.01 0.15 590.70 1.01\n", - " coefs[41] -0.78 0.59 -0.65 -1.65 0.04 4782.36 1.00\n", - " coefs[42] 0.05 0.42 0.05 -0.66 0.74 511.47 1.01\n", - " coefs[43] -0.01 0.24 -0.01 -0.41 0.37 519.40 1.01\n", - " coefs[44] 0.16 0.22 0.17 -0.22 0.50 513.40 1.01\n", - " coefs[45] 0.07 0.31 0.08 -0.44 0.56 510.38 1.01\n", - " coefs[46] 0.21 0.29 0.22 -0.27 0.67 508.85 1.01\n", - " coefs[47] -0.85 0.57 -0.73 -1.66 -0.05 4640.92 1.00\n", - " coefs[48] -0.06 0.07 -0.06 -0.17 0.04 567.66 1.01\n", - " coefs[49] -0.80 0.59 -0.68 -1.65 -0.00 4733.44 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.69 -0.08 4562.81 1.00\n", - " coefs[51] -0.14 0.17 -0.14 -0.42 0.15 524.03 1.01\n", - " coefs[52] -0.06 0.16 -0.06 -0.33 0.21 517.19 1.01\n", - " coefs[53] -0.15 0.13 -0.15 -0.36 0.07 522.64 1.01\n", - " coefs[54] -1.70 0.19 -1.69 -1.99 -1.39 3848.03 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 08 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.07 0.06 2.07 1.97 2.17 6006.90 1.00\n", - " coefs[1] -0.08 0.04 -0.08 -0.14 -0.02 6950.95 1.00\n", - " coefs[2] -0.02 0.07 -0.03 -0.15 0.10 2377.69 1.00\n", - " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 5572.29 1.00\n", - " coefs[4] -0.09 0.04 -0.09 -0.15 -0.03 5713.46 1.00\n", - " coefs[5] -0.17 0.03 -0.17 -0.22 -0.11 6679.18 1.00\n", - " coefs[6] 0.41 0.30 0.40 -0.09 0.90 1949.82 1.00\n", - " coefs[7] -0.76 0.18 -0.75 -1.05 -0.45 2055.76 1.00\n", - " coefs[8] 0.82 0.36 0.80 0.25 1.41 1971.61 1.00\n", - " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 7249.79 1.00\n", - " coefs[10] 0.42 0.67 0.41 -0.62 1.57 2239.69 1.00\n", - " coefs[11] -0.09 0.30 -0.10 -0.58 0.39 2251.76 1.00\n", - " coefs[12] 0.11 0.67 0.10 -0.95 1.24 2239.80 1.00\n", - " coefs[13] -0.98 0.63 -0.92 -1.95 0.06 3243.72 1.00\n", - " coefs[14] -0.47 0.66 -0.37 -1.53 0.52 3707.25 1.00\n", - " coefs[15] -0.78 0.57 -0.67 -1.66 0.05 2946.07 1.00\n", - " coefs[16] -0.73 0.59 -0.61 -1.60 0.13 3752.58 1.00\n", - " coefs[17] -0.13 0.19 -0.13 -0.46 0.16 896.44 1.01\n", - " coefs[18] -0.55 0.67 -0.43 -1.56 0.44 4189.47 1.00\n", - " coefs[19] -0.43 0.68 -0.34 -1.49 0.64 4551.92 1.00\n", - " coefs[20] -0.77 0.59 -0.64 -1.62 0.03 3922.11 1.00\n", - " coefs[21] -0.76 0.59 -0.63 -1.61 0.05 3791.52 1.00\n", - " coefs[22] 0.06 0.06 0.06 -0.03 0.16 903.58 1.01\n", - " coefs[23] 0.10 0.25 0.10 -0.31 0.52 635.36 1.01\n", - " coefs[24] 0.12 0.16 0.12 -0.14 0.38 629.98 1.01\n", - " coefs[25] -0.08 0.24 -0.08 -0.46 0.32 618.53 1.01\n", - " coefs[26] 0.01 0.18 0.01 -0.30 0.30 621.07 1.01\n", - " coefs[27] -0.70 0.62 -0.57 -1.61 0.16 3618.38 1.00\n", - " coefs[28] -0.77 0.60 -0.65 -1.61 0.03 3809.29 1.00\n", - " coefs[29] 0.08 0.08 0.08 -0.06 0.20 692.94 1.01\n", - " coefs[30] 0.11 0.09 0.11 -0.03 0.26 679.52 1.01\n", - " coefs[31] -0.75 0.58 -0.64 -1.60 0.07 3537.22 1.00\n", - " coefs[32] 0.12 0.09 0.12 -0.03 0.27 646.89 1.01\n", - " coefs[33] 0.19 0.13 0.19 -0.03 0.41 619.62 1.01\n", - " coefs[34] 0.10 0.05 0.10 0.01 0.18 970.71 1.00\n", - " coefs[35] 0.35 0.25 0.35 -0.04 0.77 606.18 1.01\n", - " coefs[36] 0.38 0.32 0.37 -0.14 0.90 604.82 1.01\n", - " coefs[37] 0.18 0.20 0.18 -0.14 0.51 610.69 1.01\n", - " coefs[38] -0.77 0.57 -0.66 -1.58 0.02 3904.29 1.00\n", - " coefs[39] 0.01 0.08 0.01 -0.12 0.14 724.62 1.01\n", - " coefs[40] 0.03 0.05 0.03 -0.06 0.11 746.12 1.01\n", - " coefs[41] 0.04 0.06 0.04 -0.05 0.13 959.08 1.00\n", - " coefs[42] 0.10 0.42 0.10 -0.55 0.84 605.63 1.01\n", - " coefs[43] 0.05 0.24 0.04 -0.33 0.44 609.63 1.01\n", - " coefs[44] 0.16 0.22 0.16 -0.20 0.52 605.83 1.01\n", - " coefs[45] 0.12 0.30 0.12 -0.40 0.60 602.34 1.01\n", - " coefs[46] 0.26 0.28 0.26 -0.21 0.72 603.36 1.01\n", - " coefs[47] -0.08 0.07 -0.07 -0.19 0.04 976.89 1.00\n", - " coefs[48] -0.12 0.06 -0.12 -0.23 -0.02 677.15 1.01\n", - " coefs[49] -0.02 0.02 -0.02 -0.06 0.02 1377.67 1.00\n", - " coefs[50] -0.84 0.58 -0.71 -1.66 -0.07 3162.14 1.00\n", - " coefs[51] -0.12 0.17 -0.12 -0.39 0.17 616.19 1.01\n", - " coefs[52] -0.11 0.16 -0.11 -0.39 0.15 615.73 1.01\n", - " coefs[53] -0.13 0.13 -0.13 -0.35 0.08 625.27 1.01\n", - " coefs[54] -1.75 0.19 -1.74 -2.05 -1.45 2716.86 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 09 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.01 0.06 2.01 1.91 2.12 9583.20 1.00\n", - " coefs[1] -0.02 0.03 -0.02 -0.08 0.03 12244.17 1.00\n", - " coefs[2] 0.00 0.07 0.00 -0.11 0.12 3899.89 1.00\n", - " coefs[3] -0.32 0.03 -0.32 -0.37 -0.26 7491.94 1.00\n", - " coefs[4] -0.06 0.03 -0.06 -0.11 0.00 8128.73 1.00\n", - " coefs[5] -0.12 0.03 -0.12 -0.17 -0.07 11573.08 1.00\n", - " coefs[6] 0.41 0.27 0.41 -0.01 0.87 3193.36 1.00\n", - " coefs[7] -0.72 0.16 -0.72 -0.99 -0.46 3342.76 1.00\n", - " coefs[8] 0.74 0.31 0.74 0.22 1.25 3174.21 1.00\n", - " coefs[9] 0.02 0.03 0.02 -0.03 0.07 11291.83 1.00\n", - " coefs[10] 0.42 0.66 0.41 -0.66 1.50 3092.99 1.00\n", - " coefs[11] -0.07 0.29 -0.07 -0.55 0.41 3105.34 1.00\n", - " coefs[12] 0.08 0.66 0.07 -0.95 1.21 3098.35 1.00\n", - " coefs[13] -0.98 0.63 -0.92 -2.01 0.04 4969.90 1.00\n", - " coefs[14] -0.47 0.66 -0.37 -1.54 0.49 6361.60 1.00\n", - " coefs[15] -0.78 0.57 -0.66 -1.67 0.07 4862.64 1.00\n", - " coefs[16] -0.69 0.58 -0.58 -1.56 0.15 5141.14 1.00\n", - " coefs[17] -0.11 0.19 -0.10 -0.42 0.20 969.52 1.00\n", - " coefs[18] -0.54 0.67 -0.42 -1.59 0.42 5803.27 1.00\n", - " coefs[19] -0.47 0.67 -0.38 -1.52 0.60 5673.56 1.00\n", - " coefs[20] 0.01 0.97 0.01 -1.58 1.61 11893.53 1.00\n", - " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1600.17 1.00\n", - " coefs[22] 0.13 0.05 0.13 0.04 0.21 754.02 1.00\n", - " coefs[23] 0.07 0.25 0.08 -0.35 0.47 676.30 1.00\n", - " coefs[24] 0.05 0.16 0.06 -0.21 0.31 649.22 1.00\n", - " coefs[25] -0.07 0.24 -0.07 -0.45 0.32 638.48 1.00\n", - " coefs[26] 0.04 0.18 0.05 -0.26 0.34 635.07 1.00\n", - " coefs[27] -0.71 0.62 -0.58 -1.60 0.17 5073.59 1.00\n", - " coefs[28] 0.02 1.00 0.02 -1.61 1.64 10606.53 1.00\n", - " coefs[29] 0.07 0.08 0.08 -0.06 0.20 664.51 1.00\n", - " coefs[30] 0.02 0.10 0.02 -0.15 0.19 986.79 1.00\n", - " coefs[31] -0.75 0.58 -0.64 -1.60 0.08 4279.14 1.00\n", - " coefs[32] 0.07 0.09 0.07 -0.08 0.21 654.63 1.00\n", - " coefs[33] 0.15 0.13 0.15 -0.07 0.37 644.38 1.00\n", - " coefs[34] 0.93 0.59 0.81 0.13 1.80 4721.10 1.00\n", - " coefs[35] 0.35 0.25 0.36 -0.05 0.76 626.40 1.00\n", - " coefs[36] 0.32 0.32 0.33 -0.23 0.81 621.11 1.00\n", - " coefs[37] 0.17 0.20 0.18 -0.17 0.49 620.09 1.00\n", - " coefs[38] 0.01 0.04 0.01 -0.05 0.07 942.45 1.00\n", - " coefs[39] 0.05 0.07 0.05 -0.08 0.17 701.99 1.00\n", - " coefs[40] 0.04 0.05 0.04 -0.04 0.13 756.89 1.00\n", - " coefs[41] -0.78 0.59 -0.65 -1.63 0.06 5097.00 1.00\n", - " coefs[42] 0.03 0.42 0.04 -0.69 0.70 616.88 1.00\n", - " coefs[43] 0.00 0.24 0.01 -0.39 0.39 616.74 1.00\n", - " coefs[44] 0.18 0.22 0.18 -0.19 0.53 626.94 1.00\n", - " coefs[45] 0.13 0.30 0.14 -0.38 0.62 622.26 1.00\n", - " coefs[46] 0.23 0.28 0.23 -0.25 0.69 622.08 1.00\n", - " coefs[47] -0.09 0.09 -0.09 -0.23 0.05 1262.87 1.00\n", - " coefs[48] -0.05 0.06 -0.05 -0.15 0.05 672.90 1.00\n", - " coefs[49] -0.80 0.59 -0.69 -1.66 -0.01 4912.08 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.68 -0.08 4527.27 1.00\n", - " coefs[51] -0.11 0.17 -0.11 -0.39 0.17 629.31 1.00\n", - " coefs[52] -0.13 0.16 -0.13 -0.40 0.13 621.60 1.00\n", - " coefs[53] -0.20 0.13 -0.20 -0.42 0.01 630.94 1.00\n", - " coefs[54] -1.72 0.19 -1.70 -2.04 -1.42 3986.73 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 10 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.87 0.06 1.87 1.77 1.97 9851.85 1.00\n", - " coefs[1] -0.05 0.03 -0.05 -0.11 0.00 12023.27 1.00\n", - " coefs[2] -0.08 0.07 -0.08 -0.19 0.03 3664.70 1.00\n", - " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 8152.42 1.00\n", - " coefs[4] -0.11 0.03 -0.11 -0.17 -0.05 9085.34 1.00\n", - " coefs[5] -0.16 0.03 -0.16 -0.21 -0.11 11119.98 1.00\n", - " coefs[6] 0.03 0.25 0.02 -0.38 0.44 2855.36 1.00\n", - " coefs[7] -0.55 0.15 -0.54 -0.80 -0.30 3027.65 1.00\n", - " coefs[8] 0.36 0.29 0.36 -0.12 0.83 2848.40 1.00\n", - " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 12091.31 1.00\n", - " coefs[10] 0.39 0.65 0.38 -0.70 1.43 3073.54 1.00\n", - " coefs[11] -0.03 0.29 -0.03 -0.50 0.45 3091.90 1.00\n", - " coefs[12] 0.12 0.65 0.11 -0.96 1.17 3077.49 1.00\n", - " coefs[13] -1.03 0.63 -0.97 -2.05 -0.03 5086.29 1.00\n", - " coefs[14] -0.46 0.67 -0.36 -1.52 0.54 5767.73 1.00\n", - " coefs[15] -0.81 0.58 -0.70 -1.70 0.02 4429.92 1.00\n", - " coefs[16] -0.75 0.58 -0.64 -1.62 0.10 5020.30 1.00\n", - " coefs[17] -0.05 0.17 -0.05 -0.32 0.23 634.36 1.00\n", - " coefs[18] -0.58 0.65 -0.47 -1.57 0.38 5653.50 1.00\n", - " coefs[19] -0.49 0.68 -0.39 -1.57 0.56 5316.42 1.00\n", - " coefs[20] -0.76 0.60 -0.64 -1.62 0.04 5141.74 1.00\n", - " coefs[21] 0.00 0.03 0.01 -0.04 0.06 1175.81 1.00\n", - " coefs[22] 0.09 0.05 0.09 0.00 0.17 589.10 1.00\n", - " coefs[23] 0.01 0.25 0.01 -0.39 0.42 537.95 1.00\n", - " coefs[24] -0.03 0.16 -0.03 -0.29 0.23 562.57 1.00\n", - " coefs[25] -0.04 0.23 -0.04 -0.42 0.34 508.79 1.01\n", - " coefs[26] -0.02 0.18 -0.02 -0.34 0.25 517.53 1.00\n", - " coefs[27] -0.73 0.61 -0.61 -1.61 0.13 4770.04 1.00\n", - " coefs[28] 0.02 0.99 0.03 -1.55 1.72 10221.27 1.00\n", - " coefs[29] 0.04 0.08 0.04 -0.08 0.17 561.90 1.01\n", - " coefs[30] -0.01 0.10 -0.01 -0.18 0.15 748.10 1.00\n", - " coefs[31] -0.01 0.08 -0.00 -0.13 0.12 783.81 1.00\n", - " coefs[32] 0.08 0.09 0.08 -0.06 0.23 532.06 1.01\n", - " coefs[33] 0.17 0.13 0.17 -0.06 0.37 514.16 1.01\n", - " coefs[34] 0.90 0.60 0.78 0.08 1.75 4699.27 1.00\n", - " coefs[35] 0.28 0.24 0.28 -0.10 0.69 505.90 1.01\n", - " coefs[36] 0.33 0.31 0.34 -0.17 0.84 505.30 1.01\n", - " coefs[37] 0.16 0.19 0.16 -0.16 0.47 503.53 1.01\n", - " coefs[38] -0.02 0.04 -0.02 -0.09 0.04 827.64 1.00\n", - " coefs[39] -0.03 0.08 -0.03 -0.16 0.11 663.60 1.00\n", - " coefs[40] 0.04 0.05 0.04 -0.05 0.12 666.94 1.00\n", - " coefs[41] -0.81 0.59 -0.68 -1.71 -0.03 4477.38 1.00\n", - " coefs[42] 0.06 0.41 0.07 -0.61 0.73 504.16 1.01\n", - " coefs[43] 0.03 0.23 0.04 -0.35 0.41 506.87 1.01\n", - " coefs[44] 0.20 0.21 0.20 -0.14 0.55 502.28 1.01\n", - " coefs[45] 0.08 0.30 0.09 -0.40 0.57 503.49 1.01\n", - " coefs[46] 0.17 0.28 0.18 -0.29 0.62 501.86 1.01\n", - " coefs[47] -0.09 0.07 -0.08 -0.20 0.03 751.62 1.00\n", - " coefs[48] -0.07 0.06 -0.07 -0.17 0.03 553.11 1.00\n", - " coefs[49] -0.79 0.60 -0.68 -1.66 0.01 4806.02 1.00\n", - " coefs[50] -0.83 0.59 -0.70 -1.67 -0.03 4711.38 1.00\n", - " coefs[51] -0.08 0.17 -0.08 -0.36 0.18 505.60 1.01\n", - " coefs[52] -0.06 0.16 -0.06 -0.32 0.19 510.68 1.01\n", - " coefs[53] -0.20 0.13 -0.20 -0.41 0.01 515.18 1.01\n", - " coefs[54] -1.64 0.19 -1.62 -1.93 -1.33 4089.82 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 11 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.92 0.06 1.92 1.82 2.02 10396.90 1.00\n", - " coefs[1] -0.03 0.04 -0.03 -0.08 0.03 11519.16 1.00\n", - " coefs[2] -0.06 0.06 -0.06 -0.16 0.04 4117.58 1.00\n", - " coefs[3] -0.29 0.03 -0.29 -0.35 -0.23 7737.34 1.00\n", - " coefs[4] -0.07 0.04 -0.07 -0.13 -0.01 8773.20 1.00\n", - " coefs[5] -0.17 0.03 -0.18 -0.22 -0.12 11016.25 1.00\n", - " coefs[6] 0.19 0.21 0.18 -0.16 0.50 2829.57 1.00\n", - " coefs[7] -0.59 0.13 -0.58 -0.79 -0.38 3123.90 1.00\n", - " coefs[8] 0.48 0.24 0.46 0.09 0.85 2830.52 1.00\n", - " coefs[9] -0.05 0.03 -0.05 -0.09 0.00 12268.23 1.00\n", - " coefs[10] 0.45 0.66 0.44 -0.64 1.53 3044.65 1.00\n", - " coefs[11] -0.07 0.29 -0.08 -0.56 0.40 3052.36 1.00\n", - " coefs[12] 0.08 0.65 0.07 -1.01 1.15 3041.06 1.00\n", - " coefs[13] -1.03 0.62 -0.97 -2.08 -0.06 4562.95 1.00\n", - " coefs[14] -0.47 0.67 -0.35 -1.55 0.51 5903.18 1.00\n", - " coefs[15] -0.80 0.56 -0.70 -1.67 0.02 4665.74 1.00\n", - " coefs[16] -0.73 0.59 -0.62 -1.63 0.10 4957.23 1.00\n", - " coefs[17] 0.00 0.17 0.00 -0.27 0.28 610.13 1.00\n", - " coefs[18] -0.55 0.66 -0.43 -1.56 0.41 5781.93 1.00\n", - " coefs[19] -0.46 0.67 -0.37 -1.56 0.55 6074.50 1.00\n", - " coefs[20] -0.76 0.59 -0.64 -1.62 0.03 5252.85 1.00\n", - " coefs[21] -0.00 0.03 -0.00 -0.05 0.05 1165.34 1.00\n", - " coefs[22] 0.05 0.05 0.06 -0.04 0.14 680.97 1.00\n", - " coefs[23] 0.09 0.25 0.10 -0.34 0.48 529.12 1.00\n", - " coefs[24] -0.02 0.16 -0.01 -0.27 0.25 558.96 1.00\n", - " coefs[25] -0.03 0.23 -0.02 -0.43 0.35 525.19 1.00\n", - " coefs[26] 0.06 0.18 0.07 -0.23 0.36 518.36 1.00\n", - " coefs[27] -0.72 0.61 -0.59 -1.62 0.13 4954.67 1.00\n", - " coefs[28] 0.02 0.99 0.03 -1.61 1.65 10846.53 1.00\n", - " coefs[29] 0.05 0.08 0.06 -0.08 0.18 563.62 1.00\n", - " coefs[30] -0.05 0.10 -0.04 -0.22 0.11 807.13 1.00\n", - " coefs[31] -0.76 0.58 -0.65 -1.62 0.03 4982.14 1.00\n", - " coefs[32] 0.09 0.09 0.10 -0.06 0.24 543.12 1.00\n", - " coefs[33] 0.14 0.13 0.14 -0.08 0.36 525.64 1.00\n", - " coefs[34] 0.16 0.06 0.15 0.06 0.26 1251.32 1.00\n", - " coefs[35] 0.38 0.25 0.39 -0.01 0.81 516.49 1.00\n", - " coefs[36] 0.34 0.31 0.35 -0.19 0.85 511.53 1.00\n", - " coefs[37] 0.19 0.20 0.19 -0.14 0.51 514.24 1.00\n", - " coefs[38] -0.01 0.04 -0.01 -0.07 0.05 703.70 1.00\n", - " coefs[39] 0.03 0.08 0.03 -0.09 0.16 596.82 1.00\n", - " coefs[40] 0.06 0.05 0.06 -0.02 0.15 671.03 1.00\n", - " coefs[41] -0.79 0.59 -0.67 -1.65 0.02 4996.10 1.00\n", - " coefs[42] 0.08 0.42 0.09 -0.63 0.76 512.64 1.00\n", - " coefs[43] 0.00 0.23 0.01 -0.38 0.40 516.39 1.00\n", - " coefs[44] 0.18 0.22 0.18 -0.18 0.53 514.45 1.00\n", - " coefs[45] 0.15 0.30 0.16 -0.35 0.64 513.91 1.00\n", - " coefs[46] 0.23 0.28 0.24 -0.24 0.69 514.26 1.00\n", - " coefs[47] -0.85 0.57 -0.72 -1.67 -0.04 4633.11 1.00\n", - " coefs[48] -0.08 0.06 -0.08 -0.18 0.03 600.11 1.00\n", - " coefs[49] -0.80 0.60 -0.68 -1.64 0.00 4628.84 1.00\n", - " coefs[50] -0.85 0.58 -0.73 -1.67 -0.09 4617.98 1.00\n", - " coefs[51] -0.10 0.17 -0.09 -0.40 0.17 524.69 1.00\n", - " coefs[52] -0.12 0.16 -0.12 -0.40 0.14 525.01 1.00\n", - " coefs[53] -0.13 0.13 -0.12 -0.34 0.09 532.74 1.00\n", - " coefs[54] -1.74 0.19 -1.73 -2.04 -1.43 3929.35 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 12 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.04 0.06 2.04 1.93 2.14 8304.52 1.00\n", - " coefs[1] -0.01 0.04 -0.01 -0.06 0.06 10118.62 1.00\n", - " coefs[2] -0.12 0.07 -0.11 -0.24 -0.00 3682.19 1.00\n", - " coefs[3] -0.33 0.03 -0.33 -0.39 -0.28 6963.70 1.00\n", - " coefs[4] -0.10 0.03 -0.10 -0.15 -0.04 7744.04 1.00\n", - " coefs[5] -0.15 0.03 -0.15 -0.20 -0.09 10497.57 1.00\n", - " coefs[6] 0.11 0.28 0.11 -0.34 0.58 2964.29 1.00\n", - " coefs[7] -0.58 0.17 -0.58 -0.85 -0.29 3083.36 1.00\n", - " coefs[8] 0.40 0.33 0.39 -0.15 0.92 2948.26 1.00\n", - " coefs[9] 0.01 0.03 0.01 -0.04 0.06 10148.21 1.00\n", - " coefs[10] 0.38 0.65 0.37 -0.72 1.41 3238.54 1.00\n", - " coefs[11] -0.03 0.29 -0.03 -0.51 0.44 3251.02 1.00\n", - " coefs[12] 0.11 0.65 0.11 -0.94 1.19 3237.31 1.00\n", - " coefs[13] -1.00 0.63 -0.94 -2.09 -0.05 4687.49 1.00\n", - " coefs[14] -0.44 0.67 -0.34 -1.50 0.56 6099.61 1.00\n", - " coefs[15] -0.78 0.57 -0.68 -1.63 0.07 4550.37 1.00\n", - " coefs[16] -0.71 0.58 -0.60 -1.61 0.12 4864.50 1.00\n", - " coefs[17] -0.13 0.19 -0.12 -0.45 0.19 940.69 1.00\n", - " coefs[18] -0.54 0.66 -0.43 -1.56 0.40 5805.63 1.00\n", - " coefs[19] -0.45 0.68 -0.35 -1.59 0.55 5277.45 1.00\n", - " coefs[20] -0.78 0.59 -0.66 -1.63 0.02 4861.90 1.00\n", - " coefs[21] -0.78 0.59 -0.66 -1.62 0.03 5058.03 1.00\n", - " coefs[22] 0.10 0.05 0.10 0.02 0.19 791.84 1.00\n", - " coefs[23] 0.10 0.25 0.10 -0.30 0.52 650.30 1.00\n", - " coefs[24] 0.12 0.16 0.12 -0.14 0.38 644.67 1.00\n", - " coefs[25] -0.01 0.24 -0.00 -0.39 0.38 630.09 1.00\n", - " coefs[26] 0.11 0.18 0.12 -0.17 0.43 635.35 1.00\n", - " coefs[27] -0.71 0.62 -0.59 -1.63 0.14 4712.25 1.00\n", - " coefs[28] 0.03 1.00 0.03 -1.60 1.67 10040.11 1.00\n", - " coefs[29] 0.05 0.08 0.05 -0.07 0.18 679.39 1.00\n", - " coefs[30] 0.05 0.09 0.05 -0.10 0.20 786.03 1.00\n", - " coefs[31] -0.75 0.58 -0.63 -1.63 0.06 5149.75 1.00\n", - " coefs[32] 0.09 0.09 0.09 -0.06 0.24 650.45 1.00\n", - " coefs[33] 0.13 0.14 0.13 -0.07 0.37 630.38 1.00\n", - " coefs[34] 0.14 0.06 0.13 0.03 0.24 1370.58 1.00\n", - " coefs[35] 0.35 0.25 0.36 -0.04 0.78 620.21 1.00\n", - " coefs[36] 0.36 0.32 0.36 -0.16 0.89 619.37 1.00\n", - " coefs[37] 0.19 0.20 0.19 -0.15 0.51 624.44 1.00\n", - " coefs[38] -0.04 0.05 -0.03 -0.11 0.04 1296.38 1.00\n", - " coefs[39] 0.01 0.08 0.01 -0.12 0.14 734.11 1.00\n", - " coefs[40] 0.05 0.05 0.05 -0.03 0.14 758.44 1.00\n", - " coefs[41] -0.79 0.59 -0.67 -1.65 0.02 5148.08 1.00\n", - " coefs[42] 0.12 0.43 0.13 -0.57 0.81 620.28 1.00\n", - " coefs[43] 0.03 0.24 0.03 -0.36 0.41 626.67 1.00\n", - " coefs[44] 0.15 0.22 0.16 -0.20 0.52 626.95 1.00\n", - " coefs[45] 0.10 0.31 0.11 -0.38 0.61 624.04 1.00\n", - " coefs[46] 0.22 0.29 0.23 -0.24 0.70 618.56 1.00\n", - " coefs[47] -0.06 0.07 -0.06 -0.18 0.05 994.64 1.00\n", - " coefs[48] -0.12 0.06 -0.12 -0.22 -0.01 668.23 1.00\n", - " coefs[49] -0.79 0.59 -0.68 -1.64 0.00 4915.15 1.00\n", - " coefs[50] -0.84 0.59 -0.71 -1.69 -0.05 4731.62 1.00\n", - " coefs[51] -0.10 0.17 -0.10 -0.37 0.20 629.43 1.00\n", - " coefs[52] -0.05 0.16 -0.04 -0.31 0.22 625.15 1.00\n", - " coefs[53] -0.14 0.13 -0.13 -0.35 0.08 645.94 1.00\n", - " coefs[54] -1.73 0.19 -1.71 -2.03 -1.42 3867.53 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 13 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.06 0.06 2.06 1.96 2.16 10107.97 1.00\n", - " coefs[1] -0.07 0.04 -0.07 -0.12 -0.01 12223.43 1.00\n", - " coefs[2] -0.21 0.07 -0.21 -0.33 -0.08 3247.79 1.00\n", - " coefs[3] -0.34 0.03 -0.34 -0.40 -0.28 7744.39 1.00\n", - " coefs[4] -0.11 0.04 -0.11 -0.17 -0.05 8886.81 1.00\n", - " coefs[5] -0.16 0.03 -0.16 -0.21 -0.11 10594.79 1.00\n", - " coefs[6] -0.08 0.30 -0.08 -0.56 0.41 2710.82 1.00\n", - " coefs[7] -0.52 0.18 -0.52 -0.82 -0.23 2838.19 1.00\n", - " coefs[8] 0.17 0.35 0.17 -0.39 0.74 2697.80 1.00\n", - " coefs[9] -0.04 0.03 -0.04 -0.08 0.02 11093.40 1.00\n", - " coefs[10] 0.41 0.65 0.41 -0.67 1.48 3051.80 1.00\n", - " coefs[11] -0.04 0.29 -0.04 -0.52 0.43 3043.81 1.00\n", - " coefs[12] 0.06 0.65 0.06 -1.06 1.08 3055.42 1.00\n", - " coefs[13] -0.91 0.65 -0.86 -1.95 0.15 4747.74 1.00\n", - " coefs[14] -0.48 0.66 -0.37 -1.53 0.49 5540.97 1.00\n", - " coefs[15] -0.77 0.56 -0.67 -1.63 0.05 4870.06 1.00\n", - " coefs[16] -0.70 0.59 -0.58 -1.59 0.14 4957.56 1.00\n", - " coefs[17] -0.06 0.18 -0.05 -0.34 0.23 543.36 1.01\n", - " coefs[18] -0.56 0.66 -0.44 -1.57 0.40 5806.90 1.00\n", - " coefs[19] -0.49 0.67 -0.39 -1.56 0.58 5841.70 1.00\n", - " coefs[20] -0.77 0.59 -0.65 -1.61 0.01 5195.52 1.00\n", - " coefs[21] 0.01 0.03 0.01 -0.05 0.06 1082.76 1.00\n", - " coefs[22] 0.05 0.06 0.05 -0.04 0.15 592.12 1.01\n", - " coefs[23] -0.10 0.26 -0.10 -0.52 0.32 461.09 1.01\n", - " coefs[24] 0.00 0.16 0.00 -0.26 0.26 453.93 1.01\n", - " coefs[25] -0.07 0.23 -0.07 -0.44 0.32 426.89 1.01\n", - " coefs[26] 0.06 0.18 0.06 -0.25 0.35 434.65 1.01\n", - " coefs[27] -0.72 0.61 -0.61 -1.61 0.14 5038.79 1.00\n", - " coefs[28] 0.02 0.99 0.02 -1.69 1.60 11808.60 1.00\n", - " coefs[29] 0.04 0.08 0.04 -0.10 0.16 486.47 1.01\n", - " coefs[30] -0.09 0.13 -0.08 -0.31 0.10 1023.19 1.01\n", - " coefs[31] 0.02 0.08 0.02 -0.11 0.15 677.56 1.01\n", - " coefs[32] 0.07 0.09 0.08 -0.07 0.22 442.33 1.01\n", - " coefs[33] 0.13 0.13 0.14 -0.08 0.35 431.07 1.01\n", - " coefs[34] 0.91 0.60 0.79 0.11 1.80 5008.02 1.00\n", - " coefs[35] 0.31 0.25 0.31 -0.09 0.70 419.67 1.01\n", - " coefs[36] 0.32 0.31 0.32 -0.21 0.81 421.90 1.01\n", - " coefs[37] 0.18 0.20 0.18 -0.15 0.49 426.28 1.01\n", - " coefs[38] -0.06 0.05 -0.05 -0.13 0.02 1113.26 1.00\n", - " coefs[39] 0.03 0.08 0.03 -0.09 0.16 480.00 1.01\n", - " coefs[40] 0.10 0.05 0.10 0.02 0.19 500.83 1.01\n", - " coefs[41] -0.02 0.07 -0.02 -0.13 0.09 1035.85 1.01\n", - " coefs[42] -0.00 0.42 0.00 -0.70 0.67 423.22 1.01\n", - " coefs[43] -0.02 0.23 -0.02 -0.40 0.36 427.20 1.01\n", - " coefs[44] 0.18 0.22 0.18 -0.17 0.53 421.49 1.01\n", - " coefs[45] 0.07 0.30 0.07 -0.42 0.56 416.39 1.01\n", - " coefs[46] 0.22 0.28 0.22 -0.25 0.66 423.39 1.01\n", - " coefs[47] -0.06 0.07 -0.06 -0.17 0.06 637.28 1.01\n", - " coefs[48] -0.08 0.06 -0.08 -0.19 0.02 457.03 1.01\n", - " coefs[49] -0.81 0.59 -0.69 -1.65 -0.00 4772.50 1.00\n", - " coefs[50] -0.86 0.58 -0.75 -1.69 -0.07 4318.31 1.00\n", - " coefs[51] -0.15 0.17 -0.15 -0.43 0.13 423.95 1.01\n", - " coefs[52] -0.14 0.16 -0.14 -0.39 0.13 434.85 1.01\n", - " coefs[53] -0.20 0.13 -0.19 -0.40 0.02 437.62 1.01\n", - " coefs[54] -1.71 0.19 -1.69 -2.01 -1.41 4099.94 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 14 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.97 0.06 1.97 1.87 2.08 9005.66 1.00\n", - " coefs[1] -0.02 0.03 -0.02 -0.07 0.04 11557.78 1.00\n", - " coefs[2] -0.06 0.07 -0.06 -0.16 0.05 4138.63 1.00\n", - " coefs[3] -0.31 0.03 -0.31 -0.37 -0.26 7839.59 1.00\n", - " coefs[4] -0.08 0.03 -0.08 -0.13 -0.02 8500.08 1.00\n", - " coefs[5] -0.20 0.03 -0.20 -0.25 -0.15 10663.93 1.00\n", - " coefs[6] 0.14 0.25 0.13 -0.25 0.55 3159.51 1.00\n", - " coefs[7] -0.61 0.15 -0.60 -0.85 -0.36 3309.15 1.00\n", - " coefs[8] 0.47 0.29 0.46 -0.03 0.91 3123.20 1.00\n", - " coefs[9] 0.01 0.03 0.01 -0.04 0.05 11937.39 1.00\n", - " coefs[10] 0.43 0.65 0.42 -0.71 1.44 3091.25 1.00\n", - " coefs[11] -0.05 0.29 -0.06 -0.57 0.39 3085.88 1.00\n", - " coefs[12] 0.07 0.65 0.06 -1.03 1.11 3094.82 1.00\n", - " coefs[13] -1.02 0.63 -0.96 -2.08 -0.04 5050.19 1.00\n", - " coefs[14] -0.47 0.68 -0.36 -1.53 0.53 5346.83 1.00\n", - " coefs[15] -0.80 0.57 -0.69 -1.64 0.05 4722.58 1.00\n", - " coefs[16] -0.73 0.59 -0.62 -1.62 0.11 4855.77 1.00\n", - " coefs[17] -0.03 0.18 -0.03 -0.31 0.27 720.50 1.00\n", - " coefs[18] -0.55 0.66 -0.44 -1.55 0.43 6038.97 1.00\n", - " coefs[19] -0.47 0.69 -0.38 -1.51 0.66 5416.81 1.00\n", - " coefs[20] 0.02 0.98 0.01 -1.59 1.63 13208.44 1.00\n", - " coefs[21] 0.02 0.99 0.02 -1.54 1.70 10823.00 1.00\n", - " coefs[22] -0.02 0.07 -0.01 -0.13 0.10 1087.05 1.00\n", - " coefs[23] 0.05 0.25 0.05 -0.36 0.48 562.53 1.00\n", - " coefs[24] -0.06 0.17 -0.06 -0.34 0.21 601.03 1.00\n", - " coefs[25] -0.06 0.24 -0.05 -0.46 0.34 550.41 1.00\n", - " coefs[26] 0.07 0.19 0.07 -0.23 0.38 546.27 1.00\n", - " coefs[27] -0.72 0.61 -0.61 -1.61 0.15 4953.64 1.00\n", - " coefs[28] 0.02 0.99 0.02 -1.57 1.67 10744.99 1.00\n", - " coefs[29] 0.07 0.08 0.07 -0.06 0.20 590.76 1.00\n", - " coefs[30] 0.02 0.10 0.03 -0.14 0.18 710.84 1.00\n", - " coefs[31] -0.78 0.58 -0.66 -1.62 0.05 5056.04 1.00\n", - " coefs[32] 0.04 0.09 0.04 -0.11 0.20 568.43 1.00\n", - " coefs[33] 0.15 0.14 0.15 -0.06 0.39 546.49 1.00\n", - " coefs[34] 0.91 0.59 0.79 0.11 1.78 4921.83 1.00\n", - " coefs[35] 0.35 0.25 0.36 -0.08 0.74 542.19 1.00\n", - " coefs[36] 0.33 0.32 0.33 -0.19 0.88 538.22 1.00\n", - " coefs[37] 0.13 0.20 0.13 -0.19 0.48 539.85 1.00\n", - " coefs[38] 0.02 0.04 0.02 -0.05 0.10 1055.60 1.00\n", - " coefs[39] 0.02 0.08 0.02 -0.11 0.14 606.11 1.00\n", - " coefs[40] 0.05 0.05 0.05 -0.03 0.14 634.23 1.00\n", - " coefs[41] 0.02 0.06 0.03 -0.07 0.12 852.14 1.00\n", - " coefs[42] 0.07 0.43 0.08 -0.65 0.77 540.64 1.00\n", - " coefs[43] -0.04 0.24 -0.04 -0.44 0.35 546.56 1.00\n", - " coefs[44] 0.16 0.22 0.16 -0.19 0.53 536.30 1.00\n", - " coefs[45] 0.11 0.31 0.11 -0.39 0.64 535.15 1.00\n", - " coefs[46] 0.18 0.29 0.18 -0.30 0.65 540.24 1.00\n", - " coefs[47] -0.02 0.06 -0.01 -0.12 0.09 669.38 1.00\n", - " coefs[48] -0.07 0.06 -0.07 -0.18 0.03 578.06 1.00\n", - " coefs[49] -0.79 0.60 -0.68 -1.66 0.02 4966.31 1.00\n", - " coefs[50] -0.84 0.58 -0.71 -1.69 -0.06 5157.37 1.00\n", - " coefs[51] -0.05 0.18 -0.04 -0.34 0.24 549.11 1.00\n", - " coefs[52] -0.13 0.17 -0.13 -0.41 0.13 546.42 1.00\n", - " coefs[53] -0.16 0.13 -0.16 -0.39 0.05 554.62 1.00\n", - " coefs[54] -1.64 0.19 -1.63 -1.95 -1.34 4052.25 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 15 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.05 0.06 2.05 1.94 2.14 9177.00 1.00\n", - " coefs[1] -0.06 0.03 -0.06 -0.12 -0.00 11743.81 1.00\n", - " coefs[2] -0.09 0.07 -0.09 -0.20 0.02 3628.73 1.00\n", - " coefs[3] -0.32 0.03 -0.32 -0.38 -0.27 7842.18 1.00\n", - " coefs[4] -0.08 0.03 -0.08 -0.14 -0.03 8649.39 1.00\n", - " coefs[5] -0.12 0.03 -0.12 -0.18 -0.07 10859.96 1.00\n", - " coefs[6] 0.37 0.27 0.36 -0.08 0.79 2752.83 1.00\n", - " coefs[7] -0.83 0.16 -0.83 -1.09 -0.56 2920.83 1.00\n", - " coefs[8] 0.83 0.31 0.82 0.31 1.33 2750.68 1.00\n", - " coefs[9] -0.03 0.03 -0.03 -0.08 0.02 11841.94 1.00\n", - " coefs[10] 0.40 0.65 0.39 -0.70 1.44 3135.56 1.00\n", - " coefs[11] -0.01 0.29 -0.02 -0.49 0.47 3135.50 1.00\n", - " coefs[12] 0.15 0.65 0.14 -0.89 1.24 3127.87 1.00\n", - " coefs[13] -1.07 0.61 -1.01 -2.06 -0.10 5383.26 1.00\n", - " coefs[14] -0.45 0.66 -0.34 -1.47 0.56 5506.65 1.00\n", - " coefs[15] -0.80 0.57 -0.68 -1.68 0.01 4585.23 1.00\n", - " coefs[16] -0.72 0.59 -0.60 -1.59 0.12 5284.94 1.00\n", - " coefs[17] -0.27 0.22 -0.26 -0.63 0.09 1153.36 1.00\n", - " coefs[18] -0.52 0.67 -0.41 -1.54 0.47 5888.75 1.00\n", - " coefs[19] -0.45 0.68 -0.36 -1.55 0.63 6200.15 1.00\n", - " coefs[20] -0.77 0.59 -0.65 -1.61 0.03 4811.83 1.00\n", - " coefs[21] -0.78 0.59 -0.67 -1.64 0.01 4300.73 1.00\n", - " coefs[22] 0.06 0.06 0.06 -0.04 0.15 790.42 1.01\n", - " coefs[23] 0.22 0.24 0.21 -0.16 0.62 521.03 1.01\n", - " coefs[24] -0.03 0.16 -0.03 -0.28 0.23 561.51 1.01\n", - " coefs[25] -0.05 0.23 -0.05 -0.42 0.32 512.26 1.01\n", - " coefs[26] 0.00 0.18 0.00 -0.28 0.29 515.81 1.01\n", - " coefs[27] -0.71 0.61 -0.59 -1.60 0.13 5153.89 1.00\n", - " coefs[28] 0.02 1.00 0.02 -1.60 1.67 11091.19 1.00\n", - " coefs[29] 0.01 0.08 0.01 -0.12 0.14 604.99 1.01\n", - " coefs[30] -0.09 0.13 -0.08 -0.29 0.12 1242.60 1.00\n", - " coefs[31] 0.04 0.07 0.04 -0.09 0.15 737.77 1.01\n", - " coefs[32] 0.05 0.09 0.05 -0.09 0.19 527.77 1.01\n", - " coefs[33] 0.14 0.13 0.14 -0.06 0.35 518.80 1.01\n", - " coefs[34] 0.92 0.59 0.80 0.10 1.76 4699.77 1.00\n", - " coefs[35] 0.31 0.24 0.31 -0.08 0.70 503.71 1.01\n", - " coefs[36] 0.31 0.31 0.31 -0.20 0.79 506.01 1.01\n", - " coefs[37] 0.10 0.19 0.10 -0.22 0.41 509.89 1.01\n", - " coefs[38] -0.01 0.04 -0.01 -0.08 0.05 903.45 1.01\n", - " coefs[39] 0.05 0.07 0.05 -0.06 0.17 542.48 1.01\n", - " coefs[40] 0.04 0.05 0.04 -0.05 0.12 655.54 1.01\n", - " coefs[41] 0.02 0.05 0.02 -0.07 0.10 905.27 1.01\n", - " coefs[42] 0.04 0.41 0.04 -0.61 0.71 503.61 1.01\n", - " coefs[43] -0.00 0.23 -0.00 -0.37 0.37 512.92 1.01\n", - " coefs[44] 0.16 0.21 0.15 -0.17 0.51 504.57 1.01\n", - " coefs[45] 0.07 0.29 0.07 -0.40 0.55 502.69 1.01\n", - " coefs[46] 0.18 0.27 0.18 -0.25 0.64 506.09 1.01\n", - " coefs[47] -0.07 0.07 -0.07 -0.18 0.04 782.66 1.01\n", - " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 544.83 1.01\n", - " coefs[49] -0.79 0.60 -0.67 -1.63 0.02 4838.35 1.00\n", - " coefs[50] -0.87 0.58 -0.75 -1.69 -0.08 4164.47 1.00\n", - " coefs[51] -0.10 0.17 -0.10 -0.36 0.18 515.73 1.01\n", - " coefs[52] -0.12 0.16 -0.12 -0.38 0.13 507.39 1.01\n", - " coefs[53] -0.19 0.13 -0.19 -0.40 0.01 515.72 1.01\n", - " coefs[54] -1.66 0.18 -1.64 -1.96 -1.36 4343.76 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 16 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.99 0.06 1.99 1.89 2.09 9179.36 1.00\n", - " coefs[1] 0.01 0.03 0.01 -0.05 0.07 10791.72 1.00\n", - " coefs[2] 0.02 0.07 0.02 -0.10 0.14 3510.14 1.00\n", - " coefs[3] -0.36 0.03 -0.36 -0.42 -0.31 7615.67 1.00\n", - " coefs[4] -0.12 0.04 -0.12 -0.18 -0.06 8998.44 1.00\n", - " coefs[5] -0.14 0.03 -0.14 -0.19 -0.09 10867.82 1.00\n", - " coefs[6] 0.50 0.29 0.49 0.02 0.99 2920.24 1.00\n", - " coefs[7] -0.79 0.18 -0.79 -1.08 -0.48 3039.41 1.00\n", - " coefs[8] 0.87 0.35 0.86 0.27 1.42 2922.72 1.00\n", - " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 11173.31 1.00\n", - " coefs[10] 0.46 0.65 0.45 -0.57 1.54 3308.73 1.00\n", - " coefs[11] -0.03 0.29 -0.03 -0.50 0.43 3324.22 1.00\n", - " coefs[12] 0.08 0.65 0.08 -0.96 1.14 3310.11 1.00\n", - " coefs[13] -1.05 0.62 -0.99 -2.00 -0.03 4531.52 1.00\n", - " coefs[14] -0.47 0.67 -0.36 -1.51 0.52 5577.25 1.00\n", - " coefs[15] -0.78 0.58 -0.68 -1.64 0.08 4391.98 1.00\n", - " coefs[16] -0.72 0.59 -0.60 -1.57 0.15 4813.23 1.00\n", - " coefs[17] -0.29 0.22 -0.28 -0.65 0.08 1050.49 1.00\n", - " coefs[18] -0.55 0.67 -0.43 -1.57 0.42 5579.16 1.00\n", - " coefs[19] -0.47 0.68 -0.37 -1.60 0.54 5415.16 1.00\n", - " coefs[20] -0.77 0.59 -0.65 -1.61 0.01 5013.34 1.00\n", - " coefs[21] -0.77 0.59 -0.65 -1.61 0.03 4630.94 1.00\n", - " coefs[22] 0.03 0.06 0.03 -0.06 0.13 831.29 1.00\n", - " coefs[23] 0.12 0.24 0.12 -0.28 0.51 565.03 1.01\n", - " coefs[24] 0.10 0.15 0.11 -0.14 0.36 566.50 1.01\n", - " coefs[25] -0.06 0.23 -0.06 -0.44 0.31 544.78 1.01\n", - " coefs[26] 0.04 0.18 0.04 -0.25 0.33 556.89 1.01\n", - " coefs[27] -0.72 0.61 -0.60 -1.59 0.13 4905.08 1.00\n", - " coefs[28] 0.03 1.00 0.03 -1.59 1.69 10411.65 1.00\n", - " coefs[29] 0.04 0.08 0.04 -0.09 0.17 596.47 1.01\n", - " coefs[30] 0.04 0.09 0.04 -0.11 0.18 684.25 1.00\n", - " coefs[31] 0.04 0.07 0.04 -0.07 0.15 717.08 1.01\n", - " coefs[32] 0.09 0.09 0.10 -0.06 0.23 560.88 1.01\n", - " coefs[33] 0.15 0.13 0.15 -0.06 0.36 550.32 1.01\n", - " coefs[34] 0.90 0.60 0.79 0.09 1.79 4522.53 1.00\n", - " coefs[35] 0.33 0.24 0.33 -0.06 0.72 542.54 1.01\n", - " coefs[36] 0.31 0.31 0.31 -0.19 0.81 538.21 1.01\n", - " coefs[37] 0.17 0.19 0.18 -0.16 0.47 545.27 1.01\n", - " coefs[38] 0.01 0.04 0.01 -0.05 0.07 873.71 1.00\n", - " coefs[39] 0.02 0.08 0.02 -0.11 0.15 679.04 1.00\n", - " coefs[40] 0.02 0.05 0.02 -0.05 0.10 628.08 1.01\n", - " coefs[41] -0.80 0.59 -0.67 -1.67 0.03 4771.75 1.00\n", - " coefs[42] 0.02 0.41 0.03 -0.65 0.68 537.69 1.01\n", - " coefs[43] -0.02 0.23 -0.02 -0.38 0.36 545.99 1.01\n", - " coefs[44] 0.19 0.21 0.19 -0.18 0.51 539.59 1.01\n", - " coefs[45] 0.07 0.30 0.07 -0.41 0.55 540.83 1.01\n", - " coefs[46] 0.22 0.28 0.23 -0.23 0.66 538.97 1.01\n", - " coefs[47] -0.02 0.07 -0.02 -0.13 0.09 789.16 1.00\n", - " coefs[48] -0.06 0.06 -0.06 -0.17 0.04 598.54 1.01\n", - " coefs[49] -0.79 0.60 -0.67 -1.65 0.02 4719.61 1.00\n", - " coefs[50] -0.85 0.58 -0.72 -1.70 -0.07 4374.23 1.00\n", - " coefs[51] -0.10 0.17 -0.10 -0.38 0.17 547.36 1.01\n", - " coefs[52] -0.09 0.16 -0.09 -0.35 0.16 550.52 1.01\n", - " coefs[53] -0.12 0.13 -0.12 -0.33 0.08 546.83 1.01\n", - " coefs[54] -1.68 0.18 -1.67 -1.98 -1.38 3683.28 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 17 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.02 0.06 2.02 1.92 2.12 9825.76 1.00\n", - " coefs[1] -0.05 0.03 -0.05 -0.11 0.01 11491.29 1.00\n", - " coefs[2] -0.12 0.07 -0.12 -0.24 -0.02 4035.17 1.00\n", - " coefs[3] -0.31 0.03 -0.31 -0.37 -0.26 7508.58 1.00\n", - " coefs[4] -0.08 0.03 -0.08 -0.13 -0.02 8850.54 1.00\n", - " coefs[5] -0.12 0.03 -0.12 -0.17 -0.07 10832.36 1.00\n", - " coefs[6] -0.03 0.25 -0.03 -0.43 0.39 3103.03 1.00\n", - " coefs[7] -0.49 0.15 -0.49 -0.74 -0.24 3302.29 1.00\n", - " coefs[8] 0.26 0.29 0.26 -0.20 0.74 3075.37 1.00\n", - " coefs[9] -0.08 0.03 -0.08 -0.12 -0.03 11096.54 1.00\n", - " coefs[10] 0.47 0.64 0.47 -0.61 1.49 3268.81 1.00\n", - " coefs[11] -0.08 0.29 -0.08 -0.59 0.35 3299.38 1.00\n", - " coefs[12] 0.07 0.64 0.06 -1.04 1.07 3296.69 1.00\n", - " coefs[13] -1.04 0.62 -0.98 -2.07 -0.09 4800.78 1.00\n", - " coefs[14] -0.45 0.67 -0.35 -1.51 0.52 5846.17 1.00\n", - " coefs[15] -0.79 0.57 -0.69 -1.62 0.06 4206.97 1.00\n", - " coefs[16] -0.71 0.58 -0.60 -1.58 0.14 5088.30 1.00\n", - " coefs[17] -0.05 0.18 -0.05 -0.33 0.24 599.68 1.01\n", - " coefs[18] -0.53 0.66 -0.41 -1.54 0.45 5927.75 1.00\n", - " coefs[19] -0.47 0.68 -0.37 -1.59 0.58 5998.88 1.00\n", - " coefs[20] -0.78 0.59 -0.67 -1.62 0.01 4825.52 1.00\n", - " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1133.37 1.00\n", - " coefs[22] 0.08 0.05 0.08 -0.01 0.16 589.43 1.01\n", - " coefs[23] 0.15 0.25 0.15 -0.26 0.56 468.13 1.01\n", - " coefs[24] 0.13 0.16 0.13 -0.14 0.37 471.51 1.01\n", - " coefs[25] -0.03 0.23 -0.03 -0.41 0.36 459.24 1.01\n", - " coefs[26] 0.02 0.18 0.02 -0.27 0.33 473.85 1.01\n", - " coefs[27] -0.71 0.62 -0.59 -1.62 0.14 4955.11 1.00\n", - " coefs[28] 0.01 0.99 0.01 -1.53 1.73 10769.97 1.00\n", - " coefs[29] -0.00 0.08 -0.01 -0.13 0.13 522.04 1.01\n", - " coefs[30] 0.11 0.09 0.11 -0.04 0.25 527.10 1.01\n", - " coefs[31] 0.04 0.07 0.04 -0.08 0.16 648.90 1.01\n", - " coefs[32] 0.10 0.09 0.10 -0.04 0.25 479.99 1.01\n", - " coefs[33] 0.12 0.13 0.12 -0.10 0.34 472.55 1.01\n", - " coefs[34] 0.11 0.05 0.11 0.03 0.20 757.54 1.01\n", - " coefs[35] 0.29 0.25 0.29 -0.10 0.70 452.91 1.01\n", - " coefs[36] 0.34 0.31 0.34 -0.21 0.83 453.74 1.01\n", - " coefs[37] 0.16 0.20 0.16 -0.17 0.48 458.11 1.01\n", - " coefs[38] -0.01 0.04 -0.01 -0.08 0.05 759.34 1.01\n", - " coefs[39] -0.03 0.08 -0.03 -0.17 0.10 622.87 1.01\n", - " coefs[40] 0.08 0.05 0.08 -0.00 0.17 627.81 1.01\n", - " coefs[41] -0.78 0.60 -0.66 -1.68 0.02 5038.60 1.00\n", - " coefs[42] -0.02 0.42 -0.02 -0.68 0.70 454.27 1.01\n", - " coefs[43] -0.05 0.23 -0.05 -0.44 0.33 462.64 1.01\n", - " coefs[44] 0.19 0.22 0.18 -0.17 0.54 455.92 1.01\n", - " coefs[45] 0.11 0.30 0.11 -0.40 0.59 455.52 1.01\n", - " coefs[46] 0.20 0.28 0.20 -0.28 0.64 452.79 1.01\n", - " coefs[47] -0.03 0.07 -0.03 -0.14 0.08 647.18 1.01\n", - " coefs[48] -0.09 0.06 -0.09 -0.19 0.02 503.96 1.01\n", - " coefs[49] -0.81 0.59 -0.69 -1.66 -0.01 4790.18 1.00\n", - " coefs[50] -0.85 0.59 -0.73 -1.69 -0.06 4353.25 1.00\n", - " coefs[51] -0.13 0.17 -0.13 -0.41 0.16 465.74 1.01\n", - " coefs[52] -0.13 0.16 -0.13 -0.39 0.14 460.95 1.01\n", - " coefs[53] -0.20 0.13 -0.20 -0.42 0.01 466.41 1.01\n", - " coefs[54] -1.69 0.18 -1.67 -1.97 -1.38 4247.42 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 18 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.01 0.06 2.01 1.91 2.11 9222.07 1.00\n", - " coefs[1] -0.07 0.03 -0.07 -0.13 -0.02 11037.73 1.00\n", - " coefs[2] -0.11 0.06 -0.11 -0.22 -0.01 3896.77 1.00\n", - " coefs[3] -0.38 0.03 -0.38 -0.44 -0.33 7697.55 1.00\n", - " coefs[4] -0.04 0.03 -0.05 -0.10 0.01 8703.86 1.00\n", - " coefs[5] -0.16 0.03 -0.16 -0.21 -0.10 10405.15 1.00\n", - " coefs[6] 0.12 0.23 0.12 -0.24 0.51 2968.23 1.00\n", - " coefs[7] -0.60 0.14 -0.60 -0.83 -0.36 3184.79 1.00\n", - " coefs[8] 0.42 0.27 0.42 -0.02 0.86 2967.49 1.00\n", - " coefs[9] 0.03 0.03 0.03 -0.02 0.08 11147.01 1.00\n", - " coefs[10] 0.44 0.65 0.44 -0.67 1.48 2962.23 1.00\n", - " coefs[11] -0.08 0.29 -0.08 -0.56 0.40 2974.48 1.00\n", - " coefs[12] 0.07 0.65 0.07 -1.00 1.15 2969.88 1.00\n", - " coefs[13] -0.99 0.64 -0.93 -2.05 0.01 4667.16 1.00\n", - " coefs[14] -0.47 0.66 -0.36 -1.50 0.52 5983.57 1.00\n", - " coefs[15] -0.78 0.58 -0.67 -1.66 0.06 4759.51 1.00\n", - " coefs[16] -0.70 0.58 -0.60 -1.57 0.13 5111.37 1.00\n", - " coefs[17] -0.02 0.17 -0.02 -0.30 0.25 723.30 1.01\n", - " coefs[18] -0.53 0.66 -0.41 -1.56 0.42 5519.08 1.00\n", - " coefs[19] -0.47 0.67 -0.38 -1.58 0.55 5869.82 1.00\n", - " coefs[20] -0.78 0.59 -0.67 -1.63 0.01 4721.83 1.00\n", - " coefs[21] -0.77 0.58 -0.66 -1.60 0.03 5203.05 1.00\n", - " coefs[22] 0.08 0.05 0.08 -0.01 0.16 742.09 1.01\n", - " coefs[23] 0.05 0.25 0.05 -0.36 0.45 635.21 1.01\n", - " coefs[24] -0.03 0.16 -0.03 -0.30 0.22 658.36 1.01\n", - " coefs[25] -0.07 0.23 -0.07 -0.46 0.30 612.30 1.01\n", - " coefs[26] 0.04 0.18 0.05 -0.26 0.33 624.90 1.01\n", - " coefs[27] -0.70 0.62 -0.58 -1.60 0.17 5010.88 1.00\n", - " coefs[28] 0.03 1.00 0.03 -1.62 1.66 10001.87 1.00\n", - " coefs[29] 0.03 0.08 0.03 -0.11 0.15 670.66 1.01\n", - " coefs[30] 0.07 0.09 0.07 -0.09 0.21 741.75 1.01\n", - " coefs[31] -0.00 0.08 -0.00 -0.13 0.12 871.75 1.01\n", - " coefs[32] 0.12 0.09 0.12 -0.03 0.26 641.81 1.01\n", - " coefs[33] 0.16 0.13 0.16 -0.06 0.37 606.63 1.01\n", - " coefs[34] 0.15 0.06 0.14 0.05 0.25 1321.74 1.00\n", - " coefs[35] 0.33 0.24 0.33 -0.08 0.71 602.00 1.01\n", - " coefs[36] 0.33 0.31 0.33 -0.17 0.84 599.72 1.01\n", - " coefs[37] 0.18 0.20 0.18 -0.14 0.50 607.37 1.01\n", - " coefs[38] 0.01 0.03 0.01 -0.05 0.07 825.58 1.01\n", - " coefs[39] 0.00 0.08 0.00 -0.12 0.13 688.22 1.01\n", - " coefs[40] 0.03 0.05 0.03 -0.05 0.11 737.72 1.01\n", - " coefs[41] 0.01 0.07 0.02 -0.10 0.12 1492.59 1.00\n", - " coefs[42] 0.02 0.41 0.02 -0.68 0.69 602.54 1.01\n", - " coefs[43] -0.03 0.23 -0.03 -0.42 0.34 613.82 1.01\n", - " coefs[44] 0.19 0.21 0.19 -0.16 0.54 604.50 1.01\n", - " coefs[45] 0.13 0.30 0.14 -0.39 0.59 603.75 1.01\n", - " coefs[46] 0.23 0.28 0.23 -0.23 0.68 609.11 1.01\n", - " coefs[47] -0.07 0.07 -0.06 -0.18 0.05 933.07 1.00\n", - " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 672.42 1.01\n", - " coefs[49] -0.80 0.59 -0.69 -1.65 0.00 4630.65 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.69 -0.08 4276.88 1.00\n", - " coefs[51] -0.07 0.17 -0.07 -0.35 0.21 624.71 1.01\n", - " coefs[52] -0.13 0.16 -0.13 -0.40 0.12 615.24 1.01\n", - " coefs[53] -0.17 0.13 -0.17 -0.38 0.04 608.75 1.01\n", - " coefs[54] -1.65 0.19 -1.64 -1.94 -1.35 3844.77 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 19 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.09 0.06 2.09 1.99 2.20 9900.43 1.00\n", - " coefs[1] -0.09 0.04 -0.09 -0.15 -0.03 12225.38 1.00\n", - " coefs[2] -0.09 0.07 -0.09 -0.21 0.03 3777.37 1.00\n", - " coefs[3] -0.27 0.03 -0.27 -0.32 -0.21 8256.62 1.00\n", - " coefs[4] -0.13 0.04 -0.13 -0.18 -0.07 9095.25 1.00\n", - " coefs[5] -0.20 0.03 -0.20 -0.25 -0.15 11139.58 1.00\n", - " coefs[6] 0.43 0.28 0.42 -0.03 0.90 3032.91 1.00\n", - " coefs[7] -0.85 0.17 -0.84 -1.13 -0.56 3189.63 1.00\n", - " coefs[8] 0.87 0.33 0.86 0.30 1.40 3022.08 1.00\n", - " coefs[9] 0.00 0.03 0.00 -0.05 0.05 12442.31 1.00\n", - " coefs[10] 0.41 0.65 0.40 -0.72 1.41 3331.08 1.00\n", - " coefs[11] -0.06 0.29 -0.07 -0.54 0.41 3341.18 1.00\n", - " coefs[12] 0.12 0.65 0.11 -1.03 1.10 3333.96 1.00\n", - " coefs[13] -1.07 0.61 -1.01 -2.05 -0.08 5218.74 1.00\n", - " coefs[14] -0.46 0.67 -0.35 -1.54 0.52 5822.97 1.00\n", - " coefs[15] -0.79 0.57 -0.68 -1.65 0.06 4591.28 1.00\n", - " coefs[16] -0.72 0.59 -0.61 -1.62 0.14 5379.81 1.00\n", - " coefs[17] 0.00 0.17 0.01 -0.26 0.29 769.45 1.00\n", - " coefs[18] -0.53 0.66 -0.41 -1.56 0.42 6037.22 1.00\n", - " coefs[19] -0.44 0.68 -0.36 -1.52 0.62 6056.28 1.00\n", - " coefs[20] -0.77 0.60 -0.65 -1.63 0.03 4989.46 1.00\n", - " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1593.75 1.00\n", - " coefs[22] 0.09 0.05 0.10 0.01 0.18 737.03 1.00\n", - " coefs[23] 0.20 0.25 0.21 -0.21 0.61 633.08 1.00\n", - " coefs[24] 0.08 0.16 0.09 -0.17 0.34 632.23 1.00\n", - " coefs[25] -0.10 0.24 -0.10 -0.46 0.31 630.33 1.00\n", - " coefs[26] 0.08 0.18 0.08 -0.21 0.39 615.33 1.00\n", - " coefs[27] -0.67 0.63 -0.55 -1.59 0.22 5405.23 1.00\n", - " coefs[28] 0.03 1.00 0.03 -1.67 1.63 11841.95 1.00\n", - " coefs[29] 0.01 0.08 0.01 -0.13 0.13 726.36 1.00\n", - " coefs[30] 0.10 0.09 0.10 -0.05 0.23 715.32 1.00\n", - " coefs[31] -0.03 0.10 -0.02 -0.18 0.13 1298.58 1.00\n", - " coefs[32] 0.06 0.09 0.06 -0.09 0.21 653.45 1.00\n", - " coefs[33] 0.11 0.13 0.11 -0.12 0.32 620.44 1.00\n", - " coefs[34] 0.93 0.59 0.82 0.12 1.77 4759.24 1.00\n", - " coefs[35] 0.35 0.25 0.36 -0.04 0.76 611.41 1.00\n", - " coefs[36] 0.34 0.31 0.35 -0.18 0.84 609.07 1.00\n", - " coefs[37] 0.18 0.20 0.18 -0.16 0.49 617.89 1.00\n", - " coefs[38] -0.01 0.03 -0.01 -0.07 0.05 798.81 1.00\n", - " coefs[39] -0.05 0.09 -0.05 -0.20 0.09 945.47 1.00\n", - " coefs[40] 0.08 0.05 0.08 -0.00 0.16 775.94 1.00\n", - " coefs[41] -0.79 0.59 -0.67 -1.68 0.02 5087.86 1.00\n", - " coefs[42] 0.02 0.42 0.03 -0.65 0.71 610.24 1.00\n", - " coefs[43] 0.01 0.23 0.01 -0.36 0.40 613.65 1.00\n", - " coefs[44] 0.16 0.22 0.16 -0.19 0.52 615.17 1.00\n", - " coefs[45] 0.04 0.30 0.05 -0.46 0.52 611.35 1.00\n", - " coefs[46] 0.18 0.28 0.19 -0.27 0.65 618.14 1.00\n", - " coefs[47] -0.86 0.56 -0.74 -1.70 -0.08 4596.20 1.00\n", - " coefs[48] -0.08 0.06 -0.08 -0.19 0.02 670.20 1.00\n", - " coefs[49] 0.03 1.00 0.04 -1.57 1.71 11583.95 1.00\n", - " coefs[50] -0.87 0.57 -0.76 -1.69 -0.08 4887.46 1.00\n", - " coefs[51] -0.14 0.17 -0.14 -0.41 0.14 618.30 1.00\n", - " coefs[52] -0.19 0.16 -0.19 -0.45 0.08 619.52 1.00\n", - " coefs[53] -0.19 0.13 -0.18 -0.40 0.02 624.71 1.00\n", - " coefs[54] -1.69 0.19 -1.68 -1.99 -1.39 4128.48 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 20 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.89 0.06 1.89 1.79 1.99 9246.42 1.00\n", - " coefs[1] -0.08 0.03 -0.08 -0.13 -0.02 11208.54 1.00\n", - " coefs[2] 0.01 0.06 0.01 -0.09 0.11 3502.44 1.00\n", - " coefs[3] -0.26 0.03 -0.26 -0.32 -0.21 7328.68 1.00\n", - " coefs[4] -0.08 0.04 -0.08 -0.14 -0.02 7942.68 1.00\n", - " coefs[5] -0.11 0.03 -0.11 -0.16 -0.06 11139.29 1.00\n", - " coefs[6] 0.47 0.24 0.45 0.07 0.84 2645.70 1.00\n", - " coefs[7] -0.73 0.15 -0.73 -0.97 -0.49 2807.38 1.00\n", - " coefs[8] 0.85 0.28 0.83 0.40 1.30 2626.09 1.00\n", - " coefs[9] -0.04 0.03 -0.04 -0.09 0.01 12620.86 1.00\n", - " coefs[10] 0.39 0.65 0.38 -0.73 1.44 2934.75 1.00\n", - " coefs[11] -0.04 0.29 -0.04 -0.51 0.45 2942.71 1.00\n", - " coefs[12] 0.11 0.65 0.10 -0.95 1.21 2939.57 1.00\n", - " coefs[13] -0.97 0.64 -0.91 -1.94 0.13 4606.51 1.00\n", - " coefs[14] -0.46 0.66 -0.35 -1.52 0.51 5983.50 1.00\n", - " coefs[15] -0.80 0.57 -0.69 -1.65 0.07 3909.10 1.00\n", - " coefs[16] -0.72 0.58 -0.61 -1.62 0.11 5133.14 1.00\n", - " coefs[17] -0.27 0.23 -0.26 -0.65 0.09 826.22 1.00\n", - " coefs[18] -0.56 0.66 -0.44 -1.59 0.38 5573.30 1.00\n", - " coefs[19] -0.47 0.67 -0.38 -1.56 0.56 5610.96 1.00\n", - " coefs[20] 0.02 0.97 0.02 -1.57 1.63 10854.73 1.00\n", - " coefs[21] 0.01 0.03 0.01 -0.04 0.06 980.00 1.00\n", - " coefs[22] 0.05 0.06 0.05 -0.04 0.15 642.18 1.01\n", - " coefs[23] 0.01 0.25 0.01 -0.39 0.44 445.60 1.01\n", - " coefs[24] -0.04 0.16 -0.04 -0.30 0.23 464.65 1.01\n", - " coefs[25] -0.07 0.23 -0.07 -0.46 0.32 422.35 1.01\n", - " coefs[26] 0.02 0.18 0.02 -0.27 0.33 425.48 1.01\n", - " coefs[27] -0.70 0.61 -0.59 -1.58 0.16 5206.67 1.00\n", - " coefs[28] 0.03 0.99 0.04 -1.55 1.70 10690.05 1.00\n", - " coefs[29] 0.11 0.08 0.11 -0.02 0.23 447.83 1.01\n", - " coefs[30] -0.01 0.10 -0.01 -0.18 0.15 609.85 1.01\n", - " coefs[31] 0.03 0.08 0.03 -0.10 0.15 668.65 1.00\n", - " coefs[32] 0.10 0.09 0.10 -0.05 0.25 435.76 1.01\n", - " coefs[33] 0.15 0.13 0.15 -0.05 0.39 423.61 1.01\n", - " coefs[34] 0.92 0.59 0.80 0.10 1.77 4889.49 1.00\n", - " coefs[35] 0.35 0.24 0.35 -0.05 0.76 416.61 1.01\n", - " coefs[36] 0.32 0.31 0.32 -0.17 0.87 414.14 1.01\n", - " coefs[37] 0.18 0.20 0.18 -0.15 0.50 415.80 1.01\n", - " coefs[38] -0.04 0.05 -0.04 -0.12 0.04 964.69 1.00\n", - " coefs[39] -0.03 0.08 -0.02 -0.17 0.10 572.20 1.01\n", - " coefs[40] 0.07 0.05 0.07 -0.02 0.15 548.93 1.01\n", - " coefs[41] -0.78 0.59 -0.65 -1.66 0.03 4809.95 1.00\n", - " coefs[42] 0.10 0.42 0.10 -0.55 0.84 414.43 1.01\n", - " coefs[43] 0.00 0.23 0.01 -0.36 0.42 420.25 1.01\n", - " coefs[44] 0.18 0.22 0.19 -0.18 0.53 414.59 1.01\n", - " coefs[45] 0.13 0.30 0.13 -0.35 0.65 412.93 1.01\n", - " coefs[46] 0.22 0.28 0.22 -0.25 0.68 414.62 1.01\n", - " coefs[47] -0.12 0.09 -0.12 -0.27 0.01 846.25 1.00\n", - " coefs[48] -0.07 0.06 -0.07 -0.18 0.02 450.84 1.01\n", - " coefs[49] -0.80 0.59 -0.69 -1.64 -0.00 5076.40 1.00\n", - " coefs[50] -0.83 0.58 -0.70 -1.66 -0.04 4703.44 1.00\n", - " coefs[51] -0.10 0.17 -0.10 -0.37 0.19 420.59 1.01\n", - " coefs[52] -0.09 0.16 -0.09 -0.35 0.18 421.82 1.01\n", - " coefs[53] -0.16 0.13 -0.16 -0.38 0.05 430.31 1.01\n", - " coefs[54] -1.71 0.19 -1.70 -2.01 -1.40 3704.67 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 21 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.00 0.06 2.00 1.90 2.10 9762.19 1.00\n", - " coefs[1] -0.15 0.04 -0.15 -0.21 -0.09 11181.90 1.00\n", - " coefs[2] -0.09 0.07 -0.09 -0.21 0.03 3538.15 1.00\n", - " coefs[3] -0.26 0.03 -0.26 -0.31 -0.21 7643.43 1.00\n", - " coefs[4] -0.11 0.03 -0.11 -0.16 -0.05 8365.70 1.00\n", - " coefs[5] -0.09 0.03 -0.09 -0.14 -0.04 10974.91 1.00\n", - " coefs[6] 0.16 0.29 0.16 -0.31 0.64 2862.26 1.00\n", - " coefs[7] -0.60 0.18 -0.60 -0.90 -0.32 2967.20 1.00\n", - " coefs[8] 0.53 0.34 0.52 -0.03 1.09 2843.52 1.00\n", - " coefs[9] 0.04 0.03 0.04 -0.01 0.09 11309.82 1.00\n", - " coefs[10] 0.41 0.65 0.40 -0.67 1.47 3281.18 1.00\n", - " coefs[11] 0.01 0.29 0.01 -0.48 0.47 3284.19 1.00\n", - " coefs[12] 0.09 0.65 0.09 -0.96 1.18 3281.82 1.00\n", - " coefs[13] -1.04 0.62 -0.98 -2.00 -0.03 4929.61 1.00\n", - " coefs[14] -0.45 0.67 -0.34 -1.51 0.55 6576.05 1.00\n", - " coefs[15] -0.80 0.57 -0.69 -1.66 0.04 4629.92 1.00\n", - " coefs[16] -0.70 0.59 -0.59 -1.60 0.15 5257.19 1.00\n", - " coefs[17] -0.06 0.17 -0.06 -0.35 0.21 740.58 1.00\n", - " coefs[18] -0.54 0.66 -0.42 -1.55 0.44 5842.99 1.00\n", - " coefs[19] -0.43 0.67 -0.34 -1.50 0.63 5996.43 1.00\n", - " coefs[20] -0.77 0.59 -0.65 -1.62 0.02 5050.51 1.00\n", - " coefs[21] -0.77 0.60 -0.66 -1.63 0.04 4806.38 1.00\n", - " coefs[22] 0.08 0.05 0.08 -0.01 0.17 781.54 1.00\n", - " coefs[23] 0.14 0.24 0.14 -0.25 0.54 588.58 1.00\n", - " coefs[24] 0.05 0.15 0.05 -0.21 0.30 592.89 1.00\n", - " coefs[25] -0.12 0.23 -0.12 -0.49 0.26 569.03 1.00\n", - " coefs[26] 0.02 0.18 0.02 -0.26 0.32 570.36 1.00\n", - " coefs[27] -0.70 0.62 -0.58 -1.59 0.18 5348.57 1.00\n", - " coefs[28] 0.03 0.99 0.02 -1.56 1.72 10094.24 1.00\n", - " coefs[29] 0.07 0.08 0.07 -0.04 0.21 603.97 1.00\n", - " coefs[30] 0.04 0.09 0.04 -0.12 0.19 749.44 1.00\n", - " coefs[31] -0.00 0.08 0.00 -0.13 0.13 924.25 1.00\n", - " coefs[32] 0.08 0.09 0.08 -0.07 0.22 588.87 1.00\n", - " coefs[33] 0.10 0.13 0.10 -0.11 0.31 568.07 1.00\n", - " coefs[34] 0.14 0.06 0.14 0.04 0.24 1356.03 1.00\n", - " coefs[35] 0.28 0.24 0.28 -0.09 0.69 556.98 1.00\n", - " coefs[36] 0.31 0.31 0.31 -0.18 0.82 553.33 1.00\n", - " coefs[37] 0.17 0.19 0.17 -0.14 0.49 559.88 1.00\n", - " coefs[38] 0.01 0.03 0.01 -0.04 0.07 757.07 1.00\n", - " coefs[39] 0.05 0.07 0.05 -0.07 0.17 647.92 1.00\n", - " coefs[40] 0.04 0.05 0.04 -0.04 0.12 641.85 1.00\n", - " coefs[41] -0.02 0.07 -0.02 -0.13 0.09 1297.18 1.00\n", - " coefs[42] 0.00 0.41 0.00 -0.64 0.69 553.97 1.00\n", - " coefs[43] 0.03 0.23 0.03 -0.34 0.40 559.55 1.00\n", - " coefs[44] 0.19 0.21 0.20 -0.15 0.54 560.54 1.00\n", - " coefs[45] 0.08 0.29 0.08 -0.39 0.56 556.92 1.00\n", - " coefs[46] 0.24 0.28 0.24 -0.18 0.72 555.62 1.00\n", - " coefs[47] -0.08 0.07 -0.08 -0.20 0.03 894.80 1.00\n", - " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 627.40 1.00\n", - " coefs[49] 0.04 1.01 0.03 -1.59 1.70 10909.59 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.69 -0.09 4571.07 1.00\n", - " coefs[51] -0.15 0.17 -0.15 -0.41 0.13 561.78 1.00\n", - " coefs[52] -0.14 0.16 -0.14 -0.39 0.12 562.22 1.00\n", - " coefs[53] -0.17 0.13 -0.17 -0.37 0.05 562.71 1.00\n", - " coefs[54] -1.66 0.18 -1.65 -1.96 -1.38 4130.36 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 22 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.04 0.06 2.04 1.94 2.15 8792.94 1.00\n", - " coefs[1] -0.02 0.04 -0.02 -0.08 0.04 11601.13 1.00\n", - " coefs[2] -0.16 0.07 -0.16 -0.27 -0.05 4312.41 1.00\n", - " coefs[3] -0.32 0.03 -0.32 -0.37 -0.26 6939.66 1.00\n", - " coefs[4] -0.10 0.04 -0.10 -0.16 -0.05 7411.87 1.00\n", - " coefs[5] -0.15 0.03 -0.15 -0.20 -0.10 10025.50 1.00\n", - " coefs[6] -0.04 0.25 -0.04 -0.45 0.37 3331.37 1.00\n", - " coefs[7] -0.57 0.15 -0.57 -0.82 -0.32 3563.81 1.00\n", - " coefs[8] 0.29 0.29 0.29 -0.18 0.78 3339.59 1.00\n", - " coefs[9] 0.04 0.03 0.04 -0.00 0.09 10370.34 1.00\n", - " coefs[10] 0.39 0.66 0.39 -0.69 1.46 3233.84 1.00\n", - " coefs[11] -0.04 0.29 -0.04 -0.54 0.42 3237.79 1.00\n", - " coefs[12] 0.11 0.65 0.11 -1.03 1.12 3237.01 1.00\n", - " coefs[13] -1.01 0.63 -0.95 -2.04 -0.03 4483.64 1.00\n", - " coefs[14] -0.47 0.67 -0.36 -1.52 0.52 5759.36 1.00\n", - " coefs[15] -0.80 0.57 -0.69 -1.65 0.04 4528.41 1.00\n", - " coefs[16] -0.72 0.59 -0.60 -1.60 0.14 4801.30 1.00\n", - " coefs[17] -0.07 0.17 -0.07 -0.35 0.22 832.85 1.00\n", - " coefs[18] -0.53 0.66 -0.42 -1.57 0.40 5510.81 1.00\n", - " coefs[19] -0.47 0.68 -0.37 -1.54 0.60 5378.76 1.00\n", - " coefs[20] 0.02 0.98 0.02 -1.59 1.66 12635.21 1.00\n", - " coefs[21] 0.00 0.03 0.00 -0.05 0.05 1578.97 1.00\n", - " coefs[22] 0.07 0.06 0.07 -0.03 0.15 799.11 1.00\n", - " coefs[23] 0.08 0.25 0.08 -0.32 0.50 631.44 1.00\n", - " coefs[24] 0.03 0.16 0.03 -0.24 0.28 665.12 1.00\n", - " coefs[25] -0.16 0.23 -0.16 -0.52 0.25 629.61 1.00\n", - " coefs[26] 0.02 0.18 0.02 -0.27 0.33 649.75 1.00\n", - " coefs[27] -0.73 0.61 -0.61 -1.62 0.12 4951.62 1.00\n", - " coefs[28] 0.02 0.99 0.02 -1.63 1.60 9968.12 1.00\n", - " coefs[29] 0.04 0.08 0.04 -0.09 0.17 691.13 1.00\n", - " coefs[30] 0.04 0.09 0.04 -0.10 0.20 752.47 1.00\n", - " coefs[31] 0.01 0.08 0.02 -0.12 0.14 1127.34 1.00\n", - " coefs[32] 0.06 0.09 0.06 -0.09 0.20 667.50 1.00\n", - " coefs[33] 0.15 0.13 0.15 -0.07 0.37 635.17 1.00\n", - " coefs[34] 0.14 0.06 0.14 0.04 0.25 1416.76 1.00\n", - " coefs[35] 0.33 0.25 0.33 -0.09 0.72 623.44 1.00\n", - " coefs[36] 0.34 0.32 0.34 -0.16 0.87 612.20 1.00\n", - " coefs[37] 0.15 0.20 0.15 -0.19 0.46 622.84 1.00\n", - " coefs[38] -0.05 0.05 -0.05 -0.13 0.03 1609.92 1.00\n", - " coefs[39] 0.01 0.08 0.01 -0.12 0.14 723.00 1.00\n", - " coefs[40] 0.09 0.05 0.09 0.00 0.17 829.79 1.00\n", - " coefs[41] 0.03 0.05 0.03 -0.05 0.12 884.95 1.00\n", - " coefs[42] 0.05 0.42 0.05 -0.64 0.73 619.81 1.00\n", - " coefs[43] -0.03 0.24 -0.02 -0.43 0.34 621.58 1.00\n", - " coefs[44] 0.15 0.22 0.15 -0.20 0.51 617.23 1.00\n", - " coefs[45] 0.09 0.30 0.09 -0.39 0.60 618.28 1.00\n", - " coefs[46] 0.22 0.28 0.23 -0.23 0.69 608.95 1.00\n", - " coefs[47] -0.02 0.06 -0.02 -0.13 0.08 790.25 1.00\n", - " coefs[48] -0.09 0.06 -0.09 -0.21 0.00 689.44 1.00\n", - " coefs[49] -0.81 0.60 -0.70 -1.67 0.00 4347.16 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.68 -0.08 4436.04 1.00\n", - " coefs[51] -0.14 0.17 -0.13 -0.41 0.15 622.46 1.00\n", - " coefs[52] -0.14 0.16 -0.14 -0.41 0.12 634.06 1.00\n", - " coefs[53] -0.11 0.13 -0.11 -0.32 0.11 641.85 1.00\n", - " coefs[54] -1.65 0.18 -1.63 -1.93 -1.33 3934.98 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 23 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.93 0.06 1.93 1.83 2.03 9689.88 1.00\n", - " coefs[1] -0.05 0.03 -0.05 -0.10 0.01 12545.20 1.00\n", - " coefs[2] -0.02 0.07 -0.02 -0.13 0.09 3898.07 1.00\n", - " coefs[3] -0.27 0.03 -0.27 -0.32 -0.21 7686.11 1.00\n", - " coefs[4] -0.10 0.03 -0.10 -0.16 -0.05 8700.67 1.00\n", - " coefs[5] -0.18 0.03 -0.18 -0.23 -0.13 10401.49 1.00\n", - " coefs[6] 0.26 0.25 0.25 -0.14 0.68 2980.05 1.00\n", - " coefs[7] -0.67 0.15 -0.67 -0.92 -0.42 3112.42 1.00\n", - " coefs[8] 0.57 0.29 0.56 0.11 1.07 2948.98 1.00\n", - " coefs[9] -0.05 0.03 -0.05 -0.10 0.00 12414.78 1.00\n", - " coefs[10] 0.44 0.65 0.43 -0.63 1.52 2846.10 1.00\n", - " coefs[11] -0.01 0.29 -0.02 -0.51 0.45 2871.59 1.00\n", - " coefs[12] 0.10 0.65 0.10 -0.98 1.17 2857.64 1.00\n", - " coefs[13] -1.09 0.63 -1.03 -2.05 -0.01 4990.59 1.00\n", - " coefs[14] -0.47 0.66 -0.36 -1.50 0.54 6165.47 1.00\n", - " coefs[15] -0.81 0.57 -0.71 -1.69 0.02 5048.22 1.00\n", - " coefs[16] -0.75 0.58 -0.64 -1.60 0.08 4824.68 1.00\n", - " coefs[17] -0.16 0.19 -0.15 -0.48 0.13 848.87 1.00\n", - " coefs[18] -0.55 0.66 -0.43 -1.56 0.40 5827.61 1.00\n", - " coefs[19] -0.45 0.67 -0.36 -1.53 0.58 6544.98 1.00\n", - " coefs[20] -0.76 0.59 -0.65 -1.61 0.04 5423.70 1.00\n", - " coefs[21] 0.03 0.04 0.03 -0.03 0.09 1947.02 1.00\n", - " coefs[22] 0.03 0.06 0.03 -0.06 0.13 874.06 1.00\n", - " coefs[23] 0.07 0.24 0.07 -0.32 0.47 585.54 1.00\n", - " coefs[24] -0.02 0.16 -0.02 -0.28 0.23 603.12 1.00\n", - " coefs[25] -0.07 0.23 -0.08 -0.44 0.32 562.41 1.00\n", - " coefs[26] -0.00 0.18 -0.00 -0.28 0.31 574.26 1.00\n", - " coefs[27] -0.62 0.64 -0.50 -1.58 0.31 5547.06 1.00\n", - " coefs[28] 0.02 0.99 0.02 -1.58 1.68 10670.31 1.00\n", - " coefs[29] 0.08 0.08 0.08 -0.04 0.21 627.27 1.00\n", - " coefs[30] 0.01 0.09 0.01 -0.15 0.16 741.73 1.00\n", - " coefs[31] -0.00 0.08 0.00 -0.12 0.13 840.86 1.00\n", - " coefs[32] 0.07 0.09 0.06 -0.08 0.21 588.23 1.00\n", - " coefs[33] 0.17 0.13 0.16 -0.04 0.39 570.20 1.00\n", - " coefs[34] 0.92 0.59 0.80 0.10 1.77 5030.01 1.00\n", - " coefs[35] 0.31 0.24 0.31 -0.08 0.70 559.22 1.00\n", - " coefs[36] 0.30 0.31 0.29 -0.20 0.82 552.54 1.00\n", - " coefs[37] 0.15 0.19 0.14 -0.17 0.47 551.24 1.00\n", - " coefs[38] -0.02 0.04 -0.02 -0.08 0.05 1035.24 1.00\n", - " coefs[39] -0.00 0.08 -0.00 -0.13 0.12 664.01 1.00\n", - " coefs[40] -0.01 0.05 -0.01 -0.09 0.07 667.57 1.00\n", - " coefs[41] -0.03 0.07 -0.02 -0.13 0.09 1390.68 1.00\n", - " coefs[42] 0.02 0.41 0.01 -0.65 0.69 555.94 1.00\n", - " coefs[43] -0.03 0.23 -0.03 -0.42 0.33 561.70 1.00\n", - " coefs[44] 0.16 0.21 0.15 -0.18 0.51 561.34 1.00\n", - " coefs[45] 0.06 0.30 0.06 -0.43 0.54 558.07 1.00\n", - " coefs[46] 0.19 0.28 0.19 -0.27 0.63 558.31 1.00\n", - " coefs[47] -0.10 0.09 -0.10 -0.23 0.05 1359.88 1.00\n", - " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 608.20 1.00\n", - " coefs[49] 0.03 1.00 0.02 -1.51 1.75 12878.55 1.00\n", - " coefs[50] -0.85 0.58 -0.72 -1.68 -0.07 4962.08 1.00\n", - " coefs[51] -0.12 0.17 -0.12 -0.38 0.16 577.83 1.00\n", - " coefs[52] -0.08 0.16 -0.08 -0.35 0.17 562.72 1.00\n", - " coefs[53] -0.11 0.13 -0.11 -0.31 0.10 564.13 1.00\n", - " coefs[54] -1.61 0.18 -1.60 -1.89 -1.29 4385.25 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 24 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.07 0.06 2.07 1.97 2.18 9888.07 1.00\n", - " coefs[1] -0.04 0.04 -0.04 -0.10 0.02 10935.57 1.00\n", - " coefs[2] -0.22 0.07 -0.22 -0.34 -0.10 3416.86 1.00\n", - " coefs[3] -0.30 0.03 -0.30 -0.36 -0.25 8028.48 1.00\n", - " coefs[4] -0.12 0.04 -0.12 -0.18 -0.06 8680.12 1.00\n", - " coefs[5] -0.14 0.03 -0.14 -0.19 -0.08 11561.50 1.00\n", - " coefs[6] -0.11 0.29 -0.11 -0.60 0.36 2742.04 1.00\n", - " coefs[7] -0.47 0.18 -0.47 -0.76 -0.17 2872.73 1.00\n", - " coefs[8] 0.11 0.34 0.11 -0.46 0.65 2724.86 1.00\n", - " coefs[9] -0.05 0.03 -0.05 -0.10 0.00 11593.39 1.00\n", - " coefs[10] 0.46 0.65 0.45 -0.61 1.52 3002.02 1.00\n", - " coefs[11] -0.02 0.29 -0.02 -0.48 0.47 3004.38 1.00\n", - " coefs[12] 0.07 0.65 0.06 -0.97 1.17 2999.89 1.00\n", - " coefs[13] -1.05 0.62 -0.99 -2.05 -0.03 4368.86 1.00\n", - " coefs[14] -0.46 0.68 -0.34 -1.53 0.53 5985.35 1.00\n", - " coefs[15] -0.80 0.57 -0.69 -1.70 0.01 4554.68 1.00\n", - " coefs[16] -0.71 0.60 -0.60 -1.63 0.13 5072.77 1.00\n", - " coefs[17] 0.08 0.16 0.08 -0.17 0.35 613.24 1.00\n", - " coefs[18] -0.56 0.66 -0.44 -1.57 0.41 5692.96 1.00\n", - " coefs[19] -0.46 0.68 -0.37 -1.57 0.59 5682.49 1.00\n", - " coefs[20] -0.78 0.58 -0.67 -1.61 0.01 4910.05 1.00\n", - " coefs[21] -0.00 0.03 0.00 -0.05 0.05 1340.87 1.00\n", - " coefs[22] -0.00 0.07 0.00 -0.12 0.11 1151.16 1.00\n", - " coefs[23] 0.19 0.25 0.19 -0.20 0.61 571.15 1.00\n", - " coefs[24] 0.07 0.15 0.07 -0.18 0.32 570.76 1.00\n", - " coefs[25] -0.12 0.23 -0.12 -0.52 0.25 570.00 1.00\n", - " coefs[26] 0.06 0.18 0.06 -0.24 0.36 570.92 1.00\n", - " coefs[27] -0.71 0.62 -0.59 -1.61 0.14 4857.10 1.00\n", - " coefs[28] 0.03 0.99 0.03 -1.63 1.63 11053.83 1.00\n", - " coefs[29] 0.02 0.08 0.02 -0.10 0.15 601.17 1.00\n", - " coefs[30] 0.08 0.09 0.08 -0.07 0.22 653.46 1.00\n", - " coefs[31] 0.02 0.07 0.02 -0.10 0.14 780.03 1.00\n", - " coefs[32] 0.06 0.09 0.06 -0.09 0.20 587.20 1.00\n", - " coefs[33] 0.11 0.13 0.11 -0.10 0.33 578.82 1.00\n", - " coefs[34] 0.91 0.59 0.78 0.09 1.76 4633.63 1.00\n", - " coefs[35] 0.32 0.24 0.32 -0.10 0.70 562.55 1.00\n", - " coefs[36] 0.24 0.31 0.24 -0.25 0.78 550.52 1.00\n", - " coefs[37] 0.16 0.20 0.16 -0.16 0.48 553.24 1.00\n", - " coefs[38] -0.06 0.04 -0.06 -0.12 0.00 887.46 1.00\n", - " coefs[39] 0.04 0.08 0.04 -0.08 0.17 641.10 1.00\n", - " coefs[40] 0.09 0.05 0.08 0.00 0.16 677.50 1.00\n", - " coefs[41] 0.03 0.05 0.03 -0.06 0.12 940.91 1.00\n", - " coefs[42] -0.06 0.42 -0.06 -0.71 0.66 556.19 1.00\n", - " coefs[43] -0.06 0.23 -0.06 -0.44 0.33 559.39 1.00\n", - " coefs[44] 0.14 0.21 0.14 -0.21 0.50 553.46 1.00\n", - " coefs[45] 0.07 0.30 0.07 -0.43 0.56 553.47 1.00\n", - " coefs[46] 0.20 0.28 0.20 -0.25 0.68 554.58 1.00\n", - " coefs[47] -0.04 0.07 -0.04 -0.15 0.07 783.37 1.00\n", - " coefs[48] -0.11 0.06 -0.11 -0.22 -0.01 604.14 1.00\n", - " coefs[49] -0.81 0.60 -0.68 -1.69 -0.01 4306.68 1.00\n", - " coefs[50] -0.85 0.58 -0.72 -1.68 -0.06 4711.24 1.00\n", - " coefs[51] -0.16 0.17 -0.16 -0.43 0.13 568.23 1.00\n", - " coefs[52] -0.11 0.16 -0.11 -0.38 0.15 568.33 1.00\n", - " coefs[53] -0.16 0.13 -0.16 -0.38 0.05 579.79 1.00\n", - " coefs[54] -1.60 0.18 -1.58 -1.89 -1.30 3802.32 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 25 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.02 0.06 2.02 1.91 2.12 10309.61 1.00\n", - " coefs[1] -0.03 0.03 -0.03 -0.09 0.03 12124.19 1.00\n", - " coefs[2] -0.06 0.07 -0.06 -0.18 0.05 3571.48 1.00\n", - " coefs[3] -0.28 0.03 -0.28 -0.33 -0.22 7482.98 1.00\n", - " coefs[4] -0.14 0.04 -0.14 -0.20 -0.08 8459.79 1.00\n", - " coefs[5] -0.16 0.03 -0.16 -0.21 -0.10 10634.42 1.00\n", - " coefs[6] 0.38 0.27 0.38 -0.08 0.82 2778.57 1.00\n", - " coefs[7] -0.76 0.17 -0.76 -1.02 -0.47 2903.10 1.00\n", - " coefs[8] 0.74 0.32 0.74 0.20 1.26 2757.86 1.00\n", - " coefs[9] 0.02 0.03 0.02 -0.03 0.07 12221.01 1.00\n", - " coefs[10] 0.41 0.65 0.41 -0.69 1.46 3052.96 1.00\n", - " coefs[11] -0.06 0.29 -0.06 -0.53 0.42 3052.24 1.00\n", - " coefs[12] 0.13 0.65 0.12 -0.94 1.21 3059.80 1.00\n", - " coefs[13] -1.04 0.62 -0.98 -2.09 -0.09 4412.03 1.00\n", - " coefs[14] -0.46 0.67 -0.35 -1.53 0.53 5862.03 1.00\n", - " coefs[15] -0.78 0.57 -0.68 -1.65 0.05 5014.93 1.00\n", - " coefs[16] -0.70 0.59 -0.58 -1.58 0.17 5030.84 1.00\n", - " coefs[17] -0.27 0.23 -0.25 -0.61 0.13 1177.44 1.00\n", - " coefs[18] -0.53 0.66 -0.41 -1.54 0.43 5614.50 1.00\n", - " coefs[19] -0.43 0.68 -0.34 -1.54 0.61 5929.27 1.00\n", - " coefs[20] 0.02 0.97 0.01 -1.48 1.69 12485.30 1.00\n", - " coefs[21] -0.00 0.03 0.00 -0.05 0.05 1268.53 1.00\n", - " coefs[22] 0.06 0.05 0.06 -0.03 0.15 729.52 1.00\n", - " coefs[23] 0.19 0.25 0.19 -0.24 0.57 558.82 1.00\n", - " coefs[24] 0.05 0.16 0.05 -0.21 0.31 580.78 1.00\n", - " coefs[25] -0.08 0.23 -0.08 -0.50 0.27 548.09 1.00\n", - " coefs[26] 0.09 0.18 0.09 -0.22 0.38 547.89 1.00\n", - " coefs[27] -0.70 0.61 -0.58 -1.60 0.15 5096.35 1.00\n", - " coefs[28] 0.02 0.99 0.02 -1.66 1.61 10390.05 1.00\n", - " coefs[29] 0.06 0.08 0.06 -0.06 0.19 580.62 1.00\n", - " coefs[30] 0.09 0.09 0.10 -0.05 0.24 628.19 1.00\n", - " coefs[31] -0.75 0.58 -0.63 -1.62 0.07 4801.85 1.00\n", - " coefs[32] 0.09 0.09 0.09 -0.05 0.24 565.21 1.00\n", - " coefs[33] 0.15 0.13 0.16 -0.06 0.37 550.40 1.00\n", - " coefs[34] 0.09 0.05 0.09 0.01 0.18 895.13 1.00\n", - " coefs[35] 0.33 0.24 0.34 -0.07 0.74 535.96 1.00\n", - " coefs[36] 0.32 0.31 0.33 -0.19 0.84 533.22 1.00\n", - " coefs[37] 0.14 0.20 0.14 -0.20 0.45 537.09 1.00\n", - " coefs[38] -0.02 0.04 -0.02 -0.09 0.04 939.95 1.00\n", - " coefs[39] 0.00 0.08 0.00 -0.12 0.13 647.96 1.00\n", - " coefs[40] 0.09 0.06 0.09 0.00 0.18 799.91 1.00\n", - " coefs[41] -0.02 0.07 -0.01 -0.12 0.10 1291.14 1.00\n", - " coefs[42] 0.07 0.42 0.08 -0.62 0.77 533.62 1.00\n", - " coefs[43] -0.02 0.23 -0.01 -0.40 0.37 534.58 1.00\n", - " coefs[44] 0.16 0.22 0.17 -0.20 0.51 534.54 1.00\n", - " coefs[45] 0.09 0.30 0.10 -0.41 0.58 533.79 1.00\n", - " coefs[46] 0.22 0.28 0.23 -0.26 0.66 535.06 1.00\n", - " coefs[47] -0.08 0.07 -0.08 -0.20 0.03 832.04 1.00\n", - " coefs[48] -0.04 0.06 -0.04 -0.15 0.06 617.55 1.00\n", - " coefs[49] -0.81 0.60 -0.69 -1.67 -0.01 4879.90 1.00\n", - " coefs[50] -0.86 0.58 -0.73 -1.68 -0.08 4615.40 1.00\n", - " coefs[51] -0.14 0.17 -0.13 -0.43 0.13 546.89 1.00\n", - " coefs[52] -0.11 0.16 -0.11 -0.38 0.16 536.48 1.00\n", - " coefs[53] -0.18 0.13 -0.18 -0.40 0.03 552.97 1.00\n", - " coefs[54] -1.76 0.19 -1.75 -2.06 -1.45 3911.71 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 26 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.95 0.06 1.95 1.85 2.05 9697.28 1.00\n", - " coefs[1] -0.01 0.03 -0.01 -0.07 0.04 12200.46 1.00\n", - " coefs[2] -0.18 0.07 -0.18 -0.28 -0.07 3835.72 1.00\n", - " coefs[3] -0.30 0.03 -0.30 -0.36 -0.25 7753.40 1.00\n", - " coefs[4] -0.08 0.03 -0.08 -0.14 -0.02 8914.41 1.00\n", - " coefs[5] -0.19 0.03 -0.19 -0.24 -0.13 9799.48 1.00\n", - " coefs[6] -0.44 0.25 -0.44 -0.83 -0.02 3083.93 1.00\n", - " coefs[7] -0.24 0.15 -0.24 -0.48 0.01 3272.49 1.00\n", - " coefs[8] -0.25 0.29 -0.24 -0.73 0.22 3069.29 1.00\n", - " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 11351.99 1.00\n", - " coefs[10] 0.42 0.65 0.41 -0.72 1.42 3244.67 1.00\n", - " coefs[11] -0.03 0.29 -0.03 -0.50 0.46 3259.76 1.00\n", - " coefs[12] 0.12 0.65 0.11 -1.05 1.09 3243.82 1.00\n", - " coefs[13] -1.10 0.62 -1.04 -2.07 -0.06 4756.45 1.00\n", - " coefs[14] -0.46 0.67 -0.35 -1.52 0.52 5832.99 1.00\n", - " coefs[15] -0.81 0.57 -0.70 -1.65 0.03 4664.33 1.00\n", - " coefs[16] -0.72 0.58 -0.60 -1.63 0.09 5437.49 1.00\n", - " coefs[17] -0.01 0.17 -0.01 -0.27 0.27 593.91 1.00\n", - " coefs[18] -0.55 0.66 -0.43 -1.55 0.42 5946.46 1.00\n", - " coefs[19] -0.45 0.69 -0.35 -1.53 0.63 5809.86 1.00\n", - " coefs[20] -0.78 0.59 -0.66 -1.62 0.02 4961.15 1.00\n", - " coefs[21] -0.77 0.58 -0.65 -1.61 0.02 5202.46 1.00\n", - " coefs[22] 0.05 0.05 0.05 -0.03 0.15 658.39 1.00\n", - " coefs[23] 0.17 0.25 0.17 -0.23 0.58 514.11 1.00\n", - " coefs[24] 0.08 0.16 0.08 -0.17 0.34 523.59 1.00\n", - " coefs[25] -0.08 0.24 -0.08 -0.46 0.32 507.06 1.00\n", - " coefs[26] 0.02 0.18 0.02 -0.27 0.32 507.58 1.00\n", - " coefs[27] -0.73 0.61 -0.60 -1.61 0.13 4905.48 1.00\n", - " coefs[28] 0.03 1.00 0.03 -1.60 1.69 10750.90 1.00\n", - " coefs[29] 0.06 0.08 0.06 -0.06 0.19 555.98 1.00\n", - " coefs[30] 0.01 0.10 0.01 -0.15 0.17 672.45 1.00\n", - " coefs[31] 0.01 0.08 0.01 -0.12 0.13 807.56 1.00\n", - " coefs[32] 0.06 0.09 0.06 -0.09 0.21 533.46 1.00\n", - " coefs[33] 0.16 0.13 0.16 -0.07 0.38 508.16 1.00\n", - " coefs[34] 0.93 0.60 0.80 0.11 1.79 4631.74 1.00\n", - " coefs[35] 0.30 0.24 0.30 -0.08 0.73 494.20 1.00\n", - " coefs[36] 0.34 0.31 0.34 -0.15 0.88 494.83 1.00\n", - " coefs[37] 0.15 0.20 0.15 -0.18 0.47 497.12 1.00\n", - " coefs[38] 0.04 0.04 0.04 -0.03 0.11 896.21 1.00\n", - " coefs[39] -0.01 0.08 -0.00 -0.14 0.12 622.27 1.00\n", - " coefs[40] 0.06 0.05 0.06 -0.01 0.15 578.36 1.00\n", - " coefs[41] -0.78 0.58 -0.66 -1.63 0.03 5017.98 1.00\n", - " coefs[42] 0.08 0.42 0.08 -0.62 0.76 493.89 1.00\n", - " coefs[43] 0.03 0.23 0.03 -0.34 0.43 499.52 1.00\n", - " coefs[44] 0.13 0.22 0.13 -0.21 0.50 496.38 1.00\n", - " coefs[45] 0.08 0.30 0.08 -0.44 0.56 492.93 1.00\n", - " coefs[46] 0.20 0.28 0.20 -0.28 0.65 498.64 1.00\n", - " coefs[47] -0.82 0.57 -0.71 -1.67 -0.05 4656.06 1.00\n", - " coefs[48] -0.07 0.06 -0.07 -0.17 0.04 550.33 1.00\n", - " coefs[49] -0.80 0.59 -0.67 -1.65 -0.00 4704.70 1.00\n", - " coefs[50] -0.87 0.58 -0.74 -1.69 -0.07 4427.45 1.00\n", - " coefs[51] -0.11 0.17 -0.11 -0.40 0.17 502.20 1.00\n", - " coefs[52] -0.09 0.16 -0.09 -0.35 0.18 502.02 1.00\n", - " coefs[53] -0.16 0.13 -0.16 -0.38 0.05 512.18 1.00\n", - " coefs[54] -1.68 0.19 -1.66 -1.96 -1.36 3876.22 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 27 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.99 0.06 1.99 1.89 2.09 9664.80 1.00\n", - " coefs[1] -0.06 0.03 -0.06 -0.11 0.00 12273.76 1.00\n", - " coefs[2] -0.00 0.07 -0.00 -0.12 0.12 3990.60 1.00\n", - " coefs[3] -0.33 0.03 -0.33 -0.39 -0.28 8378.52 1.00\n", - " coefs[4] -0.08 0.04 -0.08 -0.14 -0.02 9122.81 1.00\n", - " coefs[5] -0.16 0.03 -0.16 -0.22 -0.11 9835.89 1.00\n", - " coefs[6] 0.43 0.28 0.43 -0.05 0.88 3212.70 1.00\n", - " coefs[7] -0.79 0.17 -0.79 -1.08 -0.52 3328.05 1.00\n", - " coefs[8] 0.87 0.33 0.86 0.31 1.40 3201.38 1.00\n", - " coefs[9] 0.04 0.03 0.04 -0.01 0.09 12410.57 1.00\n", - " coefs[10] 0.39 0.65 0.38 -0.68 1.46 3077.07 1.00\n", - " coefs[11] -0.06 0.29 -0.06 -0.56 0.40 3088.73 1.00\n", - " coefs[12] 0.11 0.65 0.10 -0.94 1.19 3080.15 1.00\n", - " coefs[13] -1.00 0.63 -0.93 -2.05 -0.02 4853.41 1.00\n", - " coefs[14] -0.44 0.67 -0.33 -1.47 0.59 5749.68 1.00\n", - " coefs[15] -0.76 0.57 -0.66 -1.64 0.06 4580.98 1.00\n", - " coefs[16] -0.74 0.58 -0.63 -1.59 0.11 4965.06 1.00\n", - " coefs[17] 0.08 0.16 0.08 -0.20 0.33 757.62 1.00\n", - " coefs[18] -0.54 0.66 -0.42 -1.55 0.42 5849.73 1.00\n", - " coefs[19] -0.45 0.66 -0.36 -1.51 0.59 6230.51 1.00\n", - " coefs[20] -0.76 0.59 -0.64 -1.61 0.03 4981.49 1.00\n", - " coefs[21] 0.03 0.02 0.03 -0.01 0.07 1097.70 1.00\n", - " coefs[22] 0.04 0.06 0.04 -0.05 0.14 997.56 1.00\n", - " coefs[23] 0.11 0.25 0.11 -0.31 0.51 703.71 1.00\n", - " coefs[24] 0.01 0.16 0.01 -0.27 0.25 725.63 1.00\n", - " coefs[25] -0.05 0.23 -0.05 -0.44 0.32 685.14 1.00\n", - " coefs[26] 0.04 0.18 0.04 -0.26 0.33 689.06 1.00\n", - " coefs[27] -0.70 0.63 -0.58 -1.63 0.17 4768.90 1.00\n", - " coefs[28] 0.02 1.00 0.03 -1.60 1.70 11348.00 1.00\n", - " coefs[29] 0.02 0.08 0.02 -0.11 0.15 782.70 1.00\n", - " coefs[30] 0.00 0.10 0.00 -0.17 0.17 1066.32 1.00\n", - " coefs[31] -0.75 0.58 -0.63 -1.61 0.07 4989.76 1.00\n", - " coefs[32] 0.07 0.09 0.07 -0.08 0.21 711.07 1.00\n", - " coefs[33] 0.16 0.13 0.16 -0.06 0.37 689.21 1.00\n", - " coefs[34] 0.15 0.06 0.15 0.04 0.25 1520.05 1.00\n", - " coefs[35] 0.35 0.24 0.35 -0.05 0.75 671.45 1.00\n", - " coefs[36] 0.37 0.31 0.38 -0.15 0.87 674.78 1.00\n", - " coefs[37] 0.16 0.20 0.16 -0.16 0.49 677.33 1.00\n", - " coefs[38] 0.04 0.04 0.04 -0.02 0.10 942.01 1.00\n", - " coefs[39] -0.07 0.09 -0.06 -0.21 0.07 1046.12 1.00\n", - " coefs[40] 0.05 0.05 0.06 -0.03 0.14 837.95 1.00\n", - " coefs[41] -0.79 0.59 -0.66 -1.65 0.04 5069.57 1.00\n", - " coefs[42] 0.09 0.42 0.09 -0.60 0.76 671.11 1.00\n", - " coefs[43] 0.01 0.23 0.01 -0.37 0.40 680.37 1.00\n", - " coefs[44] 0.17 0.21 0.18 -0.18 0.53 673.74 1.00\n", - " coefs[45] 0.12 0.30 0.13 -0.35 0.64 669.63 1.00\n", - " coefs[46] 0.25 0.28 0.25 -0.19 0.73 674.48 1.00\n", - " coefs[47] -0.84 0.58 -0.71 -1.70 -0.04 4818.66 1.00\n", - " coefs[48] -0.05 0.06 -0.05 -0.16 0.05 730.24 1.00\n", - " coefs[49] -0.80 0.60 -0.68 -1.65 0.02 4871.11 1.00\n", - " coefs[50] -0.85 0.58 -0.73 -1.68 -0.08 4482.28 1.00\n", - " coefs[51] -0.10 0.17 -0.10 -0.38 0.17 679.51 1.00\n", - " coefs[52] -0.12 0.16 -0.12 -0.39 0.13 679.23 1.00\n", - " coefs[53] -0.14 0.13 -0.14 -0.35 0.08 691.74 1.00\n", - " coefs[54] -1.77 0.19 -1.76 -2.05 -1.45 4110.31 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 28 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.06 0.06 2.06 1.95 2.16 10589.43 1.00\n", - " coefs[1] -0.01 0.04 -0.01 -0.07 0.05 12371.89 1.00\n", - " coefs[2] -0.00 0.07 -0.00 -0.12 0.12 3405.65 1.00\n", - " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 8382.81 1.00\n", - " coefs[4] -0.10 0.03 -0.10 -0.16 -0.05 9570.33 1.00\n", - " coefs[5] -0.16 0.03 -0.16 -0.22 -0.11 11024.17 1.00\n", - " coefs[6] 0.43 0.29 0.43 -0.05 0.92 2818.87 1.00\n", - " coefs[7] -0.81 0.18 -0.80 -1.10 -0.52 2976.70 1.00\n", - " coefs[8] 0.78 0.34 0.77 0.23 1.36 2826.32 1.00\n", - " coefs[9] 0.01 0.03 0.01 -0.04 0.06 11133.18 1.00\n", - " coefs[10] 0.46 0.65 0.46 -0.62 1.50 3195.00 1.00\n", - " coefs[11] -0.09 0.29 -0.09 -0.56 0.39 3191.49 1.00\n", - " coefs[12] 0.07 0.65 0.06 -0.99 1.13 3197.02 1.00\n", - " coefs[13] -0.99 0.63 -0.93 -2.01 0.02 5157.05 1.00\n", - " coefs[14] -0.46 0.67 -0.35 -1.50 0.55 6122.62 1.00\n", - " coefs[15] -0.78 0.57 -0.67 -1.63 0.08 4822.13 1.00\n", - " coefs[16] -0.72 0.58 -0.60 -1.60 0.12 5059.19 1.00\n", - " coefs[17] -0.10 0.19 -0.09 -0.41 0.20 945.77 1.00\n", - " coefs[18] -0.56 0.66 -0.44 -1.56 0.41 5737.00 1.00\n", - " coefs[19] -0.47 0.68 -0.37 -1.54 0.60 5933.46 1.00\n", - " coefs[20] -0.77 0.59 -0.66 -1.62 0.02 4978.14 1.00\n", - " coefs[21] 0.03 0.03 0.03 -0.02 0.07 1257.64 1.00\n", - " coefs[22] 0.04 0.06 0.04 -0.05 0.13 949.70 1.00\n", - " coefs[23] 0.08 0.24 0.09 -0.31 0.49 632.12 1.00\n", - " coefs[24] -0.02 0.16 -0.02 -0.28 0.24 651.47 1.00\n", - " coefs[25] -0.11 0.23 -0.10 -0.48 0.27 596.53 1.00\n", - " coefs[26] 0.04 0.18 0.04 -0.26 0.32 596.33 1.00\n", - " coefs[27] -0.73 0.62 -0.60 -1.63 0.14 5089.50 1.00\n", - " coefs[28] 0.02 0.99 0.03 -1.63 1.64 10446.30 1.00\n", - " coefs[29] 0.02 0.08 0.02 -0.11 0.14 685.01 1.00\n", - " coefs[30] 0.01 0.10 0.01 -0.16 0.17 939.40 1.00\n", - " coefs[31] -0.03 0.10 -0.02 -0.17 0.13 1350.65 1.00\n", - " coefs[32] 0.05 0.09 0.05 -0.09 0.20 622.62 1.00\n", - " coefs[33] 0.16 0.13 0.16 -0.05 0.38 604.88 1.00\n", - " coefs[34] 0.14 0.06 0.13 0.04 0.24 1503.83 1.00\n", - " coefs[35] 0.34 0.24 0.34 -0.06 0.72 589.40 1.00\n", - " coefs[36] 0.32 0.31 0.33 -0.18 0.83 582.35 1.00\n", - " coefs[37] 0.14 0.19 0.15 -0.17 0.46 591.16 1.00\n", - " coefs[38] -0.03 0.04 -0.02 -0.09 0.04 968.98 1.00\n", - " coefs[39] 0.01 0.08 0.01 -0.12 0.13 743.97 1.00\n", - " coefs[40] 0.02 0.05 0.02 -0.06 0.11 730.94 1.00\n", - " coefs[41] -0.80 0.58 -0.68 -1.68 -0.02 5204.80 1.00\n", - " coefs[42] 0.01 0.41 0.02 -0.67 0.66 584.43 1.00\n", - " coefs[43] -0.07 0.23 -0.07 -0.44 0.30 588.94 1.00\n", - " coefs[44] 0.17 0.21 0.17 -0.18 0.51 582.84 1.00\n", - " coefs[45] 0.17 0.29 0.18 -0.32 0.64 585.86 1.00\n", - " coefs[46] 0.23 0.27 0.23 -0.25 0.65 586.24 1.00\n", - " coefs[47] -0.12 0.09 -0.11 -0.26 0.02 1237.70 1.00\n", - " coefs[48] -0.09 0.06 -0.09 -0.18 0.02 645.34 1.00\n", - " coefs[49] -0.01 0.03 -0.01 -0.05 0.03 1713.26 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.68 -0.07 4466.26 1.00\n", - " coefs[51] -0.12 0.17 -0.11 -0.38 0.16 596.53 1.00\n", - " coefs[52] -0.13 0.16 -0.13 -0.38 0.13 593.47 1.00\n", - " coefs[53] -0.20 0.13 -0.19 -0.41 0.00 611.55 1.00\n", - " coefs[54] -1.71 0.19 -1.70 -2.01 -1.41 4242.11 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 29 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.99 0.06 1.99 1.89 2.09 10281.72 1.00\n", - " coefs[1] -0.08 0.03 -0.08 -0.14 -0.02 11111.60 1.00\n", - " coefs[2] -0.11 0.08 -0.11 -0.24 0.02 3283.15 1.00\n", - " coefs[3] -0.29 0.03 -0.29 -0.34 -0.23 7208.35 1.00\n", - " coefs[4] -0.08 0.03 -0.08 -0.14 -0.03 8500.50 1.00\n", - " coefs[5] -0.10 0.03 -0.10 -0.16 -0.05 11522.62 1.00\n", - " coefs[6] -0.03 0.33 -0.03 -0.58 0.52 2779.03 1.00\n", - " coefs[7] -0.49 0.20 -0.49 -0.83 -0.17 2911.34 1.00\n", - " coefs[8] 0.24 0.39 0.24 -0.44 0.85 2776.23 1.00\n", - " coefs[9] -0.07 0.03 -0.07 -0.11 -0.02 10734.26 1.00\n", - " coefs[10] 0.41 0.65 0.41 -0.67 1.45 3176.70 1.00\n", - " coefs[11] -0.03 0.29 -0.03 -0.51 0.44 3179.52 1.00\n", - " coefs[12] 0.10 0.65 0.09 -0.97 1.16 3177.55 1.00\n", - " coefs[13] -1.00 0.64 -0.94 -2.00 0.02 4659.78 1.00\n", - " coefs[14] -0.46 0.67 -0.35 -1.52 0.54 5589.40 1.00\n", - " coefs[15] -0.80 0.57 -0.70 -1.67 0.03 4418.25 1.00\n", - " coefs[16] -0.72 0.59 -0.60 -1.61 0.12 5208.44 1.00\n", - " coefs[17] -0.17 0.19 -0.16 -0.47 0.15 943.32 1.00\n", - " coefs[18] -0.57 0.66 -0.45 -1.58 0.39 5903.46 1.00\n", - " coefs[19] -0.47 0.69 -0.38 -1.55 0.61 5385.20 1.00\n", - " coefs[20] -0.78 0.59 -0.66 -1.63 0.02 5011.82 1.00\n", - " coefs[21] 0.04 0.03 0.04 -0.01 0.09 1530.86 1.00\n", - " coefs[22] 0.09 0.05 0.09 0.00 0.17 733.93 1.00\n", - " coefs[23] 0.04 0.25 0.04 -0.37 0.44 635.37 1.00\n", - " coefs[24] -0.00 0.16 -0.01 -0.27 0.25 647.37 1.00\n", - " coefs[25] -0.14 0.23 -0.14 -0.51 0.26 626.98 1.00\n", - " coefs[26] 0.02 0.18 0.02 -0.28 0.32 634.01 1.00\n", - " coefs[27] -0.71 0.62 -0.59 -1.61 0.16 4950.71 1.00\n", - " coefs[28] 0.03 0.99 0.03 -1.58 1.65 10491.51 1.00\n", - " coefs[29] 0.08 0.08 0.08 -0.06 0.20 667.60 1.00\n", - " coefs[30] 0.04 0.09 0.04 -0.11 0.19 785.86 1.00\n", - " coefs[31] 0.04 0.07 0.05 -0.07 0.17 933.56 1.00\n", - " coefs[32] 0.07 0.09 0.07 -0.08 0.21 650.23 1.00\n", - " coefs[33] 0.20 0.13 0.20 -0.01 0.43 626.70 1.00\n", - " coefs[34] 0.92 0.59 0.80 0.11 1.77 4818.61 1.00\n", - " coefs[35] 0.31 0.24 0.30 -0.10 0.70 609.88 1.00\n", - " coefs[36] 0.31 0.31 0.31 -0.21 0.82 613.54 1.00\n", - " coefs[37] 0.16 0.20 0.16 -0.16 0.48 621.85 1.00\n", - " coefs[38] -0.02 0.05 -0.02 -0.11 0.06 1553.81 1.00\n", - " coefs[39] 0.01 0.08 0.01 -0.12 0.13 739.41 1.00\n", - " coefs[40] 0.10 0.05 0.10 0.01 0.19 890.30 1.00\n", - " coefs[41] -0.01 0.07 -0.00 -0.12 0.10 1456.92 1.00\n", - " coefs[42] 0.02 0.42 0.01 -0.67 0.69 613.09 1.00\n", - " coefs[43] -0.00 0.23 -0.01 -0.40 0.37 621.98 1.00\n", - " coefs[44] 0.15 0.22 0.15 -0.21 0.50 614.00 1.00\n", - " coefs[45] 0.07 0.30 0.07 -0.43 0.55 621.21 1.00\n", - " coefs[46] 0.19 0.28 0.19 -0.26 0.66 620.99 1.00\n", - " coefs[47] -0.14 0.09 -0.13 -0.28 0.00 1359.24 1.00\n", - " coefs[48] -0.06 0.06 -0.06 -0.16 0.04 644.79 1.00\n", - " coefs[49] -0.82 0.60 -0.70 -1.68 -0.01 4763.74 1.00\n", - " coefs[50] -0.84 0.59 -0.72 -1.69 -0.06 4904.38 1.00\n", - " coefs[51] -0.12 0.17 -0.12 -0.41 0.15 629.04 1.00\n", - " coefs[52] -0.08 0.16 -0.08 -0.34 0.18 630.19 1.00\n", - " coefs[53] -0.17 0.13 -0.17 -0.39 0.03 631.24 1.00\n", - " coefs[54] -1.64 0.19 -1.62 -1.93 -1.34 3831.89 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 30 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.90 0.06 1.90 1.80 2.00 9019.97 1.00\n", - " coefs[1] -0.04 0.03 -0.04 -0.10 0.02 10767.61 1.00\n", - " coefs[2] 0.02 0.07 0.02 -0.10 0.14 3295.95 1.00\n", - " coefs[3] -0.26 0.03 -0.26 -0.32 -0.21 7375.50 1.00\n", - " coefs[4] -0.08 0.04 -0.08 -0.14 -0.02 8457.63 1.00\n", - " coefs[5] -0.14 0.03 -0.14 -0.19 -0.09 10886.68 1.00\n", - " coefs[6] 0.50 0.29 0.50 0.03 0.97 2663.40 1.00\n", - " coefs[7] -0.78 0.18 -0.78 -1.08 -0.50 2793.04 1.00\n", - " coefs[8] 0.88 0.34 0.88 0.30 1.41 2672.27 1.00\n", - " coefs[9] -0.03 0.03 -0.03 -0.07 0.02 10751.40 1.00\n", - " coefs[10] 0.42 0.65 0.41 -0.61 1.51 3393.24 1.00\n", - " coefs[11] -0.02 0.29 -0.02 -0.48 0.47 3406.03 1.00\n", - " coefs[12] 0.07 0.65 0.07 -0.99 1.13 3403.50 1.00\n", - " coefs[13] -1.01 0.63 -0.95 -2.05 -0.03 4984.38 1.00\n", - " coefs[14] -0.46 0.66 -0.36 -1.47 0.53 5921.21 1.00\n", - " coefs[15] -0.78 0.57 -0.67 -1.64 0.05 4545.78 1.00\n", - " coefs[16] -0.73 0.57 -0.61 -1.58 0.10 5089.11 1.00\n", - " coefs[17] -0.14 0.19 -0.14 -0.44 0.17 1126.41 1.00\n", - " coefs[18] -0.55 0.66 -0.44 -1.55 0.41 5515.73 1.00\n", - " coefs[19] -0.47 0.68 -0.37 -1.57 0.56 5501.46 1.00\n", - " coefs[20] -0.77 0.59 -0.65 -1.61 0.03 5123.43 1.00\n", - " coefs[21] -0.76 0.59 -0.64 -1.61 0.05 4825.12 1.00\n", - " coefs[22] 0.02 0.07 0.03 -0.10 0.14 1548.35 1.00\n", - " coefs[23] 0.05 0.25 0.06 -0.35 0.47 783.10 1.00\n", - " coefs[24] 0.08 0.16 0.09 -0.16 0.35 779.21 1.00\n", - " coefs[25] -0.10 0.23 -0.09 -0.49 0.28 756.44 1.00\n", - " coefs[26] -0.00 0.18 0.00 -0.29 0.31 755.12 1.00\n", - " coefs[27] -0.71 0.63 -0.58 -1.63 0.17 4745.70 1.00\n", - " coefs[28] 0.03 1.00 0.03 -1.54 1.73 9981.61 1.00\n", - " coefs[29] 0.05 0.08 0.05 -0.08 0.18 854.92 1.00\n", - " coefs[30] -0.09 0.13 -0.08 -0.28 0.13 1528.49 1.00\n", - " coefs[31] -0.76 0.58 -0.64 -1.61 0.07 4759.95 1.00\n", - " coefs[32] 0.13 0.09 0.13 -0.02 0.27 775.07 1.00\n", - " coefs[33] 0.16 0.13 0.16 -0.05 0.39 764.75 1.00\n", - " coefs[34] 0.91 0.60 0.79 0.08 1.76 4523.52 1.00\n", - " coefs[35] 0.37 0.24 0.37 -0.02 0.79 745.02 1.01\n", - " coefs[36] 0.35 0.31 0.35 -0.13 0.90 743.92 1.00\n", - " coefs[37] 0.19 0.20 0.20 -0.13 0.52 747.52 1.00\n", - " coefs[38] -0.03 0.04 -0.02 -0.09 0.04 1238.03 1.00\n", - " coefs[39] 0.01 0.08 0.02 -0.11 0.14 874.10 1.00\n", - " coefs[40] 0.03 0.05 0.03 -0.06 0.11 917.48 1.00\n", - " coefs[41] 0.01 0.05 0.01 -0.08 0.10 1128.55 1.00\n", - " coefs[42] 0.05 0.41 0.05 -0.64 0.74 740.73 1.00\n", - " coefs[43] -0.04 0.23 -0.04 -0.41 0.36 744.09 1.00\n", - " coefs[44] 0.18 0.21 0.18 -0.16 0.55 748.09 1.00\n", - " coefs[45] 0.15 0.30 0.16 -0.32 0.67 742.57 1.00\n", - " coefs[46] 0.21 0.28 0.22 -0.24 0.68 748.05 1.00\n", - " coefs[47] -0.07 0.07 -0.07 -0.19 0.05 1192.87 1.00\n", - " coefs[48] -0.07 0.06 -0.07 -0.17 0.03 845.74 1.00\n", - " coefs[49] -0.79 0.60 -0.68 -1.65 0.01 5087.76 1.00\n", - " coefs[50] -0.85 0.59 -0.72 -1.69 -0.05 4519.70 1.00\n", - " coefs[51] -0.09 0.17 -0.08 -0.37 0.19 749.63 1.00\n", - " coefs[52] -0.09 0.16 -0.09 -0.38 0.15 752.57 1.00\n", - " coefs[53] -0.13 0.13 -0.13 -0.36 0.07 766.61 1.00\n", - " coefs[54] -1.70 0.19 -1.69 -2.00 -1.40 4002.84 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 31 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.00 0.06 2.00 1.89 2.10 10506.43 1.00\n", - " coefs[1] -0.02 0.04 -0.02 -0.08 0.04 11576.31 1.00\n", - " coefs[2] -0.09 0.07 -0.09 -0.20 0.03 3713.76 1.00\n", - " coefs[3] -0.36 0.03 -0.36 -0.42 -0.31 8843.21 1.00\n", - " coefs[4] -0.05 0.04 -0.05 -0.10 0.01 9500.03 1.00\n", - " coefs[5] -0.09 0.03 -0.09 -0.14 -0.04 10864.35 1.00\n", - " coefs[6] 0.33 0.27 0.32 -0.10 0.76 2852.16 1.00\n", - " coefs[7] -0.76 0.16 -0.75 -1.01 -0.48 2964.01 1.00\n", - " coefs[8] 0.69 0.31 0.68 0.19 1.20 2847.07 1.00\n", - " coefs[9] 0.00 0.03 0.00 -0.05 0.05 11519.52 1.00\n", - " coefs[10] 0.39 0.65 0.39 -0.70 1.46 3245.63 1.00\n", - " coefs[11] -0.02 0.29 -0.02 -0.50 0.46 3261.90 1.00\n", - " coefs[12] 0.11 0.65 0.11 -0.92 1.23 3256.33 1.00\n", - " coefs[13] -1.01 0.63 -0.95 -2.04 -0.03 5056.56 1.00\n", - " coefs[14] -0.46 0.67 -0.35 -1.49 0.54 6112.69 1.00\n", - " coefs[15] -0.78 0.57 -0.68 -1.60 0.08 4585.07 1.00\n", - " coefs[16] -0.72 0.58 -0.61 -1.61 0.11 5040.88 1.00\n", - " coefs[17] -0.26 0.23 -0.25 -0.62 0.12 1111.71 1.00\n", - " coefs[18] -0.54 0.66 -0.42 -1.56 0.42 5994.44 1.00\n", - " coefs[19] -0.45 0.67 -0.35 -1.57 0.57 5768.92 1.00\n", - " coefs[20] -0.78 0.59 -0.66 -1.62 0.01 5062.81 1.00\n", - " coefs[21] -0.77 0.59 -0.65 -1.61 0.02 5297.12 1.00\n", - " coefs[22] 0.06 0.06 0.06 -0.04 0.16 832.32 1.00\n", - " coefs[23] 0.14 0.25 0.14 -0.27 0.54 553.00 1.01\n", - " coefs[24] 0.09 0.16 0.09 -0.18 0.33 554.02 1.01\n", - " coefs[25] -0.12 0.24 -0.12 -0.51 0.26 538.13 1.01\n", - " coefs[26] 0.03 0.18 0.03 -0.28 0.32 545.03 1.01\n", - " coefs[27] -0.68 0.63 -0.56 -1.63 0.18 4961.27 1.00\n", - " coefs[28] 0.03 0.99 0.03 -1.62 1.65 10677.03 1.00\n", - " coefs[29] 0.09 0.08 0.09 -0.04 0.22 593.65 1.01\n", - " coefs[30] 0.07 0.09 0.07 -0.08 0.21 650.49 1.01\n", - " coefs[31] -0.02 0.10 -0.02 -0.18 0.13 1189.70 1.00\n", - " coefs[32] 0.11 0.09 0.11 -0.04 0.25 571.81 1.01\n", - " coefs[33] 0.16 0.13 0.16 -0.06 0.38 540.11 1.01\n", - " coefs[34] 0.15 0.07 0.14 0.04 0.25 1289.56 1.00\n", - " coefs[35] 0.35 0.25 0.35 -0.06 0.74 528.74 1.01\n", - " coefs[36] 0.31 0.31 0.31 -0.22 0.81 527.93 1.01\n", - " coefs[37] 0.15 0.20 0.15 -0.18 0.47 535.58 1.01\n", - " coefs[38] -0.82 0.58 -0.69 -1.66 -0.03 5038.93 1.00\n", - " coefs[39] 0.01 0.08 0.01 -0.12 0.14 632.38 1.01\n", - " coefs[40] 0.07 0.05 0.07 -0.01 0.15 644.97 1.01\n", - " coefs[41] -0.79 0.59 -0.67 -1.66 0.03 4898.98 1.00\n", - " coefs[42] 0.04 0.42 0.05 -0.68 0.69 530.13 1.01\n", - " coefs[43] 0.00 0.23 0.01 -0.38 0.38 535.88 1.01\n", - " coefs[44] 0.18 0.22 0.18 -0.19 0.52 531.17 1.01\n", - " coefs[45] 0.11 0.30 0.11 -0.39 0.60 527.06 1.01\n", - " coefs[46] 0.26 0.28 0.26 -0.21 0.71 527.83 1.01\n", - " coefs[47] -0.04 0.07 -0.04 -0.15 0.07 742.72 1.01\n", - " coefs[48] -0.07 0.06 -0.07 -0.17 0.03 592.25 1.01\n", - " coefs[49] -0.80 0.59 -0.68 -1.65 0.01 4900.71 1.00\n", - " coefs[50] -0.87 0.58 -0.75 -1.71 -0.09 4640.27 1.00\n", - " coefs[51] -0.11 0.17 -0.11 -0.40 0.16 539.58 1.01\n", - " coefs[52] -0.10 0.16 -0.10 -0.38 0.15 540.36 1.01\n", - " coefs[53] -0.17 0.13 -0.17 -0.38 0.04 553.93 1.01\n", - " coefs[54] -1.79 0.19 -1.77 -2.09 -1.49 4183.29 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 32 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.04 0.06 2.04 1.93 2.14 10125.47 1.00\n", - " coefs[1] -0.03 0.04 -0.03 -0.09 0.03 11574.62 1.00\n", - " coefs[2] -0.05 0.08 -0.05 -0.17 0.08 3281.43 1.00\n", - " coefs[3] -0.35 0.03 -0.35 -0.41 -0.29 7593.31 1.00\n", - " coefs[4] -0.07 0.04 -0.07 -0.13 -0.01 8084.89 1.00\n", - " coefs[5] -0.13 0.03 -0.13 -0.19 -0.08 10905.67 1.00\n", - " coefs[6] -0.31 0.31 -0.30 -0.82 0.18 2706.12 1.00\n", - " coefs[7] -0.31 0.19 -0.31 -0.64 -0.02 2873.98 1.00\n", - " coefs[8] -0.05 0.36 -0.04 -0.64 0.54 2711.99 1.00\n", - " coefs[9] -0.03 0.03 -0.03 -0.08 0.01 11662.00 1.00\n", - " coefs[10] 0.36 0.65 0.35 -0.70 1.45 3104.82 1.00\n", - " coefs[11] -0.07 0.29 -0.08 -0.55 0.40 3113.43 1.00\n", - " coefs[12] 0.13 0.65 0.11 -0.91 1.23 3110.90 1.00\n", - " coefs[13] -0.92 0.65 -0.85 -1.98 0.10 4557.60 1.00\n", - " coefs[14] -0.48 0.67 -0.37 -1.53 0.52 5472.45 1.00\n", - " coefs[15] -0.77 0.57 -0.67 -1.66 0.05 4497.69 1.00\n", - " coefs[16] -0.75 0.58 -0.64 -1.60 0.10 5133.58 1.00\n", - " coefs[17] -0.19 0.19 -0.18 -0.49 0.11 650.98 1.00\n", - " coefs[18] -0.56 0.66 -0.45 -1.58 0.38 5533.20 1.00\n", - " coefs[19] -0.48 0.68 -0.39 -1.60 0.56 5797.66 1.00\n", - " coefs[20] -0.77 0.58 -0.65 -1.62 0.02 5225.53 1.00\n", - " coefs[21] 0.85 0.59 0.73 0.05 1.69 4743.33 1.00\n", - " coefs[22] 0.08 0.06 0.08 -0.01 0.17 616.41 1.00\n", - " coefs[23] -0.12 0.26 -0.12 -0.55 0.27 509.35 1.00\n", - " coefs[24] 0.01 0.16 0.01 -0.26 0.26 505.07 1.00\n", - " coefs[25] -0.06 0.23 -0.06 -0.46 0.31 470.64 1.00\n", - " coefs[26] -0.01 0.18 -0.01 -0.32 0.28 466.27 1.00\n", - " coefs[27] -0.73 0.61 -0.61 -1.62 0.11 4885.26 1.00\n", - " coefs[28] 0.02 1.00 0.03 -1.53 1.77 10588.75 1.00\n", - " coefs[29] 0.06 0.08 0.06 -0.07 0.18 499.21 1.00\n", - " coefs[30] 0.00 0.10 0.00 -0.16 0.17 651.77 1.00\n", - " coefs[31] -0.02 0.09 -0.01 -0.17 0.13 974.28 1.00\n", - " coefs[32] 0.13 0.09 0.13 -0.02 0.28 487.05 1.00\n", - " coefs[33] 0.16 0.13 0.16 -0.06 0.37 456.31 1.00\n", - " coefs[34] 0.91 0.59 0.79 0.10 1.78 4689.58 1.00\n", - " coefs[35] 0.36 0.24 0.36 -0.03 0.77 458.75 1.00\n", - " coefs[36] 0.36 0.31 0.36 -0.15 0.86 453.29 1.00\n", - " coefs[37] 0.13 0.20 0.13 -0.18 0.46 457.34 1.00\n", - " coefs[38] 0.00 0.05 0.01 -0.08 0.09 1270.06 1.00\n", - " coefs[39] 0.02 0.08 0.02 -0.10 0.15 528.49 1.00\n", - " coefs[40] 0.06 0.05 0.06 -0.02 0.14 533.76 1.00\n", - " coefs[41] -0.02 0.07 -0.02 -0.13 0.09 1041.39 1.00\n", - " coefs[42] 0.09 0.42 0.08 -0.61 0.74 455.70 1.00\n", - " coefs[43] 0.03 0.23 0.03 -0.35 0.40 460.85 1.00\n", - " coefs[44] 0.14 0.22 0.15 -0.22 0.49 447.48 1.00\n", - " coefs[45] 0.10 0.30 0.10 -0.39 0.58 452.15 1.00\n", - " coefs[46] 0.17 0.28 0.17 -0.28 0.63 450.76 1.00\n", - " coefs[47] -0.14 0.09 -0.13 -0.28 0.00 959.11 1.00\n", - " coefs[48] -0.04 0.06 -0.04 -0.14 0.07 493.15 1.00\n", - " coefs[49] -0.81 0.59 -0.69 -1.65 -0.01 4845.43 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.69 -0.07 4590.09 1.00\n", - " coefs[51] -0.14 0.17 -0.15 -0.43 0.12 466.09 1.00\n", - " coefs[52] -0.11 0.16 -0.11 -0.37 0.15 465.86 1.00\n", - " coefs[53] -0.13 0.13 -0.13 -0.34 0.08 473.04 1.00\n", - " coefs[54] -1.67 0.19 -1.66 -1.97 -1.36 4072.51 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 33 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.91 0.06 1.91 1.81 2.01 10511.47 1.00\n", - " coefs[1] -0.06 0.03 -0.06 -0.12 -0.01 12220.55 1.00\n", - " coefs[2] -0.07 0.07 -0.07 -0.19 0.04 3687.76 1.00\n", - " coefs[3] -0.30 0.03 -0.30 -0.35 -0.24 7665.75 1.00\n", - " coefs[4] -0.06 0.03 -0.06 -0.11 -0.00 9077.63 1.00\n", - " coefs[5] -0.12 0.03 -0.12 -0.18 -0.07 11684.74 1.00\n", - " coefs[6] 0.26 0.29 0.25 -0.20 0.75 2923.46 1.00\n", - " coefs[7] -0.61 0.18 -0.61 -0.89 -0.31 3050.64 1.00\n", - " coefs[8] 0.61 0.34 0.60 0.07 1.20 2919.52 1.00\n", - " coefs[9] -0.03 0.03 -0.03 -0.08 0.02 11351.45 1.00\n", - " coefs[10] 0.39 0.65 0.38 -0.73 1.41 3228.80 1.00\n", - " coefs[11] -0.04 0.29 -0.04 -0.54 0.41 3241.45 1.00\n", - " coefs[12] 0.11 0.64 0.11 -1.00 1.13 3238.02 1.00\n", - " coefs[13] -0.97 0.64 -0.91 -1.98 0.07 5249.99 1.00\n", - " coefs[14] -0.47 0.66 -0.37 -1.48 0.54 6066.89 1.00\n", - " coefs[15] -0.77 0.56 -0.67 -1.64 0.04 4986.07 1.00\n", - " coefs[16] -0.73 0.58 -0.62 -1.61 0.09 5444.07 1.00\n", - " coefs[17] -0.14 0.19 -0.14 -0.44 0.17 776.12 1.00\n", - " coefs[18] -0.53 0.67 -0.42 -1.55 0.44 6209.21 1.00\n", - " coefs[19] -0.47 0.67 -0.39 -1.57 0.55 6230.36 1.00\n", - " coefs[20] -0.78 0.59 -0.66 -1.62 0.02 5067.27 1.00\n", - " coefs[21] -0.76 0.58 -0.65 -1.59 0.05 5458.41 1.00\n", - " coefs[22] -0.00 0.07 0.00 -0.12 0.12 1121.18 1.00\n", - " coefs[23] 0.03 0.25 0.04 -0.37 0.44 541.73 1.00\n", - " coefs[24] 0.02 0.16 0.02 -0.24 0.27 539.71 1.00\n", - " coefs[25] -0.05 0.23 -0.06 -0.43 0.33 515.63 1.00\n", - " coefs[26] 0.05 0.18 0.05 -0.24 0.35 517.55 1.00\n", - " coefs[27] -0.72 0.61 -0.59 -1.60 0.15 5250.27 1.00\n", - " coefs[28] 0.02 0.99 0.03 -1.58 1.68 11408.51 1.00\n", - " coefs[29] 0.10 0.08 0.10 -0.03 0.22 537.16 1.00\n", - " coefs[30] 0.03 0.09 0.04 -0.11 0.18 614.05 1.00\n", - " coefs[31] -0.03 0.10 -0.02 -0.18 0.13 1169.25 1.00\n", - " coefs[32] 0.06 0.09 0.06 -0.08 0.21 546.97 1.00\n", - " coefs[33] 0.17 0.13 0.17 -0.04 0.39 519.49 1.00\n", - " coefs[34] 0.92 0.59 0.80 0.11 1.76 4777.97 1.00\n", - " coefs[35] 0.37 0.25 0.37 -0.01 0.78 501.98 1.00\n", - " coefs[36] 0.36 0.31 0.36 -0.17 0.85 498.97 1.00\n", - " coefs[37] 0.20 0.20 0.20 -0.13 0.51 509.05 1.00\n", - " coefs[38] -0.03 0.04 -0.03 -0.09 0.04 846.24 1.00\n", - " coefs[39] -0.02 0.08 -0.02 -0.14 0.12 639.66 1.00\n", - " coefs[40] 0.02 0.05 0.02 -0.06 0.10 608.38 1.00\n", - " coefs[41] -0.80 0.59 -0.68 -1.66 0.01 4980.95 1.00\n", - " coefs[42] 0.09 0.42 0.09 -0.57 0.79 505.92 1.00\n", - " coefs[43] 0.01 0.23 0.00 -0.37 0.39 510.07 1.00\n", - " coefs[44] 0.17 0.22 0.17 -0.17 0.53 501.53 1.00\n", - " coefs[45] 0.08 0.30 0.08 -0.42 0.56 499.88 1.00\n", - " coefs[46] 0.19 0.28 0.19 -0.29 0.62 505.21 1.00\n", - " coefs[47] -0.86 0.57 -0.74 -1.70 -0.06 4649.67 1.00\n", - " coefs[48] -0.06 0.06 -0.06 -0.16 0.04 529.40 1.00\n", - " coefs[49] 0.04 1.00 0.02 -1.59 1.66 12157.87 1.00\n", - " coefs[50] -0.86 0.58 -0.73 -1.71 -0.08 4732.51 1.00\n", - " coefs[51] -0.12 0.17 -0.12 -0.40 0.16 504.47 1.00\n", - " coefs[52] -0.08 0.16 -0.08 -0.33 0.19 511.03 1.00\n", - " coefs[53] -0.14 0.13 -0.14 -0.35 0.07 515.84 1.00\n", - " coefs[54] -1.71 0.19 -1.70 -2.01 -1.40 4097.08 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 34 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.05 0.06 2.05 1.95 2.16 10000.30 1.00\n", - " coefs[1] -0.02 0.04 -0.01 -0.07 0.05 10626.97 1.00\n", - " coefs[2] -0.14 0.07 -0.14 -0.26 -0.02 3772.39 1.00\n", - " coefs[3] -0.36 0.03 -0.36 -0.41 -0.30 7420.44 1.00\n", - " coefs[4] -0.05 0.03 -0.05 -0.11 0.01 8047.09 1.00\n", - " coefs[5] -0.19 0.03 -0.19 -0.24 -0.13 10672.51 1.00\n", - " coefs[6] -0.17 0.28 -0.17 -0.63 0.30 3074.31 1.00\n", - " coefs[7] -0.40 0.17 -0.40 -0.69 -0.13 3264.91 1.00\n", - " coefs[8] 0.07 0.33 0.07 -0.46 0.63 3067.33 1.00\n", - " coefs[9] 0.00 0.03 0.00 -0.05 0.05 11678.49 1.00\n", - " coefs[10] 0.45 0.65 0.44 -0.61 1.54 3198.32 1.00\n", - " coefs[11] -0.06 0.29 -0.06 -0.57 0.39 3220.36 1.00\n", - " coefs[12] 0.08 0.65 0.08 -1.01 1.14 3215.87 1.00\n", - " coefs[13] -1.07 0.62 -1.01 -2.06 -0.07 4551.88 1.00\n", - " coefs[14] -0.45 0.67 -0.35 -1.51 0.54 6254.49 1.00\n", - " coefs[15] -0.80 0.57 -0.69 -1.63 0.06 4416.51 1.00\n", - " coefs[16] -0.71 0.59 -0.60 -1.60 0.13 4831.45 1.00\n", - " coefs[17] 0.01 0.17 0.01 -0.26 0.28 591.23 1.00\n", - " coefs[18] -0.55 0.66 -0.43 -1.55 0.42 6005.73 1.00\n", - " coefs[19] -0.45 0.69 -0.36 -1.53 0.63 5509.96 1.00\n", - " coefs[20] -0.77 0.59 -0.66 -1.61 0.02 5084.54 1.00\n", - " coefs[21] 0.05 0.03 0.04 -0.01 0.10 1382.99 1.00\n", - " coefs[22] 0.10 0.05 0.10 0.02 0.19 596.70 1.00\n", - " coefs[23] 0.12 0.25 0.12 -0.30 0.51 508.75 1.00\n", - " coefs[24] 0.03 0.16 0.03 -0.23 0.28 514.96 1.00\n", - " coefs[25] -0.10 0.24 -0.11 -0.49 0.27 492.31 1.00\n", - " coefs[26] 0.02 0.18 0.02 -0.27 0.32 498.67 1.00\n", - " coefs[27] -0.71 0.61 -0.60 -1.61 0.13 4956.76 1.00\n", - " coefs[28] 0.01 0.99 0.01 -1.54 1.69 11010.12 1.00\n", - " coefs[29] 0.05 0.08 0.05 -0.08 0.18 556.65 1.00\n", - " coefs[30] 0.09 0.09 0.10 -0.05 0.24 614.00 1.00\n", - " coefs[31] 0.01 0.08 0.01 -0.12 0.14 795.57 1.00\n", - " coefs[32] 0.06 0.09 0.06 -0.08 0.21 512.23 1.00\n", - " coefs[33] 0.13 0.13 0.13 -0.09 0.35 502.30 1.00\n", - " coefs[34] 0.91 0.59 0.80 0.12 1.77 4902.15 1.00\n", - " coefs[35] 0.30 0.25 0.29 -0.11 0.70 491.25 1.00\n", - " coefs[36] 0.32 0.32 0.32 -0.20 0.82 483.51 1.00\n", - " coefs[37] 0.16 0.20 0.16 -0.17 0.47 490.31 1.00\n", - " coefs[38] -0.03 0.04 -0.03 -0.09 0.03 803.24 1.00\n", - " coefs[39] 0.02 0.08 0.02 -0.10 0.15 590.41 1.00\n", - " coefs[40] 0.06 0.05 0.06 -0.02 0.14 588.34 1.00\n", - " coefs[41] 0.01 0.07 0.01 -0.10 0.12 1292.79 1.00\n", - " coefs[42] -0.02 0.42 -0.02 -0.71 0.65 487.70 1.00\n", - " coefs[43] -0.03 0.23 -0.04 -0.42 0.34 497.84 1.00\n", - " coefs[44] 0.15 0.22 0.15 -0.20 0.51 490.22 1.00\n", - " coefs[45] 0.10 0.30 0.10 -0.39 0.60 486.10 1.00\n", - " coefs[46] 0.20 0.28 0.20 -0.27 0.64 490.41 1.00\n", - " coefs[47] -0.86 0.56 -0.75 -1.70 -0.08 4880.99 1.00\n", - " coefs[48] -0.06 0.06 -0.06 -0.16 0.05 543.91 1.00\n", - " coefs[49] -0.81 0.60 -0.70 -1.66 0.01 4856.94 1.00\n", - " coefs[50] -0.84 0.59 -0.72 -1.70 -0.06 4479.77 1.00\n", - " coefs[51] -0.15 0.17 -0.15 -0.43 0.12 499.77 1.00\n", - " coefs[52] -0.12 0.16 -0.13 -0.38 0.14 497.92 1.00\n", - " coefs[53] -0.20 0.13 -0.20 -0.41 0.02 497.46 1.00\n", - " coefs[54] -1.64 0.18 -1.62 -1.92 -1.33 3835.59 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 35 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.97 0.06 1.97 1.87 2.07 9742.14 1.00\n", - " coefs[1] -0.06 0.04 -0.06 -0.12 -0.00 10941.17 1.00\n", - " coefs[2] -0.15 0.07 -0.15 -0.27 -0.04 3797.76 1.00\n", - " coefs[3] -0.37 0.03 -0.37 -0.42 -0.31 7795.70 1.00\n", - " coefs[4] -0.03 0.03 -0.03 -0.09 0.03 8579.09 1.00\n", - " coefs[5] -0.18 0.03 -0.18 -0.24 -0.13 10418.88 1.00\n", - " coefs[6] 0.05 0.28 0.05 -0.39 0.52 2999.81 1.00\n", - " coefs[7] -0.57 0.17 -0.57 -0.85 -0.29 3099.11 1.00\n", - " coefs[8] 0.46 0.33 0.46 -0.08 0.99 3002.13 1.00\n", - " coefs[9] -0.08 0.03 -0.08 -0.13 -0.03 10895.90 1.00\n", - " coefs[10] 0.47 0.64 0.48 -0.58 1.53 3303.11 1.00\n", - " coefs[11] -0.02 0.29 -0.02 -0.49 0.44 3312.49 1.00\n", - " coefs[12] 0.07 0.64 0.07 -1.00 1.10 3315.68 1.00\n", - " coefs[13] -1.07 0.61 -1.00 -2.06 -0.09 4977.49 1.00\n", - " coefs[14] -0.46 0.67 -0.35 -1.45 0.58 5820.49 1.00\n", - " coefs[15] -0.78 0.57 -0.67 -1.65 0.06 4544.59 1.00\n", - " coefs[16] -0.72 0.58 -0.60 -1.59 0.10 4799.76 1.00\n", - " coefs[17] 0.03 0.16 0.04 -0.24 0.30 739.13 1.01\n", - " coefs[18] -0.53 0.66 -0.41 -1.58 0.40 6011.13 1.00\n", - " coefs[19] -0.47 0.68 -0.37 -1.59 0.56 5503.24 1.00\n", - " coefs[20] -0.77 0.59 -0.65 -1.63 0.02 4644.05 1.00\n", - " coefs[21] -0.78 0.58 -0.66 -1.63 0.01 4745.88 1.00\n", - " coefs[22] 0.08 0.05 0.08 -0.01 0.17 873.25 1.01\n", - " coefs[23] 0.09 0.25 0.09 -0.31 0.51 688.44 1.01\n", - " coefs[24] 0.03 0.16 0.03 -0.22 0.30 737.69 1.01\n", - " coefs[25] -0.05 0.23 -0.04 -0.42 0.36 662.47 1.01\n", - " coefs[26] 0.05 0.18 0.06 -0.24 0.36 675.97 1.01\n", - " coefs[27] -0.71 0.61 -0.59 -1.61 0.11 4795.73 1.00\n", - " coefs[28] 0.02 1.00 0.02 -1.61 1.69 10020.48 1.00\n", - " coefs[29] 0.07 0.08 0.07 -0.06 0.20 720.56 1.01\n", - " coefs[30] 0.05 0.09 0.05 -0.10 0.20 833.72 1.01\n", - " coefs[31] 0.02 0.08 0.02 -0.11 0.15 1020.81 1.00\n", - " coefs[32] 0.06 0.09 0.06 -0.08 0.21 684.55 1.01\n", - " coefs[33] 0.14 0.13 0.14 -0.07 0.36 677.90 1.01\n", - " coefs[34] 0.13 0.06 0.12 0.03 0.23 1738.80 1.00\n", - " coefs[35] 0.28 0.24 0.29 -0.13 0.67 646.54 1.01\n", - " coefs[36] 0.28 0.31 0.29 -0.23 0.81 657.65 1.01\n", - " coefs[37] 0.21 0.20 0.21 -0.11 0.54 652.29 1.01\n", - " coefs[38] 0.01 0.03 0.01 -0.05 0.07 862.31 1.01\n", - " coefs[39] -0.02 0.08 -0.02 -0.15 0.12 869.75 1.01\n", - " coefs[40] 0.05 0.05 0.05 -0.04 0.13 755.29 1.01\n", - " coefs[41] 0.03 0.05 0.03 -0.06 0.12 1142.51 1.00\n", - " coefs[42] -0.00 0.42 0.00 -0.67 0.72 652.36 1.01\n", - " coefs[43] -0.02 0.23 -0.02 -0.41 0.36 663.81 1.01\n", - " coefs[44] 0.14 0.22 0.14 -0.22 0.50 651.86 1.01\n", - " coefs[45] 0.07 0.30 0.07 -0.44 0.56 654.79 1.01\n", - " coefs[46] 0.19 0.28 0.20 -0.25 0.68 656.43 1.01\n", - " coefs[47] -0.07 0.07 -0.07 -0.19 0.05 993.49 1.00\n", - " coefs[48] -0.11 0.06 -0.11 -0.22 -0.01 734.51 1.01\n", - " coefs[49] -0.79 0.60 -0.67 -1.64 0.03 4950.47 1.00\n", - " coefs[50] -0.87 0.58 -0.74 -1.69 -0.08 4526.96 1.00\n", - " coefs[51] -0.13 0.17 -0.13 -0.41 0.15 668.74 1.01\n", - " coefs[52] -0.12 0.16 -0.11 -0.38 0.15 669.40 1.01\n", - " coefs[53] -0.20 0.13 -0.20 -0.41 0.02 676.97 1.01\n", - " coefs[54] -1.65 0.18 -1.64 -1.93 -1.34 4116.09 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 36 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.96 0.06 1.96 1.86 2.06 9372.47 1.00\n", - " coefs[1] -0.05 0.03 -0.05 -0.11 0.00 10822.01 1.00\n", - " coefs[2] -0.17 0.06 -0.17 -0.27 -0.07 3864.52 1.00\n", - " coefs[3] -0.33 0.03 -0.33 -0.39 -0.28 7410.99 1.00\n", - " coefs[4] -0.05 0.03 -0.05 -0.10 0.01 8105.01 1.00\n", - " coefs[5] -0.12 0.03 -0.12 -0.17 -0.06 10915.47 1.00\n", - " coefs[6] -0.03 0.22 -0.03 -0.40 0.33 2760.58 1.00\n", - " coefs[7] -0.48 0.13 -0.48 -0.69 -0.26 3090.19 1.00\n", - " coefs[8] 0.28 0.25 0.27 -0.12 0.72 2820.91 1.00\n", - " coefs[9] -0.02 0.03 -0.02 -0.07 0.03 11238.51 1.00\n", - " coefs[10] 0.40 0.65 0.40 -0.71 1.44 3232.80 1.00\n", - " coefs[11] -0.02 0.29 -0.02 -0.50 0.46 3242.27 1.00\n", - " coefs[12] 0.12 0.65 0.11 -0.97 1.18 3245.95 1.00\n", - " coefs[13] -1.05 0.63 -1.00 -2.09 -0.07 5192.61 1.00\n", - " coefs[14] -0.44 0.68 -0.33 -1.49 0.58 5836.55 1.00\n", - " coefs[15] -0.79 0.57 -0.69 -1.65 0.04 4569.53 1.00\n", - " coefs[16] -0.73 0.59 -0.62 -1.65 0.09 5300.47 1.00\n", - " coefs[17] -0.02 0.17 -0.02 -0.29 0.28 807.36 1.01\n", - " coefs[18] -0.56 0.66 -0.44 -1.59 0.38 5962.50 1.00\n", - " coefs[19] -0.47 0.67 -0.38 -1.57 0.57 5232.08 1.00\n", - " coefs[20] 0.02 0.98 0.03 -1.59 1.63 12107.78 1.00\n", - " coefs[21] -0.77 0.60 -0.64 -1.63 0.05 4698.56 1.00\n", - " coefs[22] 0.08 0.05 0.08 -0.00 0.17 756.90 1.01\n", - " coefs[23] 0.11 0.26 0.11 -0.32 0.52 701.29 1.01\n", - " coefs[24] 0.06 0.16 0.06 -0.21 0.31 635.73 1.01\n", - " coefs[25] -0.06 0.24 -0.06 -0.48 0.31 644.03 1.01\n", - " coefs[26] -0.01 0.19 -0.01 -0.31 0.30 665.28 1.01\n", - " coefs[27] -0.72 0.61 -0.61 -1.59 0.12 5029.47 1.00\n", - " coefs[28] 0.03 1.00 0.02 -1.63 1.65 10008.37 1.00\n", - " coefs[29] 0.01 0.08 0.01 -0.12 0.15 712.05 1.01\n", - " coefs[30] 0.03 0.09 0.03 -0.12 0.18 801.77 1.01\n", - " coefs[31] -0.05 0.10 -0.05 -0.20 0.11 1444.46 1.01\n", - " coefs[32] 0.13 0.09 0.13 -0.03 0.27 721.44 1.01\n", - " coefs[33] 0.11 0.14 0.12 -0.12 0.32 656.94 1.01\n", - " coefs[34] 0.91 0.60 0.78 0.09 1.79 4477.44 1.00\n", - " coefs[35] 0.29 0.25 0.29 -0.14 0.68 652.55 1.01\n", - " coefs[36] 0.30 0.32 0.30 -0.27 0.78 645.31 1.01\n", - " coefs[37] 0.12 0.20 0.13 -0.22 0.44 649.06 1.01\n", - " coefs[38] 0.00 0.03 0.00 -0.06 0.06 814.07 1.01\n", - " coefs[39] -0.01 0.08 -0.01 -0.15 0.13 885.40 1.01\n", - " coefs[40] 0.03 0.05 0.03 -0.06 0.11 786.68 1.01\n", - " coefs[41] 0.01 0.06 0.01 -0.08 0.10 1079.71 1.01\n", - " coefs[42] 0.03 0.43 0.03 -0.71 0.69 657.11 1.01\n", - " coefs[43] -0.04 0.24 -0.04 -0.45 0.34 660.02 1.01\n", - " coefs[44] 0.12 0.22 0.12 -0.26 0.46 643.07 1.01\n", - " coefs[45] 0.07 0.31 0.08 -0.44 0.56 656.44 1.01\n", - " coefs[46] 0.22 0.29 0.22 -0.26 0.68 652.23 1.01\n", - " coefs[47] -0.05 0.07 -0.05 -0.17 0.07 1065.65 1.01\n", - " coefs[48] -0.10 0.06 -0.09 -0.20 0.01 689.46 1.01\n", - " coefs[49] -0.81 0.60 -0.69 -1.67 -0.00 4683.36 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.69 -0.08 4867.74 1.00\n", - " coefs[51] -0.12 0.17 -0.12 -0.41 0.16 682.73 1.01\n", - " coefs[52] -0.14 0.17 -0.14 -0.43 0.11 670.78 1.01\n", - " coefs[53] -0.17 0.13 -0.17 -0.39 0.05 678.49 1.01\n", - " coefs[54] -1.63 0.18 -1.61 -1.92 -1.32 3991.08 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 37 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.02 0.06 2.02 1.92 2.12 10190.29 1.00\n", - " coefs[1] 0.03 0.04 0.03 -0.03 0.09 11618.83 1.00\n", - " coefs[2] -0.08 0.07 -0.08 -0.19 0.04 3901.96 1.00\n", - " coefs[3] -0.30 0.03 -0.30 -0.35 -0.24 8168.46 1.00\n", - " coefs[4] -0.06 0.04 -0.06 -0.12 -0.00 9352.54 1.00\n", - " coefs[5] -0.17 0.03 -0.17 -0.23 -0.12 11575.01 1.00\n", - " coefs[6] 0.44 0.27 0.42 -0.00 0.87 3054.71 1.00\n", - " coefs[7] -0.85 0.16 -0.84 -1.11 -0.58 3227.23 1.00\n", - " coefs[8] 0.81 0.31 0.80 0.29 1.31 3054.83 1.00\n", - " coefs[9] 0.04 0.03 0.04 -0.01 0.09 11497.32 1.00\n", - " coefs[10] 0.43 0.65 0.42 -0.66 1.50 3059.84 1.00\n", - " coefs[11] -0.07 0.29 -0.08 -0.57 0.39 3069.11 1.00\n", - " coefs[12] 0.05 0.65 0.04 -1.03 1.12 3065.23 1.00\n", - " coefs[13] -0.95 0.64 -0.89 -1.95 0.10 5155.64 1.00\n", - " coefs[14] -0.45 0.67 -0.34 -1.46 0.60 6013.74 1.00\n", - " coefs[15] -0.76 0.58 -0.65 -1.62 0.10 4813.79 1.00\n", - " coefs[16] -0.70 0.59 -0.58 -1.57 0.16 5147.70 1.00\n", - " coefs[17] -0.85 0.55 -0.76 -1.68 -0.01 4545.60 1.00\n", - " coefs[18] -0.56 0.66 -0.43 -1.54 0.44 6040.82 1.00\n", - " coefs[19] -0.47 0.67 -0.37 -1.57 0.55 6180.31 1.00\n", - " coefs[20] -0.77 0.59 -0.65 -1.60 0.04 5180.47 1.00\n", - " coefs[21] -0.78 0.59 -0.66 -1.62 0.03 5257.24 1.00\n", - " coefs[22] 0.04 0.06 0.04 -0.06 0.13 996.95 1.00\n", - " coefs[23] 0.05 0.24 0.05 -0.38 0.42 686.43 1.00\n", - " coefs[24] 0.14 0.15 0.14 -0.12 0.38 671.57 1.00\n", - " coefs[25] -0.12 0.23 -0.11 -0.49 0.26 670.77 1.00\n", - " coefs[26] 0.11 0.18 0.12 -0.18 0.39 661.76 1.00\n", - " coefs[27] -0.70 0.62 -0.59 -1.60 0.17 5031.16 1.00\n", - " coefs[28] 0.02 1.00 0.02 -1.63 1.68 10507.75 1.00\n", - " coefs[29] 0.03 0.08 0.03 -0.10 0.16 760.67 1.00\n", - " coefs[30] 0.10 0.09 0.10 -0.05 0.24 811.00 1.00\n", - " coefs[31] -0.76 0.59 -0.63 -1.60 0.08 4563.06 1.00\n", - " coefs[32] 0.11 0.09 0.11 -0.04 0.25 686.24 1.00\n", - " coefs[33] 0.18 0.13 0.18 -0.03 0.39 665.40 1.00\n", - " coefs[34] 0.93 0.59 0.81 0.13 1.80 4500.21 1.00\n", - " coefs[35] 0.39 0.24 0.40 -0.02 0.76 645.92 1.00\n", - " coefs[36] 0.43 0.31 0.43 -0.11 0.90 646.61 1.00\n", - " coefs[37] 0.20 0.19 0.20 -0.13 0.50 649.74 1.00\n", - " coefs[38] 0.04 0.04 0.04 -0.02 0.10 945.88 1.00\n", - " coefs[39] 0.04 0.08 0.04 -0.09 0.16 786.82 1.00\n", - " coefs[40] 0.12 0.05 0.12 0.03 0.20 849.33 1.00\n", - " coefs[41] -0.78 0.59 -0.65 -1.66 0.03 5036.10 1.00\n", - " coefs[42] 0.02 0.41 0.03 -0.70 0.64 646.14 1.00\n", - " coefs[43] 0.01 0.23 0.01 -0.39 0.36 650.33 1.00\n", - " coefs[44] 0.23 0.21 0.23 -0.16 0.53 641.32 1.00\n", - " coefs[45] 0.16 0.29 0.17 -0.35 0.62 645.40 1.00\n", - " coefs[46] 0.28 0.27 0.28 -0.20 0.70 644.22 1.00\n", - " coefs[47] -0.04 0.07 -0.04 -0.16 0.07 992.72 1.00\n", - " coefs[48] -0.06 0.06 -0.06 -0.17 0.03 734.82 1.00\n", - " coefs[49] -0.01 0.03 -0.01 -0.05 0.04 1801.99 1.00\n", - " coefs[50] -0.85 0.59 -0.74 -1.69 -0.05 4857.12 1.00\n", - " coefs[51] -0.08 0.17 -0.08 -0.38 0.17 656.17 1.00\n", - " coefs[52] -0.06 0.16 -0.06 -0.34 0.17 660.34 1.00\n", - " coefs[53] -0.15 0.13 -0.15 -0.36 0.05 673.66 1.00\n", - " coefs[54] -1.86 0.20 -1.84 -2.17 -1.51 4098.42 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 38 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 1.97 0.06 1.96 1.87 2.07 10096.48 1.00\n", - " coefs[1] -0.06 0.03 -0.06 -0.12 -0.01 12244.36 1.00\n", - " coefs[2] -0.04 0.06 -0.04 -0.15 0.07 4159.98 1.00\n", - " coefs[3] -0.33 0.03 -0.33 -0.38 -0.27 7749.88 1.00\n", - " coefs[4] -0.08 0.03 -0.08 -0.14 -0.02 8882.58 1.00\n", - " coefs[5] -0.11 0.03 -0.11 -0.16 -0.06 11482.48 1.00\n", - " coefs[6] 0.07 0.24 0.06 -0.32 0.47 3120.93 1.00\n", - " coefs[7] -0.51 0.15 -0.51 -0.75 -0.26 3283.63 1.00\n", - " coefs[8] 0.42 0.28 0.42 -0.05 0.87 3098.35 1.00\n", - " coefs[9] -0.06 0.03 -0.06 -0.11 -0.01 11951.39 1.00\n", - " coefs[10] 0.45 0.65 0.44 -0.62 1.53 3260.72 1.00\n", - " coefs[11] -0.04 0.29 -0.05 -0.56 0.40 3274.76 1.00\n", - " coefs[12] 0.06 0.65 0.05 -1.00 1.15 3282.00 1.00\n", - " coefs[13] -1.05 0.62 -1.00 -2.12 -0.12 5389.23 1.00\n", - " coefs[14] -0.46 0.68 -0.35 -1.52 0.56 6658.42 1.00\n", - " coefs[15] -0.79 0.56 -0.69 -1.65 0.05 5438.21 1.00\n", - " coefs[16] -0.70 0.59 -0.59 -1.60 0.15 5338.59 1.00\n", - " coefs[17] -0.27 0.23 -0.25 -0.63 0.11 1265.14 1.00\n", - " coefs[18] -0.57 0.66 -0.46 -1.59 0.38 5781.56 1.00\n", - " coefs[19] -0.46 0.68 -0.36 -1.53 0.61 6188.61 1.00\n", - " coefs[20] -0.76 0.59 -0.64 -1.62 0.04 5486.01 1.00\n", - " coefs[21] 0.03 0.04 0.03 -0.03 0.09 1964.40 1.00\n", - " coefs[22] 0.01 0.07 0.01 -0.11 0.13 1235.89 1.00\n", - " coefs[23] 0.10 0.25 0.10 -0.32 0.49 591.69 1.00\n", - " coefs[24] 0.08 0.16 0.08 -0.19 0.32 595.98 1.00\n", - " coefs[25] -0.08 0.23 -0.08 -0.47 0.30 576.69 1.00\n", - " coefs[26] 0.03 0.18 0.03 -0.26 0.33 584.84 1.00\n", - " coefs[27] -0.71 0.61 -0.59 -1.60 0.14 5240.14 1.00\n", - " coefs[28] 0.03 1.00 0.03 -1.59 1.68 11781.73 1.00\n", - " coefs[29] 0.06 0.08 0.07 -0.06 0.19 634.64 1.00\n", - " coefs[30] 0.04 0.09 0.04 -0.12 0.18 665.09 1.00\n", - " coefs[31] -0.76 0.58 -0.64 -1.62 0.05 4939.89 1.00\n", - " coefs[32] 0.04 0.09 0.04 -0.10 0.19 595.34 1.00\n", - " coefs[33] 0.15 0.13 0.15 -0.05 0.38 588.17 1.00\n", - " coefs[34] 0.91 0.59 0.79 0.10 1.77 4449.06 1.00\n", - " coefs[35] 0.29 0.24 0.30 -0.12 0.68 566.20 1.00\n", - " coefs[36] 0.35 0.31 0.35 -0.19 0.84 565.96 1.00\n", - " coefs[37] 0.19 0.20 0.19 -0.12 0.52 569.22 1.00\n", - " coefs[38] -0.06 0.04 -0.05 -0.12 0.01 935.97 1.00\n", - " coefs[39] 0.01 0.08 0.01 -0.12 0.14 737.66 1.00\n", - " coefs[40] 0.05 0.05 0.05 -0.04 0.13 682.67 1.00\n", - " coefs[41] -0.02 0.07 -0.01 -0.12 0.10 1363.24 1.00\n", - " coefs[42] 0.05 0.42 0.05 -0.64 0.72 564.74 1.00\n", - " coefs[43] 0.03 0.23 0.03 -0.38 0.39 570.94 1.00\n", - " coefs[44] 0.18 0.21 0.19 -0.18 0.53 568.55 1.00\n", - " coefs[45] 0.15 0.30 0.15 -0.35 0.63 562.05 1.00\n", - " coefs[46] 0.23 0.28 0.23 -0.24 0.68 565.69 1.00\n", - " coefs[47] -0.84 0.57 -0.72 -1.69 -0.04 4863.24 1.00\n", - " coefs[48] -0.10 0.06 -0.09 -0.20 0.01 649.56 1.00\n", - " coefs[49] 0.03 1.01 0.02 -1.55 1.72 11743.21 1.00\n", - " coefs[50] -0.85 0.58 -0.72 -1.68 -0.06 5084.52 1.00\n", - " coefs[51] -0.09 0.17 -0.09 -0.38 0.18 574.15 1.00\n", - " coefs[52] -0.13 0.16 -0.13 -0.41 0.12 576.37 1.00\n", - " coefs[53] -0.18 0.13 -0.17 -0.39 0.03 578.29 1.00\n", - " coefs[54] -1.71 0.19 -1.69 -2.00 -1.38 4122.53 1.00\n", - "\n", - "\n", - "\n", - " =============================== SUBPOSTERIOR 39 ===============================\n", - "\n", - " mean std median 5.0% 95.0% n_eff r_hat\n", - " coefs[0] 2.02 0.06 2.02 1.92 2.13 10022.35 1.00\n", - " coefs[1] -0.07 0.04 -0.07 -0.13 -0.02 11930.67 1.00\n", - " coefs[2] 0.09 0.07 0.09 -0.03 0.21 3565.47 1.00\n", - " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 7874.95 1.00\n", - " coefs[4] -0.10 0.04 -0.10 -0.16 -0.04 8677.59 1.00\n", - " coefs[5] -0.16 0.03 -0.16 -0.21 -0.11 11143.46 1.00\n", - " coefs[6] 0.64 0.30 0.63 0.17 1.14 2850.68 1.00\n", - " coefs[7] -0.90 0.18 -0.89 -1.21 -0.61 3006.07 1.00\n", - " coefs[8] 1.05 0.35 1.04 0.50 1.63 2848.02 1.00\n", - " coefs[9] 0.05 0.03 0.05 0.00 0.10 11434.28 1.00\n", - " coefs[10] 0.38 0.65 0.37 -0.73 1.41 3027.13 1.00\n", - " coefs[11] -0.05 0.29 -0.05 -0.56 0.40 3049.82 1.00\n", - " coefs[12] 0.14 0.65 0.14 -0.93 1.20 3039.84 1.00\n", - " coefs[13] -1.01 0.63 -0.94 -2.00 -0.00 4993.50 1.00\n", - " coefs[14] -0.46 0.67 -0.35 -1.52 0.53 5614.94 1.00\n", - " coefs[15] -0.78 0.57 -0.68 -1.63 0.06 4675.04 1.00\n", - " coefs[16] -0.70 0.58 -0.59 -1.57 0.15 5153.50 1.00\n", - " coefs[17] -0.05 0.17 -0.04 -0.32 0.23 652.24 1.01\n", - " coefs[18] -0.52 0.66 -0.40 -1.52 0.44 6037.65 1.00\n", - " coefs[19] -0.46 0.68 -0.36 -1.55 0.61 6114.54 1.00\n", - " coefs[20] -0.77 0.59 -0.65 -1.60 0.02 4987.38 1.00\n", - " coefs[21] -0.75 0.59 -0.64 -1.59 0.05 4951.24 1.00\n", - " coefs[22] -0.75 0.60 -0.63 -1.63 0.05 4435.53 1.00\n", - " coefs[23] 0.12 0.24 0.12 -0.27 0.51 500.82 1.01\n", - " coefs[24] 0.03 0.15 0.03 -0.24 0.26 526.83 1.01\n", - " coefs[25] -0.04 0.23 -0.04 -0.42 0.33 494.40 1.01\n", - " coefs[26] 0.01 0.17 0.01 -0.28 0.30 506.35 1.01\n", - " coefs[27] -0.71 0.62 -0.59 -1.59 0.16 5403.79 1.00\n", - " coefs[28] 0.02 0.99 0.03 -1.55 1.70 10861.75 1.00\n", - " coefs[29] 0.06 0.08 0.06 -0.06 0.19 543.44 1.01\n", - " coefs[30] 0.08 0.09 0.08 -0.06 0.22 601.06 1.01\n", - " coefs[31] -0.02 0.09 -0.01 -0.17 0.13 1105.50 1.00\n", - " coefs[32] 0.08 0.09 0.08 -0.06 0.23 526.65 1.01\n", - " coefs[33] 0.12 0.13 0.12 -0.10 0.32 494.20 1.01\n", - " coefs[34] 0.93 0.59 0.81 0.12 1.79 4585.26 1.00\n", - " coefs[35] 0.34 0.24 0.34 -0.05 0.72 491.75 1.01\n", - " coefs[36] 0.37 0.30 0.37 -0.14 0.86 486.39 1.01\n", - " coefs[37] 0.15 0.19 0.15 -0.16 0.47 488.15 1.01\n", - " coefs[38] -0.01 0.03 -0.01 -0.07 0.05 676.92 1.01\n", - " coefs[39] 0.05 0.07 0.05 -0.07 0.17 570.31 1.01\n", - " coefs[40] 0.02 0.05 0.03 -0.05 0.11 563.75 1.01\n", - " coefs[41] -0.78 0.59 -0.66 -1.63 0.03 4822.95 1.00\n", - " coefs[42] 0.05 0.40 0.06 -0.59 0.74 487.94 1.01\n", - " coefs[43] 0.01 0.23 0.01 -0.36 0.38 491.71 1.01\n", - " coefs[44] 0.19 0.21 0.20 -0.17 0.52 491.92 1.01\n", - " coefs[45] 0.07 0.29 0.08 -0.42 0.53 489.32 1.01\n", - " coefs[46] 0.20 0.27 0.20 -0.26 0.63 486.73 1.01\n", - " coefs[47] -0.10 0.07 -0.10 -0.21 0.01 773.52 1.01\n", - " coefs[48] -0.12 0.06 -0.12 -0.22 -0.02 540.35 1.01\n", - " coefs[49] -0.81 0.60 -0.69 -1.66 -0.02 4748.32 1.00\n", - " coefs[50] -0.86 0.58 -0.74 -1.70 -0.08 4705.07 1.00\n", - " coefs[51] -0.13 0.16 -0.13 -0.40 0.14 498.31 1.01\n", - " coefs[52] -0.13 0.16 -0.13 -0.38 0.13 504.10 1.01\n", - " coefs[53] -0.15 0.13 -0.14 -0.35 0.06 502.86 1.01\n", - " coefs[54] -1.75 0.19 -1.74 -2.05 -1.45 4340.91 1.00\n", - "\n", - "\n" - ] - } - ], - "source": [ - "rngs = random.split(random.PRNGKey(1), K)\n", - "subposteriors = []\n", - "for i, (rng, shard) in enumerate(zip(rngs, shards)):\n", - " sep = '=' * 31\n", - " print('\\n ' + sep + ' SUBPOSTERIOR {:02d} '.format(i) + sep, end='')\n", - " samples = get_subposterior(rng, shard, K)\n", - " if not os.path.exists('.results'):\n", - " os.makedir('.results')\n", - " np.save('.results/subposterior_{:02d}.npy'.format(i), samples)\n", - " subposteriors.append(samples)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### merge subposteriors" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "consensus_samples = consensus(subposteriors, 10000)\n", - "parametric_samples = parametric_draws(subposteriors, 10000)\n", - "np.save('.results/consensus_samples.npy', consensus_samples)\n", - "np.save('.results/parametric_samples.npy', parametric_samples)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### predict" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "def predict(model, X, rng, sample):\n", - " model = substitute(seed(model, rng), sample)\n", - " model_trace = trace(model).get_trace(X, None)\n", - " return model_trace['y']['value']" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Consensus accuaracy: 0.771\n", - "Parametric accuaracy: 0.771\n" - ] - } - ], - "source": [ - "rngs = random.split(random.PRNGKey(2), 10000)\n", - "\n", - "y_consensus = vmap(partial(predict, model, X_test))(rngs, consensus_samples)\n", - "y_consensus = (y_consensus.sum(axis=0) / y_consensus.shape[0]) >= 0.5\n", - "acc = (y_consensus == y_test).sum() / y_test.shape[0]\n", - "print('Consensus accuaracy: {}'.format(round(acc.item(), 4)))\n", - "\n", - "y_parametric = vmap(partial(predict, model, X_test))(rngs, parametric_samples)\n", - "y_parametric = (y_parametric.sum(axis=0) / y_parametric.shape[0]) >= 0.5\n", - "acc = (y_parametric == y_test).sum() / y_test.shape[0]\n", - "print('Parametric accuaracy: {}'.format(round(acc.item(), 4)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### train iaf" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "from jax.experimental import stax" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "rng_guide, rng_init, rng_train = random.split(random.PRNGKey(3), 3)\n", - "opt_init, opt_update, get_params = optimizers.adam(0.001)\n", - "guide = AutoIAFNormal(rng_guide, model, get_params, nonlinearity=stax.Elu,\n", - " skip_connections=False)\n", - "ll_scale = X_train.shape[0] // batch_size\n", - "svi_init, svi_update, _ = svi(model, guide, elbo, opt_init, opt_update, get_params,\n", - " likelihood_scale=ll_scale)\n", - "batch_size = 1000\n", - "num_iters = ll_scale\n", - "\n", - "def epoch_train(epoch, opt_state, rng):\n", - " # shuffle data\n", - " rng, rng_shuffle = random.split(rng)\n", - " idx = random.shuffle(rng_shuffle, np.arange(X_train.shape[0]))\n", - " X = X_train[idx]\n", - " y = y_train[idx]\n", - " offset = epoch * num_iters\n", - "\n", - " def body_fn(val, i):\n", - " batch_X = lax.dynamic_slice_in_dim(X, i * batch_size, batch_size)\n", - " batch_y = lax.dynamic_slice_in_dim(y, i * batch_size, batch_size)\n", - " opt_state_, rng_ = val\n", - " loss, opt_state_, rng_ = svi_update(offset + i, rng_, opt_state_,\n", - " (batch_X, batch_y), (batch_X, batch_y))\n", - " return (opt_state_, rng_), loss\n", - "\n", - " (opt_state, _), losses = lax.scan(body_fn, (opt_state, rng), np.arange(num_iters))\n", - " return opt_state, losses" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "opt_state, _ = svi_init(rng_init,\n", - " (X_train[:batch_size], y_train[:batch_size]),\n", - " (X_train[:batch_size], y_train[:batch_size]))" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 00 - loss 1883.5496 - acc 0.7612\n", - "Epoch 01 - loss 688.8702 - acc 0.7706\n", - "Epoch 02 - loss 617.3635 - acc 0.7685\n", - "Epoch 03 - loss 601.3757 - acc 0.7711\n", - "Epoch 04 - loss 598.3813 - acc 0.7687\n", - "Epoch 05 - loss 593.7759 - acc 0.7708\n", - "Epoch 06 - loss 593.0955 - acc 0.7692\n", - "Epoch 07 - loss 590.5724 - acc 0.7714\n", - "Epoch 08 - loss 589.2113 - acc 0.7693\n", - "Epoch 09 - loss 588.8226 - acc 0.7721\n" - ] - } - ], - "source": [ - "losses = np.array([])\n", - "num_epochs = 10\n", - "rngs = random.split(random.PRNGKey(2), 10000)\n", - "for epoch in range(num_epochs):\n", - " rng = random.fold_in(rng_train, epoch)\n", - " opt_state, epoch_loss = epoch_train(epoch, opt_state, rng)\n", - " iaf_samples = guide.sample_posterior(random.PRNGKey(4), opt_state, sample_shape=(10000,))\n", - " y_iaf = vmap(partial(predict, model, X_test))(rngs, iaf_samples)\n", - " y_iaf = (y_iaf.sum(axis=0) / y_iaf.shape[0]) >= 0.5\n", - " acc = (y_iaf == y_test).sum() / y_test.shape[0]\n", - " print(\"Epoch {:02d} - loss {:.4f} - acc {}\".format(\n", - " epoch, np.mean(epoch_loss), round(acc.item(), 4)))\n", - " losses = np.concatenate([losses, epoch_loss])" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 00 - loss 254534.3438 - acc 0.6719\n", - "Epoch 01 - loss 65498.4805 - acc 0.6963\n", - "Epoch 02 - loss 58030.9766 - acc 0.6833\n", - "Epoch 03 - loss 11353.0801 - acc 0.697\n", - "Epoch 04 - loss 10766.7871 - acc 0.7035\n", - "Epoch 05 - loss 5903.0508 - acc 0.6917\n", - "Epoch 06 - loss 4735.4136 - acc 0.7204\n", - "Epoch 07 - loss 3767.8457 - acc 0.7249\n", - "Epoch 08 - loss 2702.3569 - acc 0.7115\n", - "Epoch 09 - loss 4246.7715 - acc 0.7243\n", - "Epoch 10 - loss 2887.8103 - acc 0.7419\n", - "Epoch 11 - loss 1575.2468 - acc 0.7423\n", - "Epoch 12 - loss 3265.4502 - acc 0.7482\n", - "Epoch 13 - loss 1635.4376 - acc 0.7575\n", - "Epoch 14 - loss 2030.9865 - acc 0.7576\n", - "Epoch 15 - loss 1211.5005 - acc 0.747\n", - "Epoch 16 - loss 1234.9969 - acc 0.7586\n", - "Epoch 17 - loss 1120.3951 - acc 0.7628\n", - "Epoch 18 - loss 1038.1304 - acc 0.7655\n", - "Epoch 19 - loss 1188.7095 - acc 0.7434\n", - "Epoch 20 - loss 1023.7824 - acc 0.7597\n", - "Epoch 21 - loss 1024.2365 - acc 0.7727\n", - "Epoch 22 - loss 1002.4470 - acc 0.759\n", - "Epoch 23 - loss 1038.4382 - acc 0.768\n", - "Epoch 24 - loss 940.9832 - acc 0.7611\n", - "Epoch 25 - loss 895.9312 - acc 0.7674\n", - "Epoch 26 - loss 1345.1897 - acc 0.7639\n", - "Epoch 27 - loss 917.5681 - acc 0.76\n", - "Epoch 28 - loss 934.0630 - acc 0.7578\n", - "Epoch 29 - loss 881.1840 - acc 0.7477\n", - "Epoch 30 - loss 945.5895 - acc 0.7615\n", - "Epoch 31 - loss 881.6766 - acc 0.7651\n", - "Epoch 32 - loss 856.6132 - acc 0.7531\n", - "Epoch 33 - loss 977.1152 - acc 0.7651\n", - "Epoch 34 - loss 860.5390 - acc 0.757\n", - "Epoch 35 - loss 860.3196 - acc 0.7687\n", - "Epoch 36 - loss 841.2369 - acc 0.7647\n", - "Epoch 37 - loss 851.6643 - acc 0.7592\n", - "Epoch 38 - loss 813.6900 - acc 0.7679\n", - "Epoch 39 - loss 812.2313 - acc 0.7544\n", - "Epoch 40 - loss 808.4932 - acc 0.7634\n", - "Epoch 41 - loss 886.4514 - acc 0.7698\n", - "Epoch 42 - loss 817.3934 - acc 0.7537\n", - "Epoch 43 - loss 789.4904 - acc 0.7707\n", - "Epoch 44 - loss 790.3774 - acc 0.7612\n", - "Epoch 45 - loss 770.7787 - acc 0.7664\n", - "Epoch 46 - loss 764.3374 - acc 0.7694\n", - "Epoch 47 - loss 742.7781 - acc 0.7739\n", - "Epoch 48 - loss 734.4012 - acc 0.7643\n", - "Epoch 49 - loss 725.6569 - acc 0.7688\n", - "Epoch 50 - loss 713.1312 - acc 0.7696\n", - "Epoch 51 - loss 702.3688 - acc 0.7701\n", - "Epoch 52 - loss 694.8310 - acc 0.768\n", - "Epoch 53 - loss 690.0838 - acc 0.7679\n", - "Epoch 54 - loss 680.3116 - acc 0.7689\n", - "Epoch 55 - loss 688.9963 - acc 0.7622\n", - "Epoch 56 - loss 671.6235 - acc 0.7716\n", - "Epoch 57 - loss 661.0634 - acc 0.7642\n", - "Epoch 58 - loss 654.5287 - acc 0.7706\n", - "Epoch 59 - loss 719.4338 - acc 0.7696\n", - "Epoch 60 - loss 667.0007 - acc 0.7694\n", - "Epoch 61 - loss 649.3066 - acc 0.7701\n", - "Epoch 62 - loss 639.6379 - acc 0.7712\n", - "Epoch 63 - loss 634.2900 - acc 0.7695\n", - "Epoch 64 - loss 630.7141 - acc 0.7666\n", - "Epoch 65 - loss 628.7311 - acc 0.7717\n", - "Epoch 66 - loss 622.4650 - acc 0.7671\n", - "Epoch 67 - loss 619.6395 - acc 0.7696\n", - "Epoch 68 - loss 618.3934 - acc 0.7711\n", - "Epoch 69 - loss 613.0114 - acc 0.7702\n", - "Epoch 70 - loss 613.1573 - acc 0.7714\n", - "Epoch 71 - loss 608.6863 - acc 0.7656\n", - "Epoch 72 - loss 603.2803 - acc 0.7718\n", - "Epoch 73 - loss 604.5390 - acc 0.7671\n", - "Epoch 74 - loss 599.7892 - acc 0.7716\n", - "Epoch 75 - loss 598.3097 - acc 0.7695\n", - "Epoch 76 - loss 597.3398 - acc 0.77\n", - "Epoch 77 - loss 592.6534 - acc 0.7698\n", - "Epoch 78 - loss 590.7097 - acc 0.7686\n", - "Epoch 79 - loss 590.5514 - acc 0.7692\n", - "Epoch 80 - loss 588.7484 - acc 0.7694\n", - "Epoch 81 - loss 589.0543 - acc 0.7723\n", - "Epoch 82 - loss 586.3735 - acc 0.7697\n", - "Epoch 83 - loss 589.2031 - acc 0.7659\n", - "Epoch 84 - loss 587.5204 - acc 0.7697\n", - "Epoch 85 - loss 586.9933 - acc 0.7679\n", - "Epoch 86 - loss 586.1766 - acc 0.7689\n", - "Epoch 87 - loss 584.0955 - acc 0.7702\n", - "Epoch 88 - loss 584.7559 - acc 0.7699\n", - "Epoch 89 - loss 583.4180 - acc 0.7715\n", - "Epoch 90 - loss 583.9426 - acc 0.7715\n", - "Epoch 91 - loss 582.8043 - acc 0.7687\n", - "Epoch 92 - loss 582.0665 - acc 0.7677\n", - "Epoch 93 - loss 582.5842 - acc 0.7703\n", - "Epoch 94 - loss 583.2501 - acc 0.7711\n", - "Epoch 95 - loss 582.0706 - acc 0.7708\n", - "Epoch 96 - loss 581.0920 - acc 0.77\n", - "Epoch 97 - loss 581.4358 - acc 0.7716\n", - "Epoch 98 - loss 582.6833 - acc 0.7713\n", - "Epoch 99 - loss 581.7660 - acc 0.7716\n" - ] - } - ], - "source": [ - "losses = np.array([])\n", - "num_epochs = 100\n", - "rngs = random.split(random.PRNGKey(2), 10000)\n", - "for epoch in range(num_epochs):\n", - " rng = random.fold_in(rng_train, epoch)\n", - " opt_state, epoch_loss = epoch_train(epoch, opt_state, rng)\n", - " iaf_samples = guide.sample_posterior(random.PRNGKey(4), opt_state, sample_shape=(10000,))\n", - " y_iaf = vmap(partial(predict, model, X_test))(rngs, iaf_samples)\n", - " y_iaf = (y_iaf.sum(axis=0) / y_iaf.shape[0]) >= 0.5\n", - " acc = (y_iaf == y_test).sum() / y_test.shape[0]\n", - " print(\"Epoch {:02d} - loss {:.4f} - acc {}\".format(\n", - " epoch, np.mean(epoch_loss), round(acc.item(), 4)))\n", - " losses = np.concatenate([losses, epoch_loss])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Flow HMC" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "transform = guide.get_transform(opt_state)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "unpack_fn = guide.unpack_latent" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "def make_transformed_pe(potential_fn, transform, unpack_fn):\n", - " def transformed_potential_fn(z):\n", - " u, intermediates = transform.call_with_intermediates(z)\n", - " logdet = transform.log_abs_det_jacobian(z, u, intermediates=intermediates)\n", - " return potential_fn(unpack_fn(u)) + logdet\n", - "\n", - " return transformed_potential_fn" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python (pydata)", - "language": "python", - "name": "pydata" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} From e491230630e1d3e80c499095d811d644de5f2d15 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Sun, 11 Aug 2019 02:52:44 -0400 Subject: [PATCH 23/35] add flowhmc section, currently do not work --- notebooks/source/covtype.ipynb | 3114 ++++++++++++++++++++++++++++++++ 1 file changed, 3114 insertions(+) create mode 100644 notebooks/source/covtype.ipynb diff --git a/notebooks/source/covtype.ipynb b/notebooks/source/covtype.ipynb new file mode 100644 index 000000000..47deb534b --- /dev/null +++ b/notebooks/source/covtype.ipynb @@ -0,0 +1,3114 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from functools import partial\n", + "import os; os.environ['XLA_FLAGS'] = '--xla_force_host_platform_device_count=4'\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as onp\n", + "\n", + "from jax import jit, lax, random, vmap\n", + "from jax.config import config; config.update('jax_platform_name', 'cpu')\n", + "from jax.experimental import optimizers, stax\n", + "import jax.numpy as np\n", + "\n", + "from numpyro.contrib.autoguide import AutoIAFNormal\n", + "import numpyro.distributions as dist\n", + "from numpyro.examples.datasets import COVTYPE, load_dataset\n", + "from numpyro.handlers import sample, scale, seed, substitute, trace\n", + "from numpyro.hmc_util import consensus, initialize_model, parametric_draws\n", + "from numpyro.mcmc import mcmc\n", + "from numpyro.svi import elbo, svi" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### load data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data shape: (581012, 55)\n", + "Label distribution: 211840 has label 1, 369172 has label 0\n" + ] + } + ], + "source": [ + "def _load_dataset():\n", + " _, fetch = load_dataset(COVTYPE, shuffle=False)\n", + " features, labels = fetch()\n", + "\n", + " # normalize features and add intercept\n", + " features = (features - features.mean(0)) / features.std(0)\n", + " features = np.hstack([features, np.ones((features.shape[0], 1))])\n", + "\n", + " # make binary feature\n", + " _, counts = onp.unique(labels, return_counts=True)\n", + " specific_category = np.argmax(counts)\n", + " labels = (labels == specific_category)\n", + "\n", + " N, dim = features.shape\n", + " print(\"Data shape:\", features.shape)\n", + " print(\"Label distribution: {} has label 1, {} has label 0\"\n", + " .format(labels.sum(), N - labels.sum()))\n", + " return features, labels\n", + "\n", + "X_full, y_full = _load_dataset()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### prepare train shards and test set" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train set contains 400000 (68.85%) data points.\n", + "Test set contains 181012 (31.15%) data points.\n" + ] + } + ], + "source": [ + "def get_train_shards_and_test_data(X, y, K, N, rng=None):\n", + " if rng is not None:\n", + " idxs = random.shuffle(rng, np.arange(X.shape[0]))\n", + " X = X[idxs]\n", + " y = y[idxs]\n", + " shards = []\n", + " for i in range(K):\n", + " shards.append((X[i * N: (i + 1) * N], y[i * N: (i + 1) * N]))\n", + " train_data = (X[:K * N], y[:K * N])\n", + " test_data = (X[K * N:], y[K * N:])\n", + " return shards, train_data, test_data\n", + "\n", + "K, N = 40, 10000\n", + "shards, (X_train, y_train), (X_test, y_test) = get_train_shards_and_test_data(\n", + " X_full, y_full, K, N, random.PRNGKey(0))\n", + "print(\"Train set contains {} ({}%) data points.\".format(\n", + " K * N, round(K * N / X_full.shape[0] * 100, 2)))\n", + "print(\"Test set contains {} ({}%) data points.\".format(\n", + " X_full.shape[0] - K * N, round(100 - K * N / X_full.shape[0] * 100, 2)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### model" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def model(X, y, prior_scale=1, likelihood_scale=1):\n", + " with scale(prior_scale):\n", + " coefs = sample('coefs', dist.Normal(np.zeros(X.shape[-1]), np.ones(X.shape[-1])))\n", + " with scale(likelihood_scale):\n", + " return sample('y', dist.Bernoulli(logits=np.dot(X, coefs)), obs=y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### sampling" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def get_subposterior(rng, shard, K):\n", + " rngs = random.split(rng, 4)\n", + " X, y = shard\n", + " init_params, potential_fn, _ = initialize_model(rngs, model, X, y, prior_scale=1 / K)\n", + " samples = mcmc(num_warmup=1000, num_samples=2500, init_params=init_params,\n", + " num_chains=4, potential_fn=potential_fn)\n", + " return samples" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " =============================== SUBPOSTERIOR 00 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.94 0.06 1.94 1.84 2.04 10596.19 1.00\n", + " coefs[1] 0.00 0.03 0.00 -0.06 0.06 13018.15 1.00\n", + " coefs[2] -0.05 0.07 -0.05 -0.15 0.06 3962.76 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.32 -0.21 8349.60 1.00\n", + " coefs[4] -0.13 0.04 -0.13 -0.19 -0.07 9673.05 1.00\n", + " coefs[5] -0.09 0.03 -0.09 -0.15 -0.04 11774.95 1.00\n", + " coefs[6] 0.33 0.25 0.32 -0.08 0.73 3044.25 1.00\n", + " coefs[7] -0.70 0.15 -0.69 -0.94 -0.45 3230.34 1.00\n", + " coefs[8] 0.61 0.29 0.60 0.12 1.08 3048.04 1.00\n", + " coefs[9] -0.04 0.03 -0.04 -0.08 0.01 11912.89 1.00\n", + " coefs[10] 0.38 0.65 0.37 -0.66 1.50 3045.41 1.00\n", + " coefs[11] -0.05 0.29 -0.06 -0.54 0.42 3041.88 1.00\n", + " coefs[12] 0.12 0.65 0.11 -0.99 1.17 3040.15 1.00\n", + " coefs[13] -0.94 0.65 -0.88 -2.00 0.08 5089.97 1.00\n", + " coefs[14] -0.48 0.67 -0.37 -1.51 0.56 5935.95 1.00\n", + " coefs[15] -0.80 0.56 -0.69 -1.65 0.03 5174.92 1.00\n", + " coefs[16] -0.71 0.60 -0.59 -1.63 0.11 4779.67 1.00\n", + " coefs[17] -0.28 0.22 -0.27 -0.65 0.08 1027.92 1.00\n", + " coefs[18] -0.57 0.66 -0.46 -1.58 0.40 5873.46 1.00\n", + " coefs[19] -0.49 0.67 -0.39 -1.61 0.53 5699.48 1.00\n", + " coefs[20] -0.77 0.59 -0.66 -1.62 0.03 5339.04 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1357.53 1.00\n", + " coefs[22] -0.01 0.07 -0.00 -0.13 0.11 1117.18 1.00\n", + " coefs[23] -0.07 0.25 -0.07 -0.47 0.34 537.29 1.00\n", + " coefs[24] -0.04 0.16 -0.04 -0.31 0.21 542.14 1.00\n", + " coefs[25] -0.01 0.23 -0.02 -0.39 0.35 498.36 1.00\n", + " coefs[26] -0.01 0.18 -0.01 -0.31 0.27 506.74 1.00\n", + " coefs[27] -0.72 0.61 -0.61 -1.61 0.12 5016.54 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.59 1.71 11735.13 1.00\n", + " coefs[29] 0.09 0.08 0.09 -0.04 0.21 522.46 1.00\n", + " coefs[30] 0.11 0.09 0.11 -0.04 0.25 581.10 1.00\n", + " coefs[31] 0.04 0.08 0.04 -0.09 0.16 822.05 1.00\n", + " coefs[32] 0.11 0.09 0.11 -0.03 0.26 518.96 1.00\n", + " coefs[33] 0.13 0.13 0.13 -0.08 0.34 494.96 1.00\n", + " coefs[34] 0.06 0.05 0.06 -0.02 0.15 858.21 1.00\n", + " coefs[35] 0.38 0.24 0.38 -0.01 0.77 488.03 1.00\n", + " coefs[36] 0.40 0.31 0.40 -0.10 0.90 484.06 1.00\n", + " coefs[37] 0.17 0.19 0.17 -0.13 0.50 491.13 1.00\n", + " coefs[38] -0.02 0.04 -0.02 -0.08 0.05 833.97 1.00\n", + " coefs[39] -0.01 0.08 -0.01 -0.14 0.11 601.79 1.00\n", + " coefs[40] 0.03 0.05 0.03 -0.05 0.11 632.43 1.00\n", + " coefs[41] -0.77 0.58 -0.65 -1.62 0.05 5172.22 1.00\n", + " coefs[42] 0.11 0.41 0.11 -0.56 0.77 485.90 1.00\n", + " coefs[43] -0.04 0.23 -0.04 -0.40 0.34 487.10 1.00\n", + " coefs[44] 0.16 0.21 0.16 -0.19 0.50 486.21 1.00\n", + " coefs[45] 0.12 0.30 0.12 -0.36 0.61 485.58 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.26 0.64 488.71 1.00\n", + " coefs[47] -0.03 0.07 -0.03 -0.14 0.08 688.12 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.03 530.56 1.00\n", + " coefs[49] 0.02 1.00 0.01 -1.59 1.68 11841.74 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.68 -0.08 4715.49 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.37 0.17 496.97 1.00\n", + " coefs[52] -0.13 0.16 -0.13 -0.38 0.13 491.79 1.00\n", + " coefs[53] -0.13 0.13 -0.13 -0.34 0.08 498.09 1.00\n", + " coefs[54] -1.71 0.19 -1.70 -2.01 -1.40 4068.47 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 01 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.03 0.06 2.03 1.93 2.13 6297.01 1.00\n", + " coefs[1] -0.10 0.03 -0.10 -0.16 -0.05 6696.79 1.00\n", + " coefs[2] -0.04 0.07 -0.04 -0.16 0.09 2407.61 1.00\n", + " coefs[3] -0.23 0.03 -0.24 -0.29 -0.18 5620.77 1.00\n", + " coefs[4] -0.12 0.04 -0.12 -0.18 -0.06 5804.19 1.00\n", + " coefs[5] -0.18 0.03 -0.18 -0.23 -0.13 6953.33 1.00\n", + " coefs[6] 0.23 0.30 0.23 -0.26 0.72 2060.03 1.00\n", + " coefs[7] -0.64 0.18 -0.64 -0.94 -0.34 2165.40 1.00\n", + " coefs[8] 0.68 0.35 0.67 0.11 1.27 2051.67 1.00\n", + " coefs[9] -0.04 0.03 -0.04 -0.09 0.02 7364.88 1.00\n", + " coefs[10] 0.42 0.65 0.42 -0.69 1.45 2455.62 1.00\n", + " coefs[11] -0.05 0.29 -0.05 -0.54 0.41 2496.49 1.00\n", + " coefs[12] 0.07 0.65 0.06 -1.06 1.08 2474.35 1.00\n", + " coefs[13] -1.02 0.64 -0.97 -2.04 0.02 3633.72 1.00\n", + " coefs[14] -0.46 0.67 -0.36 -1.51 0.55 3974.22 1.00\n", + " coefs[15] -0.78 0.56 -0.68 -1.61 0.05 3326.03 1.00\n", + " coefs[16] -0.74 0.58 -0.63 -1.61 0.10 3931.39 1.00\n", + " coefs[17] -0.11 0.18 -0.10 -0.41 0.20 716.27 1.01\n", + " coefs[18] -0.54 0.67 -0.44 -1.55 0.44 4309.01 1.00\n", + " coefs[19] -0.44 0.68 -0.35 -1.56 0.59 4171.46 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.63 0.02 3801.33 1.00\n", + " coefs[21] 0.03 0.03 0.03 -0.01 0.07 928.09 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.06 0.14 821.22 1.01\n", + " coefs[23] 0.03 0.24 0.04 -0.38 0.40 486.42 1.01\n", + " coefs[24] 0.05 0.15 0.05 -0.20 0.29 508.69 1.01\n", + " coefs[25] -0.08 0.23 -0.08 -0.43 0.31 474.61 1.01\n", + " coefs[26] 0.01 0.18 0.02 -0.27 0.31 482.02 1.01\n", + " coefs[27] -0.68 0.63 -0.56 -1.60 0.18 3544.17 1.00\n", + " coefs[28] -0.78 0.60 -0.66 -1.60 0.03 3720.32 1.00\n", + " coefs[29] 0.09 0.08 0.09 -0.03 0.21 525.53 1.01\n", + " coefs[30] 0.00 0.10 0.00 -0.16 0.17 779.43 1.01\n", + " coefs[31] -0.04 0.10 -0.03 -0.19 0.11 1169.81 1.00\n", + " coefs[32] 0.12 0.09 0.12 -0.03 0.26 512.40 1.01\n", + " coefs[33] 0.15 0.13 0.15 -0.05 0.37 482.55 1.01\n", + " coefs[34] 0.93 0.59 0.82 0.11 1.79 3574.15 1.00\n", + " coefs[35] 0.34 0.24 0.34 -0.05 0.72 473.55 1.01\n", + " coefs[36] 0.30 0.30 0.30 -0.21 0.78 470.35 1.01\n", + " coefs[37] 0.17 0.19 0.17 -0.16 0.47 467.05 1.01\n", + " coefs[38] -0.04 0.04 -0.04 -0.11 0.02 769.86 1.01\n", + " coefs[39] 0.01 0.08 0.01 -0.11 0.14 578.20 1.01\n", + " coefs[40] -0.01 0.05 -0.01 -0.09 0.08 612.50 1.01\n", + " coefs[41] -0.80 0.59 -0.67 -1.64 0.04 3531.23 1.00\n", + " coefs[42] 0.02 0.41 0.02 -0.64 0.68 469.07 1.01\n", + " coefs[43] 0.02 0.23 0.02 -0.35 0.39 472.51 1.01\n", + " coefs[44] 0.16 0.21 0.16 -0.19 0.49 471.76 1.01\n", + " coefs[45] 0.09 0.29 0.09 -0.40 0.55 469.03 1.01\n", + " coefs[46] 0.23 0.27 0.23 -0.22 0.67 471.88 1.01\n", + " coefs[47] -0.07 0.07 -0.07 -0.19 0.04 839.36 1.01\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.02 510.68 1.01\n", + " coefs[49] 0.03 1.01 0.03 -1.59 1.76 7599.21 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.67 -0.07 3259.83 1.00\n", + " coefs[51] -0.13 0.17 -0.13 -0.41 0.12 472.94 1.01\n", + " coefs[52] -0.15 0.16 -0.15 -0.40 0.11 473.82 1.01\n", + " coefs[53] -0.17 0.13 -0.17 -0.38 0.03 488.46 1.01\n", + " coefs[54] -1.64 0.18 -1.63 -1.94 -1.34 2819.50 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 02 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.97 0.06 1.97 1.87 2.07 10141.39 1.00\n", + " coefs[1] -0.07 0.03 -0.07 -0.13 -0.01 11681.33 1.00\n", + " coefs[2] 0.05 0.08 0.05 -0.08 0.18 3349.04 1.00\n", + " coefs[3] -0.27 0.03 -0.27 -0.32 -0.22 8028.85 1.00\n", + " coefs[4] -0.12 0.03 -0.12 -0.18 -0.06 9352.06 1.00\n", + " coefs[5] -0.13 0.03 -0.13 -0.18 -0.07 11348.87 1.00\n", + " coefs[6] 0.80 0.32 0.80 0.28 1.32 2779.37 1.00\n", + " coefs[7] -1.06 0.19 -1.06 -1.37 -0.74 2899.08 1.00\n", + " coefs[8] 1.32 0.37 1.32 0.71 1.93 2786.07 1.00\n", + " coefs[9] -0.08 0.03 -0.08 -0.13 -0.03 12106.53 1.00\n", + " coefs[10] 0.45 0.65 0.44 -0.64 1.50 2853.02 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.56 0.39 2876.41 1.00\n", + " coefs[12] 0.13 0.65 0.13 -0.96 1.18 2851.32 1.00\n", + " coefs[13] -1.08 0.62 -1.02 -2.08 -0.10 4547.27 1.00\n", + " coefs[14] -0.45 0.67 -0.34 -1.51 0.56 5752.40 1.00\n", + " coefs[15] -0.79 0.57 -0.68 -1.63 0.06 4399.13 1.00\n", + " coefs[16] -0.70 0.59 -0.59 -1.58 0.16 5696.39 1.00\n", + " coefs[17] -0.14 0.19 -0.13 -0.44 0.18 742.08 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.58 0.39 5940.96 1.00\n", + " coefs[19] -0.44 0.68 -0.35 -1.54 0.62 5852.71 1.00\n", + " coefs[20] -0.77 0.58 -0.65 -1.62 0.02 5257.50 1.00\n", + " coefs[21] -0.76 0.58 -0.64 -1.60 0.03 5145.51 1.00\n", + " coefs[22] 0.03 0.08 0.03 -0.08 0.16 1171.01 1.00\n", + " coefs[23] 0.16 0.25 0.15 -0.26 0.57 534.48 1.00\n", + " coefs[24] 0.02 0.16 0.02 -0.25 0.28 535.89 1.00\n", + " coefs[25] -0.15 0.24 -0.16 -0.56 0.23 527.60 1.00\n", + " coefs[26] 0.06 0.18 0.06 -0.25 0.36 526.14 1.00\n", + " coefs[27] -0.72 0.61 -0.59 -1.61 0.13 5205.52 1.00\n", + " coefs[28] 0.03 1.00 0.04 -1.61 1.65 10712.86 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.06 0.21 607.37 1.00\n", + " coefs[30] -0.00 0.10 -0.00 -0.16 0.15 652.04 1.00\n", + " coefs[31] -0.02 0.10 -0.01 -0.17 0.13 1134.64 1.00\n", + " coefs[32] 0.10 0.09 0.10 -0.05 0.25 535.91 1.00\n", + " coefs[33] 0.15 0.14 0.15 -0.08 0.36 527.35 1.00\n", + " coefs[34] 0.91 0.59 0.79 0.10 1.78 4974.60 1.00\n", + " coefs[35] 0.38 0.25 0.38 -0.04 0.78 520.29 1.00\n", + " coefs[36] 0.37 0.32 0.37 -0.14 0.92 516.69 1.00\n", + " coefs[37] 0.18 0.20 0.17 -0.17 0.49 518.95 1.00\n", + " coefs[38] -0.80 0.58 -0.68 -1.65 -0.01 5323.77 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 622.80 1.00\n", + " coefs[40] 0.07 0.05 0.07 -0.01 0.15 571.08 1.01\n", + " coefs[41] -0.01 0.07 -0.01 -0.12 0.10 1236.93 1.00\n", + " coefs[42] 0.07 0.43 0.07 -0.61 0.79 513.79 1.00\n", + " coefs[43] 0.01 0.24 0.01 -0.38 0.41 521.37 1.00\n", + " coefs[44] 0.16 0.22 0.16 -0.21 0.52 511.80 1.00\n", + " coefs[45] 0.08 0.31 0.08 -0.43 0.58 514.38 1.00\n", + " coefs[46] 0.23 0.29 0.23 -0.23 0.71 515.12 1.00\n", + " coefs[47] -0.13 0.09 -0.13 -0.27 0.01 1051.75 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.03 574.66 1.00\n", + " coefs[49] -0.80 0.59 -0.68 -1.63 0.02 5085.05 1.00\n", + " coefs[50] -0.85 0.58 -0.73 -1.67 -0.07 4703.61 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.40 0.17 522.50 1.00\n", + " coefs[52] -0.08 0.16 -0.07 -0.34 0.20 518.37 1.00\n", + " coefs[53] -0.18 0.13 -0.18 -0.40 0.03 526.44 1.00\n", + " coefs[54] -1.67 0.19 -1.65 -1.95 -1.36 3894.03 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 03 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.93 0.06 1.93 1.84 2.04 9308.68 1.00\n", + " coefs[1] -0.03 0.04 -0.03 -0.08 0.04 11831.11 1.00\n", + " coefs[2] -0.08 0.06 -0.08 -0.18 0.03 3625.92 1.00\n", + " coefs[3] -0.27 0.03 -0.27 -0.33 -0.22 7283.21 1.00\n", + " coefs[4] -0.09 0.03 -0.09 -0.14 -0.03 8157.44 1.00\n", + " coefs[5] -0.09 0.03 -0.09 -0.14 -0.04 10004.68 1.00\n", + " coefs[6] 0.04 0.24 0.04 -0.35 0.44 2665.26 1.00\n", + " coefs[7] -0.57 0.15 -0.57 -0.80 -0.31 2781.87 1.00\n", + " coefs[8] 0.33 0.28 0.33 -0.12 0.80 2642.32 1.00\n", + " coefs[9] 0.02 0.03 0.02 -0.03 0.07 11808.21 1.00\n", + " coefs[10] 0.37 0.65 0.37 -0.72 1.45 2985.63 1.00\n", + " coefs[11] -0.00 0.29 -0.01 -0.48 0.49 2998.92 1.00\n", + " coefs[12] 0.11 0.65 0.10 -0.95 1.21 2991.93 1.00\n", + " coefs[13] -0.99 0.63 -0.92 -1.99 0.04 4876.03 1.00\n", + " coefs[14] -0.47 0.67 -0.36 -1.53 0.50 5544.85 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.65 0.06 4454.60 1.00\n", + " coefs[16] -0.71 0.59 -0.60 -1.61 0.13 4989.00 1.00\n", + " coefs[17] 0.05 0.17 0.05 -0.23 0.32 633.85 1.00\n", + " coefs[18] -0.54 0.66 -0.42 -1.54 0.43 5998.03 1.00\n", + " coefs[19] -0.45 0.68 -0.35 -1.52 0.63 5489.12 1.00\n", + " coefs[20] -0.77 0.58 -0.65 -1.61 0.02 5007.75 1.00\n", + " coefs[21] 0.03 0.04 0.03 -0.03 0.09 1821.60 1.00\n", + " coefs[22] -0.00 0.08 0.00 -0.13 0.11 1044.03 1.00\n", + " coefs[23] 0.02 0.26 0.02 -0.40 0.45 600.96 1.00\n", + " coefs[24] 0.01 0.16 0.01 -0.24 0.30 591.14 1.00\n", + " coefs[25] -0.05 0.24 -0.05 -0.45 0.34 569.65 1.00\n", + " coefs[26] -0.00 0.19 -0.00 -0.29 0.33 572.75 1.00\n", + " coefs[27] -0.72 0.61 -0.60 -1.60 0.14 4787.94 1.00\n", + " coefs[28] 0.03 0.99 0.04 -1.57 1.67 9415.44 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.06 0.21 615.59 1.00\n", + " coefs[30] 0.03 0.10 0.03 -0.13 0.19 749.84 1.00\n", + " coefs[31] 0.01 0.08 0.01 -0.11 0.15 937.97 1.00\n", + " coefs[32] 0.12 0.09 0.12 -0.03 0.27 585.50 1.00\n", + " coefs[33] 0.14 0.14 0.14 -0.08 0.37 578.11 1.00\n", + " coefs[34] 0.15 0.07 0.14 0.04 0.25 1184.94 1.00\n", + " coefs[35] 0.34 0.25 0.34 -0.08 0.75 562.89 1.00\n", + " coefs[36] 0.36 0.32 0.36 -0.15 0.92 562.32 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.16 0.51 564.23 1.00\n", + " coefs[38] -0.03 0.04 -0.03 -0.10 0.03 914.20 1.00\n", + " coefs[39] -0.83 0.57 -0.71 -1.68 -0.05 4856.42 1.00\n", + " coefs[40] 0.09 0.05 0.09 -0.00 0.17 716.14 1.00\n", + " coefs[41] -0.78 0.59 -0.66 -1.62 0.04 5147.75 1.00\n", + " coefs[42] 0.06 0.43 0.06 -0.63 0.80 560.74 1.00\n", + " coefs[43] 0.04 0.24 0.04 -0.36 0.44 567.24 1.00\n", + " coefs[44] 0.23 0.22 0.23 -0.14 0.59 562.82 1.00\n", + " coefs[45] 0.13 0.31 0.13 -0.38 0.65 562.89 1.00\n", + " coefs[46] 0.21 0.29 0.21 -0.26 0.69 560.89 1.00\n", + " coefs[47] -0.06 0.07 -0.06 -0.17 0.07 884.93 1.00\n", + " coefs[48] -0.01 0.07 -0.01 -0.11 0.11 642.70 1.00\n", + " coefs[49] -0.79 0.60 -0.67 -1.66 0.01 4636.00 1.00\n", + " coefs[50] -0.85 0.59 -0.72 -1.68 -0.06 4578.95 1.00\n", + " coefs[51] -0.07 0.18 -0.07 -0.36 0.22 573.25 1.00\n", + " coefs[52] -0.11 0.17 -0.11 -0.39 0.15 567.32 1.00\n", + " coefs[53] -0.19 0.13 -0.19 -0.40 0.04 584.89 1.00\n", + " coefs[54] -1.73 0.19 -1.71 -2.03 -1.43 3787.09 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 04 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.00 0.06 2.00 1.90 2.10 9663.05 1.00\n", + " coefs[1] 0.01 0.03 0.01 -0.04 0.07 12229.09 1.00\n", + " coefs[2] -0.05 0.08 -0.05 -0.18 0.08 3518.69 1.00\n", + " coefs[3] -0.27 0.03 -0.26 -0.32 -0.21 7811.88 1.00\n", + " coefs[4] -0.14 0.03 -0.14 -0.20 -0.09 8939.99 1.00\n", + " coefs[5] -0.21 0.03 -0.21 -0.26 -0.15 10756.10 1.00\n", + " coefs[6] 0.29 0.32 0.28 -0.22 0.82 2819.50 1.00\n", + " coefs[7] -0.72 0.19 -0.72 -1.04 -0.41 2925.77 1.00\n", + " coefs[8] 0.69 0.37 0.69 0.08 1.29 2825.15 1.00\n", + " coefs[9] 0.03 0.03 0.03 -0.02 0.08 12007.14 1.00\n", + " coefs[10] 0.43 0.65 0.42 -0.67 1.47 3220.08 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.55 0.40 3229.13 1.00\n", + " coefs[12] 0.10 0.65 0.09 -1.05 1.08 3214.88 1.00\n", + " coefs[13] -1.04 0.62 -0.99 -2.05 -0.06 5156.93 1.00\n", + " coefs[14] -0.45 0.68 -0.35 -1.52 0.56 5786.49 1.00\n", + " coefs[15] -0.76 0.58 -0.65 -1.65 0.08 4260.86 1.00\n", + " coefs[16] -0.72 0.58 -0.61 -1.60 0.12 5213.66 1.00\n", + " coefs[17] -0.04 0.17 -0.04 -0.31 0.23 558.39 1.00\n", + " coefs[18] -0.52 0.68 -0.40 -1.59 0.44 6109.99 1.00\n", + " coefs[19] -0.47 0.68 -0.38 -1.58 0.58 5597.20 1.00\n", + " coefs[20] -0.77 0.59 -0.66 -1.61 0.02 5070.21 1.00\n", + " coefs[21] -0.78 0.59 -0.66 -1.63 0.01 4634.14 1.00\n", + " coefs[22] 0.10 0.06 0.10 0.01 0.19 642.58 1.00\n", + " coefs[23] 0.12 0.24 0.11 -0.29 0.51 465.45 1.00\n", + " coefs[24] 0.09 0.15 0.09 -0.15 0.35 470.90 1.00\n", + " coefs[25] -0.11 0.23 -0.11 -0.48 0.27 454.80 1.00\n", + " coefs[26] 0.00 0.18 0.00 -0.30 0.29 466.84 1.00\n", + " coefs[27] -0.72 0.61 -0.60 -1.60 0.14 5204.11 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.60 1.66 11259.68 1.00\n", + " coefs[29] 0.09 0.08 0.08 -0.03 0.22 488.93 1.00\n", + " coefs[30] 0.02 0.09 0.03 -0.13 0.18 610.00 1.00\n", + " coefs[31] -0.75 0.59 -0.63 -1.60 0.08 4911.00 1.00\n", + " coefs[32] 0.09 0.09 0.09 -0.05 0.23 463.51 1.00\n", + " coefs[33] 0.15 0.13 0.15 -0.06 0.37 460.50 1.00\n", + " coefs[34] 0.93 0.59 0.80 0.12 1.77 4713.75 1.00\n", + " coefs[35] 0.32 0.24 0.32 -0.07 0.72 450.32 1.00\n", + " coefs[36] 0.32 0.31 0.32 -0.19 0.82 446.76 1.00\n", + " coefs[37] 0.17 0.19 0.17 -0.14 0.49 449.21 1.00\n", + " coefs[38] -0.05 0.05 -0.05 -0.13 0.02 1126.07 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.11 0.14 542.39 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.12 514.96 1.00\n", + " coefs[41] -0.01 0.07 -0.01 -0.12 0.10 1089.97 1.00\n", + " coefs[42] 0.05 0.41 0.05 -0.65 0.69 447.89 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.36 0.39 451.39 1.00\n", + " coefs[44] 0.18 0.21 0.18 -0.16 0.53 448.32 1.00\n", + " coefs[45] 0.12 0.30 0.12 -0.36 0.60 447.13 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.23 0.67 449.59 1.00\n", + " coefs[47] -0.12 0.09 -0.11 -0.25 0.03 961.34 1.00\n", + " coefs[48] -0.10 0.06 -0.10 -0.20 0.00 482.43 1.00\n", + " coefs[49] -0.01 0.03 -0.01 -0.05 0.03 1292.54 1.00\n", + " coefs[50] -0.84 0.58 -0.73 -1.68 -0.06 5019.30 1.00\n", + " coefs[51] -0.09 0.17 -0.09 -0.36 0.19 453.50 1.00\n", + " coefs[52] -0.12 0.16 -0.12 -0.38 0.14 453.09 1.00\n", + " coefs[53] -0.16 0.13 -0.16 -0.37 0.05 458.05 1.00\n", + " coefs[54] -1.69 0.19 -1.68 -2.00 -1.40 4062.23 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 05 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.98 0.06 1.98 1.88 2.08 10055.48 1.00\n", + " coefs[1] -0.09 0.03 -0.09 -0.15 -0.03 13343.50 1.00\n", + " coefs[2] -0.06 0.07 -0.06 -0.18 0.06 3771.35 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.31 -0.20 8377.00 1.00\n", + " coefs[4] -0.12 0.03 -0.12 -0.18 -0.07 9458.58 1.00\n", + " coefs[5] -0.19 0.03 -0.19 -0.24 -0.13 11099.64 1.00\n", + " coefs[6] 0.16 0.28 0.16 -0.28 0.65 2986.01 1.00\n", + " coefs[7] -0.68 0.17 -0.67 -0.95 -0.39 3098.70 1.00\n", + " coefs[8] 0.53 0.33 0.53 0.01 1.08 2974.13 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.07 0.02 12492.35 1.00\n", + " coefs[10] 0.43 0.65 0.42 -0.63 1.52 3281.51 1.00\n", + " coefs[11] -0.04 0.29 -0.05 -0.53 0.44 3280.68 1.00\n", + " coefs[12] 0.09 0.65 0.08 -0.95 1.20 3275.10 1.00\n", + " coefs[13] -1.02 0.62 -0.96 -1.99 0.03 5048.16 1.00\n", + " coefs[14] -0.45 0.66 -0.34 -1.48 0.55 6484.69 1.00\n", + " coefs[15] -0.76 0.57 -0.66 -1.64 0.07 4874.24 1.00\n", + " coefs[16] -0.71 0.59 -0.59 -1.60 0.13 5196.60 1.00\n", + " coefs[17] -0.85 0.54 -0.75 -1.71 -0.04 4288.80 1.00\n", + " coefs[18] -0.53 0.66 -0.41 -1.55 0.42 5984.25 1.00\n", + " coefs[19] -0.43 0.68 -0.34 -1.52 0.61 6184.44 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.61 0.02 5183.95 1.00\n", + " coefs[21] -0.76 0.60 -0.65 -1.61 0.06 5107.29 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.06 0.14 931.40 1.00\n", + " coefs[23] 0.12 0.25 0.12 -0.29 0.53 654.15 1.00\n", + " coefs[24] 0.03 0.16 0.03 -0.24 0.28 661.51 1.00\n", + " coefs[25] 0.02 0.24 0.02 -0.38 0.39 640.94 1.00\n", + " coefs[26] 0.08 0.18 0.08 -0.22 0.38 650.77 1.00\n", + " coefs[27] -0.72 0.61 -0.60 -1.59 0.13 5054.07 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.60 1.71 12236.32 1.00\n", + " coefs[29] 0.05 0.08 0.05 -0.08 0.18 716.26 1.00\n", + " coefs[30] 0.07 0.09 0.07 -0.09 0.21 819.35 1.00\n", + " coefs[31] -0.76 0.58 -0.63 -1.63 0.05 5197.70 1.00\n", + " coefs[32] 0.11 0.09 0.11 -0.04 0.25 664.44 1.00\n", + " coefs[33] 0.15 0.13 0.16 -0.07 0.37 636.44 1.00\n", + " coefs[34] 0.08 0.05 0.08 0.00 0.16 913.04 1.00\n", + " coefs[35] 0.38 0.25 0.38 -0.04 0.76 631.09 1.00\n", + " coefs[36] 0.41 0.32 0.42 -0.11 0.91 625.04 1.00\n", + " coefs[37] 0.16 0.20 0.17 -0.17 0.47 634.99 1.00\n", + " coefs[38] -0.01 0.05 -0.01 -0.10 0.07 1734.43 1.00\n", + " coefs[39] 0.06 0.08 0.06 -0.07 0.18 733.19 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.13 751.19 1.00\n", + " coefs[41] -0.77 0.58 -0.64 -1.64 0.04 5405.80 1.00\n", + " coefs[42] 0.13 0.42 0.13 -0.55 0.82 630.46 1.00\n", + " coefs[43] 0.06 0.24 0.07 -0.32 0.44 631.90 1.00\n", + " coefs[44] 0.19 0.22 0.19 -0.18 0.53 624.94 1.00\n", + " coefs[45] 0.17 0.30 0.17 -0.33 0.65 625.77 1.00\n", + " coefs[46] 0.25 0.28 0.25 -0.22 0.70 622.20 1.00\n", + " coefs[47] -0.12 0.09 -0.12 -0.25 0.03 1352.86 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.04 690.67 1.00\n", + " coefs[49] 0.01 0.03 0.01 -0.04 0.06 2201.81 1.00\n", + " coefs[50] -0.85 0.58 -0.73 -1.68 -0.07 4536.52 1.00\n", + " coefs[51] -0.07 0.17 -0.07 -0.36 0.19 638.33 1.00\n", + " coefs[52] -0.06 0.16 -0.05 -0.32 0.21 633.89 1.00\n", + " coefs[53] -0.13 0.13 -0.12 -0.34 0.08 644.18 1.00\n", + " coefs[54] -1.83 0.20 -1.82 -2.15 -1.50 4430.47 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 06 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.95 0.06 1.95 1.85 2.05 10029.37 1.00\n", + " coefs[1] -0.08 0.04 -0.08 -0.14 -0.02 12149.78 1.00\n", + " coefs[2] -0.07 0.07 -0.07 -0.18 0.04 3538.75 1.00\n", + " coefs[3] -0.28 0.03 -0.28 -0.33 -0.23 7831.87 1.00\n", + " coefs[4] -0.08 0.04 -0.08 -0.13 -0.02 8546.42 1.00\n", + " coefs[5] -0.15 0.03 -0.15 -0.20 -0.10 11509.36 1.00\n", + " coefs[6] 0.22 0.26 0.21 -0.20 0.65 2659.06 1.00\n", + " coefs[7] -0.68 0.16 -0.68 -0.94 -0.42 2786.69 1.00\n", + " coefs[8] 0.62 0.30 0.61 0.14 1.13 2692.12 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 12142.73 1.00\n", + " coefs[10] 0.44 0.66 0.43 -0.66 1.52 3204.45 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.53 0.44 3207.91 1.00\n", + " coefs[12] 0.10 0.66 0.10 -1.00 1.17 3206.53 1.00\n", + " coefs[13] -1.07 0.62 -1.02 -2.08 -0.09 4936.60 1.00\n", + " coefs[14] -0.47 0.68 -0.35 -1.47 0.58 5590.17 1.00\n", + " coefs[15] -0.79 0.57 -0.68 -1.63 0.08 4904.63 1.00\n", + " coefs[16] -0.73 0.57 -0.62 -1.60 0.10 5217.49 1.00\n", + " coefs[17] 0.01 0.16 0.01 -0.25 0.27 685.60 1.00\n", + " coefs[18] -0.53 0.66 -0.41 -1.55 0.43 5794.67 1.00\n", + " coefs[19] -0.45 0.68 -0.35 -1.55 0.59 5598.62 1.00\n", + " coefs[20] -0.78 0.58 -0.67 -1.61 0.01 4899.15 1.00\n", + " coefs[21] -0.79 0.59 -0.66 -1.64 0.01 4949.36 1.00\n", + " coefs[22] 0.05 0.05 0.05 -0.04 0.14 761.87 1.00\n", + " coefs[23] 0.13 0.24 0.13 -0.25 0.54 591.47 1.00\n", + " coefs[24] 0.13 0.15 0.13 -0.11 0.38 583.33 1.00\n", + " coefs[25] -0.16 0.23 -0.16 -0.54 0.21 579.37 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.30 591.59 1.00\n", + " coefs[27] -0.71 0.62 -0.59 -1.60 0.16 5125.28 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.60 1.64 11076.76 1.00\n", + " coefs[29] -0.03 0.09 -0.03 -0.17 0.10 762.71 1.00\n", + " coefs[30] 0.05 0.09 0.05 -0.09 0.20 775.29 1.00\n", + " coefs[31] 0.01 0.08 0.01 -0.11 0.13 865.56 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.08 0.20 593.73 1.00\n", + " coefs[33] 0.14 0.13 0.14 -0.08 0.35 568.23 1.00\n", + " coefs[34] 0.11 0.05 0.10 0.03 0.19 939.36 1.00\n", + " coefs[35] 0.34 0.24 0.34 -0.04 0.73 567.29 1.00\n", + " coefs[36] 0.33 0.31 0.33 -0.16 0.83 557.88 1.00\n", + " coefs[37] 0.18 0.19 0.18 -0.12 0.50 561.91 1.00\n", + " coefs[38] -0.01 0.04 -0.01 -0.07 0.06 987.06 1.00\n", + " coefs[39] 0.03 0.08 0.03 -0.09 0.16 660.49 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.13 719.50 1.00\n", + " coefs[41] -0.78 0.58 -0.66 -1.62 0.03 5507.11 1.00\n", + " coefs[42] 0.02 0.41 0.02 -0.66 0.66 565.26 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.34 0.40 572.24 1.00\n", + " coefs[44] 0.17 0.21 0.17 -0.19 0.49 559.31 1.00\n", + " coefs[45] 0.13 0.29 0.13 -0.35 0.61 560.67 1.00\n", + " coefs[46] 0.23 0.27 0.24 -0.22 0.67 565.95 1.00\n", + " coefs[47] -0.06 0.07 -0.06 -0.18 0.05 932.54 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.02 626.56 1.00\n", + " coefs[49] -0.81 0.60 -0.69 -1.67 -0.00 4698.19 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.07 4890.12 1.00\n", + " coefs[51] -0.15 0.17 -0.15 -0.43 0.11 581.16 1.00\n", + " coefs[52] -0.12 0.16 -0.12 -0.37 0.13 576.92 1.00\n", + " coefs[53] -0.13 0.13 -0.13 -0.34 0.07 586.00 1.00\n", + " coefs[54] -1.69 0.18 -1.68 -1.98 -1.39 4293.06 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 07 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.93 0.06 1.93 1.84 2.04 9250.39 1.00\n", + " coefs[1] -0.09 0.03 -0.09 -0.14 -0.03 11900.57 1.00\n", + " coefs[2] -0.07 0.06 -0.07 -0.18 0.03 3382.04 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.35 -0.25 7273.45 1.00\n", + " coefs[4] -0.12 0.03 -0.12 -0.18 -0.07 8136.64 1.00\n", + " coefs[5] -0.08 0.03 -0.08 -0.14 -0.03 10454.22 1.00\n", + " coefs[6] 0.18 0.25 0.17 -0.21 0.59 2678.54 1.00\n", + " coefs[7] -0.60 0.15 -0.60 -0.86 -0.37 2847.50 1.00\n", + " coefs[8] 0.58 0.29 0.57 0.13 1.08 2654.20 1.00\n", + " coefs[9] -0.00 0.03 -0.00 -0.05 0.05 11135.80 1.00\n", + " coefs[10] 0.41 0.65 0.40 -0.64 1.49 2891.96 1.00\n", + " coefs[11] -0.05 0.29 -0.06 -0.54 0.40 2908.39 1.00\n", + " coefs[12] 0.12 0.65 0.11 -0.96 1.18 2906.43 1.00\n", + " coefs[13] -1.06 0.62 -1.00 -1.98 0.01 4513.52 1.00\n", + " coefs[14] -0.45 0.68 -0.33 -1.50 0.58 5874.76 1.00\n", + " coefs[15] -0.80 0.56 -0.70 -1.69 0.00 4266.13 1.00\n", + " coefs[16] -0.72 0.59 -0.61 -1.61 0.10 5034.41 1.00\n", + " coefs[17] 0.03 0.17 0.03 -0.25 0.29 583.94 1.01\n", + " coefs[18] -0.55 0.67 -0.42 -1.56 0.41 5785.31 1.00\n", + " coefs[19] -0.45 0.68 -0.36 -1.58 0.56 5403.98 1.00\n", + " coefs[20] -0.76 0.58 -0.65 -1.60 0.04 5347.55 1.00\n", + " coefs[21] -0.00 0.03 0.00 -0.05 0.05 1203.81 1.00\n", + " coefs[22] -0.01 0.07 -0.00 -0.13 0.11 999.08 1.00\n", + " coefs[23] 0.18 0.25 0.19 -0.23 0.60 524.80 1.01\n", + " coefs[24] 0.08 0.16 0.08 -0.19 0.33 540.04 1.01\n", + " coefs[25] -0.14 0.24 -0.14 -0.53 0.25 519.78 1.01\n", + " coefs[26] -0.01 0.18 -0.01 -0.33 0.28 528.60 1.01\n", + " coefs[27] -0.71 0.62 -0.58 -1.60 0.15 5063.80 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.60 1.66 10397.30 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.09 0.17 558.96 1.01\n", + " coefs[30] -0.02 0.10 -0.02 -0.19 0.15 764.55 1.01\n", + " coefs[31] -0.03 0.09 -0.03 -0.18 0.13 1073.59 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.10 0.20 533.20 1.01\n", + " coefs[33] 0.11 0.14 0.12 -0.10 0.34 521.92 1.01\n", + " coefs[34] 0.92 0.59 0.79 0.10 1.77 4646.56 1.00\n", + " coefs[35] 0.33 0.25 0.33 -0.08 0.73 510.92 1.01\n", + " coefs[36] 0.32 0.32 0.32 -0.22 0.83 510.46 1.01\n", + " coefs[37] 0.14 0.20 0.14 -0.21 0.45 510.92 1.01\n", + " coefs[38] -0.07 0.05 -0.07 -0.15 0.01 1144.95 1.00\n", + " coefs[39] -0.07 0.09 -0.07 -0.23 0.07 802.88 1.00\n", + " coefs[40] 0.07 0.05 0.07 -0.01 0.15 590.70 1.01\n", + " coefs[41] -0.78 0.59 -0.65 -1.65 0.04 4782.36 1.00\n", + " coefs[42] 0.05 0.42 0.05 -0.66 0.74 511.47 1.01\n", + " coefs[43] -0.01 0.24 -0.01 -0.41 0.37 519.40 1.01\n", + " coefs[44] 0.16 0.22 0.17 -0.22 0.50 513.40 1.01\n", + " coefs[45] 0.07 0.31 0.08 -0.44 0.56 510.38 1.01\n", + " coefs[46] 0.21 0.29 0.22 -0.27 0.67 508.85 1.01\n", + " coefs[47] -0.85 0.57 -0.73 -1.66 -0.05 4640.92 1.00\n", + " coefs[48] -0.06 0.07 -0.06 -0.17 0.04 567.66 1.01\n", + " coefs[49] -0.80 0.59 -0.68 -1.65 -0.00 4733.44 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.08 4562.81 1.00\n", + " coefs[51] -0.14 0.17 -0.14 -0.42 0.15 524.03 1.01\n", + " coefs[52] -0.06 0.16 -0.06 -0.33 0.21 517.19 1.01\n", + " coefs[53] -0.15 0.13 -0.15 -0.36 0.07 522.64 1.01\n", + " coefs[54] -1.70 0.19 -1.69 -1.99 -1.39 3848.03 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 08 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.07 0.06 2.07 1.97 2.17 6006.90 1.00\n", + " coefs[1] -0.08 0.04 -0.08 -0.14 -0.02 6950.95 1.00\n", + " coefs[2] -0.02 0.07 -0.03 -0.15 0.10 2377.69 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 5572.29 1.00\n", + " coefs[4] -0.09 0.04 -0.09 -0.15 -0.03 5713.46 1.00\n", + " coefs[5] -0.17 0.03 -0.17 -0.22 -0.11 6679.18 1.00\n", + " coefs[6] 0.41 0.30 0.40 -0.09 0.90 1949.82 1.00\n", + " coefs[7] -0.76 0.18 -0.75 -1.05 -0.45 2055.76 1.00\n", + " coefs[8] 0.82 0.36 0.80 0.25 1.41 1971.61 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 7249.79 1.00\n", + " coefs[10] 0.42 0.67 0.41 -0.62 1.57 2239.69 1.00\n", + " coefs[11] -0.09 0.30 -0.10 -0.58 0.39 2251.76 1.00\n", + " coefs[12] 0.11 0.67 0.10 -0.95 1.24 2239.80 1.00\n", + " coefs[13] -0.98 0.63 -0.92 -1.95 0.06 3243.72 1.00\n", + " coefs[14] -0.47 0.66 -0.37 -1.53 0.52 3707.25 1.00\n", + " coefs[15] -0.78 0.57 -0.67 -1.66 0.05 2946.07 1.00\n", + " coefs[16] -0.73 0.59 -0.61 -1.60 0.13 3752.58 1.00\n", + " coefs[17] -0.13 0.19 -0.13 -0.46 0.16 896.44 1.01\n", + " coefs[18] -0.55 0.67 -0.43 -1.56 0.44 4189.47 1.00\n", + " coefs[19] -0.43 0.68 -0.34 -1.49 0.64 4551.92 1.00\n", + " coefs[20] -0.77 0.59 -0.64 -1.62 0.03 3922.11 1.00\n", + " coefs[21] -0.76 0.59 -0.63 -1.61 0.05 3791.52 1.00\n", + " coefs[22] 0.06 0.06 0.06 -0.03 0.16 903.58 1.01\n", + " coefs[23] 0.10 0.25 0.10 -0.31 0.52 635.36 1.01\n", + " coefs[24] 0.12 0.16 0.12 -0.14 0.38 629.98 1.01\n", + " coefs[25] -0.08 0.24 -0.08 -0.46 0.32 618.53 1.01\n", + " coefs[26] 0.01 0.18 0.01 -0.30 0.30 621.07 1.01\n", + " coefs[27] -0.70 0.62 -0.57 -1.61 0.16 3618.38 1.00\n", + " coefs[28] -0.77 0.60 -0.65 -1.61 0.03 3809.29 1.00\n", + " coefs[29] 0.08 0.08 0.08 -0.06 0.20 692.94 1.01\n", + " coefs[30] 0.11 0.09 0.11 -0.03 0.26 679.52 1.01\n", + " coefs[31] -0.75 0.58 -0.64 -1.60 0.07 3537.22 1.00\n", + " coefs[32] 0.12 0.09 0.12 -0.03 0.27 646.89 1.01\n", + " coefs[33] 0.19 0.13 0.19 -0.03 0.41 619.62 1.01\n", + " coefs[34] 0.10 0.05 0.10 0.01 0.18 970.71 1.00\n", + " coefs[35] 0.35 0.25 0.35 -0.04 0.77 606.18 1.01\n", + " coefs[36] 0.38 0.32 0.37 -0.14 0.90 604.82 1.01\n", + " coefs[37] 0.18 0.20 0.18 -0.14 0.51 610.69 1.01\n", + " coefs[38] -0.77 0.57 -0.66 -1.58 0.02 3904.29 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 724.62 1.01\n", + " coefs[40] 0.03 0.05 0.03 -0.06 0.11 746.12 1.01\n", + " coefs[41] 0.04 0.06 0.04 -0.05 0.13 959.08 1.00\n", + " coefs[42] 0.10 0.42 0.10 -0.55 0.84 605.63 1.01\n", + " coefs[43] 0.05 0.24 0.04 -0.33 0.44 609.63 1.01\n", + " coefs[44] 0.16 0.22 0.16 -0.20 0.52 605.83 1.01\n", + " coefs[45] 0.12 0.30 0.12 -0.40 0.60 602.34 1.01\n", + " coefs[46] 0.26 0.28 0.26 -0.21 0.72 603.36 1.01\n", + " coefs[47] -0.08 0.07 -0.07 -0.19 0.04 976.89 1.00\n", + " coefs[48] -0.12 0.06 -0.12 -0.23 -0.02 677.15 1.01\n", + " coefs[49] -0.02 0.02 -0.02 -0.06 0.02 1377.67 1.00\n", + " coefs[50] -0.84 0.58 -0.71 -1.66 -0.07 3162.14 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.39 0.17 616.19 1.01\n", + " coefs[52] -0.11 0.16 -0.11 -0.39 0.15 615.73 1.01\n", + " coefs[53] -0.13 0.13 -0.13 -0.35 0.08 625.27 1.01\n", + " coefs[54] -1.75 0.19 -1.74 -2.05 -1.45 2716.86 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 09 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.01 0.06 2.01 1.91 2.12 9583.20 1.00\n", + " coefs[1] -0.02 0.03 -0.02 -0.08 0.03 12244.17 1.00\n", + " coefs[2] 0.00 0.07 0.00 -0.11 0.12 3899.89 1.00\n", + " coefs[3] -0.32 0.03 -0.32 -0.37 -0.26 7491.94 1.00\n", + " coefs[4] -0.06 0.03 -0.06 -0.11 0.00 8128.73 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.17 -0.07 11573.08 1.00\n", + " coefs[6] 0.41 0.27 0.41 -0.01 0.87 3193.36 1.00\n", + " coefs[7] -0.72 0.16 -0.72 -0.99 -0.46 3342.76 1.00\n", + " coefs[8] 0.74 0.31 0.74 0.22 1.25 3174.21 1.00\n", + " coefs[9] 0.02 0.03 0.02 -0.03 0.07 11291.83 1.00\n", + " coefs[10] 0.42 0.66 0.41 -0.66 1.50 3092.99 1.00\n", + " coefs[11] -0.07 0.29 -0.07 -0.55 0.41 3105.34 1.00\n", + " coefs[12] 0.08 0.66 0.07 -0.95 1.21 3098.35 1.00\n", + " coefs[13] -0.98 0.63 -0.92 -2.01 0.04 4969.90 1.00\n", + " coefs[14] -0.47 0.66 -0.37 -1.54 0.49 6361.60 1.00\n", + " coefs[15] -0.78 0.57 -0.66 -1.67 0.07 4862.64 1.00\n", + " coefs[16] -0.69 0.58 -0.58 -1.56 0.15 5141.14 1.00\n", + " coefs[17] -0.11 0.19 -0.10 -0.42 0.20 969.52 1.00\n", + " coefs[18] -0.54 0.67 -0.42 -1.59 0.42 5803.27 1.00\n", + " coefs[19] -0.47 0.67 -0.38 -1.52 0.60 5673.56 1.00\n", + " coefs[20] 0.01 0.97 0.01 -1.58 1.61 11893.53 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1600.17 1.00\n", + " coefs[22] 0.13 0.05 0.13 0.04 0.21 754.02 1.00\n", + " coefs[23] 0.07 0.25 0.08 -0.35 0.47 676.30 1.00\n", + " coefs[24] 0.05 0.16 0.06 -0.21 0.31 649.22 1.00\n", + " coefs[25] -0.07 0.24 -0.07 -0.45 0.32 638.48 1.00\n", + " coefs[26] 0.04 0.18 0.05 -0.26 0.34 635.07 1.00\n", + " coefs[27] -0.71 0.62 -0.58 -1.60 0.17 5073.59 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.61 1.64 10606.53 1.00\n", + " coefs[29] 0.07 0.08 0.08 -0.06 0.20 664.51 1.00\n", + " coefs[30] 0.02 0.10 0.02 -0.15 0.19 986.79 1.00\n", + " coefs[31] -0.75 0.58 -0.64 -1.60 0.08 4279.14 1.00\n", + " coefs[32] 0.07 0.09 0.07 -0.08 0.21 654.63 1.00\n", + " coefs[33] 0.15 0.13 0.15 -0.07 0.37 644.38 1.00\n", + " coefs[34] 0.93 0.59 0.81 0.13 1.80 4721.10 1.00\n", + " coefs[35] 0.35 0.25 0.36 -0.05 0.76 626.40 1.00\n", + " coefs[36] 0.32 0.32 0.33 -0.23 0.81 621.11 1.00\n", + " coefs[37] 0.17 0.20 0.18 -0.17 0.49 620.09 1.00\n", + " coefs[38] 0.01 0.04 0.01 -0.05 0.07 942.45 1.00\n", + " coefs[39] 0.05 0.07 0.05 -0.08 0.17 701.99 1.00\n", + " coefs[40] 0.04 0.05 0.04 -0.04 0.13 756.89 1.00\n", + " coefs[41] -0.78 0.59 -0.65 -1.63 0.06 5097.00 1.00\n", + " coefs[42] 0.03 0.42 0.04 -0.69 0.70 616.88 1.00\n", + " coefs[43] 0.00 0.24 0.01 -0.39 0.39 616.74 1.00\n", + " coefs[44] 0.18 0.22 0.18 -0.19 0.53 626.94 1.00\n", + " coefs[45] 0.13 0.30 0.14 -0.38 0.62 622.26 1.00\n", + " coefs[46] 0.23 0.28 0.23 -0.25 0.69 622.08 1.00\n", + " coefs[47] -0.09 0.09 -0.09 -0.23 0.05 1262.87 1.00\n", + " coefs[48] -0.05 0.06 -0.05 -0.15 0.05 672.90 1.00\n", + " coefs[49] -0.80 0.59 -0.69 -1.66 -0.01 4912.08 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.68 -0.08 4527.27 1.00\n", + " coefs[51] -0.11 0.17 -0.11 -0.39 0.17 629.31 1.00\n", + " coefs[52] -0.13 0.16 -0.13 -0.40 0.13 621.60 1.00\n", + " coefs[53] -0.20 0.13 -0.20 -0.42 0.01 630.94 1.00\n", + " coefs[54] -1.72 0.19 -1.70 -2.04 -1.42 3986.73 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 10 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.87 0.06 1.87 1.77 1.97 9851.85 1.00\n", + " coefs[1] -0.05 0.03 -0.05 -0.11 0.00 12023.27 1.00\n", + " coefs[2] -0.08 0.07 -0.08 -0.19 0.03 3664.70 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 8152.42 1.00\n", + " coefs[4] -0.11 0.03 -0.11 -0.17 -0.05 9085.34 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.11 11119.98 1.00\n", + " coefs[6] 0.03 0.25 0.02 -0.38 0.44 2855.36 1.00\n", + " coefs[7] -0.55 0.15 -0.54 -0.80 -0.30 3027.65 1.00\n", + " coefs[8] 0.36 0.29 0.36 -0.12 0.83 2848.40 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 12091.31 1.00\n", + " coefs[10] 0.39 0.65 0.38 -0.70 1.43 3073.54 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.50 0.45 3091.90 1.00\n", + " coefs[12] 0.12 0.65 0.11 -0.96 1.17 3077.49 1.00\n", + " coefs[13] -1.03 0.63 -0.97 -2.05 -0.03 5086.29 1.00\n", + " coefs[14] -0.46 0.67 -0.36 -1.52 0.54 5767.73 1.00\n", + " coefs[15] -0.81 0.58 -0.70 -1.70 0.02 4429.92 1.00\n", + " coefs[16] -0.75 0.58 -0.64 -1.62 0.10 5020.30 1.00\n", + " coefs[17] -0.05 0.17 -0.05 -0.32 0.23 634.36 1.00\n", + " coefs[18] -0.58 0.65 -0.47 -1.57 0.38 5653.50 1.00\n", + " coefs[19] -0.49 0.68 -0.39 -1.57 0.56 5316.42 1.00\n", + " coefs[20] -0.76 0.60 -0.64 -1.62 0.04 5141.74 1.00\n", + " coefs[21] 0.00 0.03 0.01 -0.04 0.06 1175.81 1.00\n", + " coefs[22] 0.09 0.05 0.09 0.00 0.17 589.10 1.00\n", + " coefs[23] 0.01 0.25 0.01 -0.39 0.42 537.95 1.00\n", + " coefs[24] -0.03 0.16 -0.03 -0.29 0.23 562.57 1.00\n", + " coefs[25] -0.04 0.23 -0.04 -0.42 0.34 508.79 1.01\n", + " coefs[26] -0.02 0.18 -0.02 -0.34 0.25 517.53 1.00\n", + " coefs[27] -0.73 0.61 -0.61 -1.61 0.13 4770.04 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.55 1.72 10221.27 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.08 0.17 561.90 1.01\n", + " coefs[30] -0.01 0.10 -0.01 -0.18 0.15 748.10 1.00\n", + " coefs[31] -0.01 0.08 -0.00 -0.13 0.12 783.81 1.00\n", + " coefs[32] 0.08 0.09 0.08 -0.06 0.23 532.06 1.01\n", + " coefs[33] 0.17 0.13 0.17 -0.06 0.37 514.16 1.01\n", + " coefs[34] 0.90 0.60 0.78 0.08 1.75 4699.27 1.00\n", + " coefs[35] 0.28 0.24 0.28 -0.10 0.69 505.90 1.01\n", + " coefs[36] 0.33 0.31 0.34 -0.17 0.84 505.30 1.01\n", + " coefs[37] 0.16 0.19 0.16 -0.16 0.47 503.53 1.01\n", + " coefs[38] -0.02 0.04 -0.02 -0.09 0.04 827.64 1.00\n", + " coefs[39] -0.03 0.08 -0.03 -0.16 0.11 663.60 1.00\n", + " coefs[40] 0.04 0.05 0.04 -0.05 0.12 666.94 1.00\n", + " coefs[41] -0.81 0.59 -0.68 -1.71 -0.03 4477.38 1.00\n", + " coefs[42] 0.06 0.41 0.07 -0.61 0.73 504.16 1.01\n", + " coefs[43] 0.03 0.23 0.04 -0.35 0.41 506.87 1.01\n", + " coefs[44] 0.20 0.21 0.20 -0.14 0.55 502.28 1.01\n", + " coefs[45] 0.08 0.30 0.09 -0.40 0.57 503.49 1.01\n", + " coefs[46] 0.17 0.28 0.18 -0.29 0.62 501.86 1.01\n", + " coefs[47] -0.09 0.07 -0.08 -0.20 0.03 751.62 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.03 553.11 1.00\n", + " coefs[49] -0.79 0.60 -0.68 -1.66 0.01 4806.02 1.00\n", + " coefs[50] -0.83 0.59 -0.70 -1.67 -0.03 4711.38 1.00\n", + " coefs[51] -0.08 0.17 -0.08 -0.36 0.18 505.60 1.01\n", + " coefs[52] -0.06 0.16 -0.06 -0.32 0.19 510.68 1.01\n", + " coefs[53] -0.20 0.13 -0.20 -0.41 0.01 515.18 1.01\n", + " coefs[54] -1.64 0.19 -1.62 -1.93 -1.33 4089.82 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 11 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.92 0.06 1.92 1.82 2.02 10396.90 1.00\n", + " coefs[1] -0.03 0.04 -0.03 -0.08 0.03 11519.16 1.00\n", + " coefs[2] -0.06 0.06 -0.06 -0.16 0.04 4117.58 1.00\n", + " coefs[3] -0.29 0.03 -0.29 -0.35 -0.23 7737.34 1.00\n", + " coefs[4] -0.07 0.04 -0.07 -0.13 -0.01 8773.20 1.00\n", + " coefs[5] -0.17 0.03 -0.18 -0.22 -0.12 11016.25 1.00\n", + " coefs[6] 0.19 0.21 0.18 -0.16 0.50 2829.57 1.00\n", + " coefs[7] -0.59 0.13 -0.58 -0.79 -0.38 3123.90 1.00\n", + " coefs[8] 0.48 0.24 0.46 0.09 0.85 2830.52 1.00\n", + " coefs[9] -0.05 0.03 -0.05 -0.09 0.00 12268.23 1.00\n", + " coefs[10] 0.45 0.66 0.44 -0.64 1.53 3044.65 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.56 0.40 3052.36 1.00\n", + " coefs[12] 0.08 0.65 0.07 -1.01 1.15 3041.06 1.00\n", + " coefs[13] -1.03 0.62 -0.97 -2.08 -0.06 4562.95 1.00\n", + " coefs[14] -0.47 0.67 -0.35 -1.55 0.51 5903.18 1.00\n", + " coefs[15] -0.80 0.56 -0.70 -1.67 0.02 4665.74 1.00\n", + " coefs[16] -0.73 0.59 -0.62 -1.63 0.10 4957.23 1.00\n", + " coefs[17] 0.00 0.17 0.00 -0.27 0.28 610.13 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.56 0.41 5781.93 1.00\n", + " coefs[19] -0.46 0.67 -0.37 -1.56 0.55 6074.50 1.00\n", + " coefs[20] -0.76 0.59 -0.64 -1.62 0.03 5252.85 1.00\n", + " coefs[21] -0.00 0.03 -0.00 -0.05 0.05 1165.34 1.00\n", + " coefs[22] 0.05 0.05 0.06 -0.04 0.14 680.97 1.00\n", + " coefs[23] 0.09 0.25 0.10 -0.34 0.48 529.12 1.00\n", + " coefs[24] -0.02 0.16 -0.01 -0.27 0.25 558.96 1.00\n", + " coefs[25] -0.03 0.23 -0.02 -0.43 0.35 525.19 1.00\n", + " coefs[26] 0.06 0.18 0.07 -0.23 0.36 518.36 1.00\n", + " coefs[27] -0.72 0.61 -0.59 -1.62 0.13 4954.67 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.61 1.65 10846.53 1.00\n", + " coefs[29] 0.05 0.08 0.06 -0.08 0.18 563.62 1.00\n", + " coefs[30] -0.05 0.10 -0.04 -0.22 0.11 807.13 1.00\n", + " coefs[31] -0.76 0.58 -0.65 -1.62 0.03 4982.14 1.00\n", + " coefs[32] 0.09 0.09 0.10 -0.06 0.24 543.12 1.00\n", + " coefs[33] 0.14 0.13 0.14 -0.08 0.36 525.64 1.00\n", + " coefs[34] 0.16 0.06 0.15 0.06 0.26 1251.32 1.00\n", + " coefs[35] 0.38 0.25 0.39 -0.01 0.81 516.49 1.00\n", + " coefs[36] 0.34 0.31 0.35 -0.19 0.85 511.53 1.00\n", + " coefs[37] 0.19 0.20 0.19 -0.14 0.51 514.24 1.00\n", + " coefs[38] -0.01 0.04 -0.01 -0.07 0.05 703.70 1.00\n", + " coefs[39] 0.03 0.08 0.03 -0.09 0.16 596.82 1.00\n", + " coefs[40] 0.06 0.05 0.06 -0.02 0.15 671.03 1.00\n", + " coefs[41] -0.79 0.59 -0.67 -1.65 0.02 4996.10 1.00\n", + " coefs[42] 0.08 0.42 0.09 -0.63 0.76 512.64 1.00\n", + " coefs[43] 0.00 0.23 0.01 -0.38 0.40 516.39 1.00\n", + " coefs[44] 0.18 0.22 0.18 -0.18 0.53 514.45 1.00\n", + " coefs[45] 0.15 0.30 0.16 -0.35 0.64 513.91 1.00\n", + " coefs[46] 0.23 0.28 0.24 -0.24 0.69 514.26 1.00\n", + " coefs[47] -0.85 0.57 -0.72 -1.67 -0.04 4633.11 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.18 0.03 600.11 1.00\n", + " coefs[49] -0.80 0.60 -0.68 -1.64 0.00 4628.84 1.00\n", + " coefs[50] -0.85 0.58 -0.73 -1.67 -0.09 4617.98 1.00\n", + " coefs[51] -0.10 0.17 -0.09 -0.40 0.17 524.69 1.00\n", + " coefs[52] -0.12 0.16 -0.12 -0.40 0.14 525.01 1.00\n", + " coefs[53] -0.13 0.13 -0.12 -0.34 0.09 532.74 1.00\n", + " coefs[54] -1.74 0.19 -1.73 -2.04 -1.43 3929.35 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 12 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.04 0.06 2.04 1.93 2.14 8304.52 1.00\n", + " coefs[1] -0.01 0.04 -0.01 -0.06 0.06 10118.62 1.00\n", + " coefs[2] -0.12 0.07 -0.11 -0.24 -0.00 3682.19 1.00\n", + " coefs[3] -0.33 0.03 -0.33 -0.39 -0.28 6963.70 1.00\n", + " coefs[4] -0.10 0.03 -0.10 -0.15 -0.04 7744.04 1.00\n", + " coefs[5] -0.15 0.03 -0.15 -0.20 -0.09 10497.57 1.00\n", + " coefs[6] 0.11 0.28 0.11 -0.34 0.58 2964.29 1.00\n", + " coefs[7] -0.58 0.17 -0.58 -0.85 -0.29 3083.36 1.00\n", + " coefs[8] 0.40 0.33 0.39 -0.15 0.92 2948.26 1.00\n", + " coefs[9] 0.01 0.03 0.01 -0.04 0.06 10148.21 1.00\n", + " coefs[10] 0.38 0.65 0.37 -0.72 1.41 3238.54 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.51 0.44 3251.02 1.00\n", + " coefs[12] 0.11 0.65 0.11 -0.94 1.19 3237.31 1.00\n", + " coefs[13] -1.00 0.63 -0.94 -2.09 -0.05 4687.49 1.00\n", + " coefs[14] -0.44 0.67 -0.34 -1.50 0.56 6099.61 1.00\n", + " coefs[15] -0.78 0.57 -0.68 -1.63 0.07 4550.37 1.00\n", + " coefs[16] -0.71 0.58 -0.60 -1.61 0.12 4864.50 1.00\n", + " coefs[17] -0.13 0.19 -0.12 -0.45 0.19 940.69 1.00\n", + " coefs[18] -0.54 0.66 -0.43 -1.56 0.40 5805.63 1.00\n", + " coefs[19] -0.45 0.68 -0.35 -1.59 0.55 5277.45 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.63 0.02 4861.90 1.00\n", + " coefs[21] -0.78 0.59 -0.66 -1.62 0.03 5058.03 1.00\n", + " coefs[22] 0.10 0.05 0.10 0.02 0.19 791.84 1.00\n", + " coefs[23] 0.10 0.25 0.10 -0.30 0.52 650.30 1.00\n", + " coefs[24] 0.12 0.16 0.12 -0.14 0.38 644.67 1.00\n", + " coefs[25] -0.01 0.24 -0.00 -0.39 0.38 630.09 1.00\n", + " coefs[26] 0.11 0.18 0.12 -0.17 0.43 635.35 1.00\n", + " coefs[27] -0.71 0.62 -0.59 -1.63 0.14 4712.25 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.60 1.67 10040.11 1.00\n", + " coefs[29] 0.05 0.08 0.05 -0.07 0.18 679.39 1.00\n", + " coefs[30] 0.05 0.09 0.05 -0.10 0.20 786.03 1.00\n", + " coefs[31] -0.75 0.58 -0.63 -1.63 0.06 5149.75 1.00\n", + " coefs[32] 0.09 0.09 0.09 -0.06 0.24 650.45 1.00\n", + " coefs[33] 0.13 0.14 0.13 -0.07 0.37 630.38 1.00\n", + " coefs[34] 0.14 0.06 0.13 0.03 0.24 1370.58 1.00\n", + " coefs[35] 0.35 0.25 0.36 -0.04 0.78 620.21 1.00\n", + " coefs[36] 0.36 0.32 0.36 -0.16 0.89 619.37 1.00\n", + " coefs[37] 0.19 0.20 0.19 -0.15 0.51 624.44 1.00\n", + " coefs[38] -0.04 0.05 -0.03 -0.11 0.04 1296.38 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 734.11 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.14 758.44 1.00\n", + " coefs[41] -0.79 0.59 -0.67 -1.65 0.02 5148.08 1.00\n", + " coefs[42] 0.12 0.43 0.13 -0.57 0.81 620.28 1.00\n", + " coefs[43] 0.03 0.24 0.03 -0.36 0.41 626.67 1.00\n", + " coefs[44] 0.15 0.22 0.16 -0.20 0.52 626.95 1.00\n", + " coefs[45] 0.10 0.31 0.11 -0.38 0.61 624.04 1.00\n", + " coefs[46] 0.22 0.29 0.23 -0.24 0.70 618.56 1.00\n", + " coefs[47] -0.06 0.07 -0.06 -0.18 0.05 994.64 1.00\n", + " coefs[48] -0.12 0.06 -0.12 -0.22 -0.01 668.23 1.00\n", + " coefs[49] -0.79 0.59 -0.68 -1.64 0.00 4915.15 1.00\n", + " coefs[50] -0.84 0.59 -0.71 -1.69 -0.05 4731.62 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.37 0.20 629.43 1.00\n", + " coefs[52] -0.05 0.16 -0.04 -0.31 0.22 625.15 1.00\n", + " coefs[53] -0.14 0.13 -0.13 -0.35 0.08 645.94 1.00\n", + " coefs[54] -1.73 0.19 -1.71 -2.03 -1.42 3867.53 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 13 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.06 0.06 2.06 1.96 2.16 10107.97 1.00\n", + " coefs[1] -0.07 0.04 -0.07 -0.12 -0.01 12223.43 1.00\n", + " coefs[2] -0.21 0.07 -0.21 -0.33 -0.08 3247.79 1.00\n", + " coefs[3] -0.34 0.03 -0.34 -0.40 -0.28 7744.39 1.00\n", + " coefs[4] -0.11 0.04 -0.11 -0.17 -0.05 8886.81 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.11 10594.79 1.00\n", + " coefs[6] -0.08 0.30 -0.08 -0.56 0.41 2710.82 1.00\n", + " coefs[7] -0.52 0.18 -0.52 -0.82 -0.23 2838.19 1.00\n", + " coefs[8] 0.17 0.35 0.17 -0.39 0.74 2697.80 1.00\n", + " coefs[9] -0.04 0.03 -0.04 -0.08 0.02 11093.40 1.00\n", + " coefs[10] 0.41 0.65 0.41 -0.67 1.48 3051.80 1.00\n", + " coefs[11] -0.04 0.29 -0.04 -0.52 0.43 3043.81 1.00\n", + " coefs[12] 0.06 0.65 0.06 -1.06 1.08 3055.42 1.00\n", + " coefs[13] -0.91 0.65 -0.86 -1.95 0.15 4747.74 1.00\n", + " coefs[14] -0.48 0.66 -0.37 -1.53 0.49 5540.97 1.00\n", + " coefs[15] -0.77 0.56 -0.67 -1.63 0.05 4870.06 1.00\n", + " coefs[16] -0.70 0.59 -0.58 -1.59 0.14 4957.56 1.00\n", + " coefs[17] -0.06 0.18 -0.05 -0.34 0.23 543.36 1.01\n", + " coefs[18] -0.56 0.66 -0.44 -1.57 0.40 5806.90 1.00\n", + " coefs[19] -0.49 0.67 -0.39 -1.56 0.58 5841.70 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.61 0.01 5195.52 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.05 0.06 1082.76 1.00\n", + " coefs[22] 0.05 0.06 0.05 -0.04 0.15 592.12 1.01\n", + " coefs[23] -0.10 0.26 -0.10 -0.52 0.32 461.09 1.01\n", + " coefs[24] 0.00 0.16 0.00 -0.26 0.26 453.93 1.01\n", + " coefs[25] -0.07 0.23 -0.07 -0.44 0.32 426.89 1.01\n", + " coefs[26] 0.06 0.18 0.06 -0.25 0.35 434.65 1.01\n", + " coefs[27] -0.72 0.61 -0.61 -1.61 0.14 5038.79 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.69 1.60 11808.60 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.10 0.16 486.47 1.01\n", + " coefs[30] -0.09 0.13 -0.08 -0.31 0.10 1023.19 1.01\n", + " coefs[31] 0.02 0.08 0.02 -0.11 0.15 677.56 1.01\n", + " coefs[32] 0.07 0.09 0.08 -0.07 0.22 442.33 1.01\n", + " coefs[33] 0.13 0.13 0.14 -0.08 0.35 431.07 1.01\n", + " coefs[34] 0.91 0.60 0.79 0.11 1.80 5008.02 1.00\n", + " coefs[35] 0.31 0.25 0.31 -0.09 0.70 419.67 1.01\n", + " coefs[36] 0.32 0.31 0.32 -0.21 0.81 421.90 1.01\n", + " coefs[37] 0.18 0.20 0.18 -0.15 0.49 426.28 1.01\n", + " coefs[38] -0.06 0.05 -0.05 -0.13 0.02 1113.26 1.00\n", + " coefs[39] 0.03 0.08 0.03 -0.09 0.16 480.00 1.01\n", + " coefs[40] 0.10 0.05 0.10 0.02 0.19 500.83 1.01\n", + " coefs[41] -0.02 0.07 -0.02 -0.13 0.09 1035.85 1.01\n", + " coefs[42] -0.00 0.42 0.00 -0.70 0.67 423.22 1.01\n", + " coefs[43] -0.02 0.23 -0.02 -0.40 0.36 427.20 1.01\n", + " coefs[44] 0.18 0.22 0.18 -0.17 0.53 421.49 1.01\n", + " coefs[45] 0.07 0.30 0.07 -0.42 0.56 416.39 1.01\n", + " coefs[46] 0.22 0.28 0.22 -0.25 0.66 423.39 1.01\n", + " coefs[47] -0.06 0.07 -0.06 -0.17 0.06 637.28 1.01\n", + " coefs[48] -0.08 0.06 -0.08 -0.19 0.02 457.03 1.01\n", + " coefs[49] -0.81 0.59 -0.69 -1.65 -0.00 4772.50 1.00\n", + " coefs[50] -0.86 0.58 -0.75 -1.69 -0.07 4318.31 1.00\n", + " coefs[51] -0.15 0.17 -0.15 -0.43 0.13 423.95 1.01\n", + " coefs[52] -0.14 0.16 -0.14 -0.39 0.13 434.85 1.01\n", + " coefs[53] -0.20 0.13 -0.19 -0.40 0.02 437.62 1.01\n", + " coefs[54] -1.71 0.19 -1.69 -2.01 -1.41 4099.94 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 14 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.97 0.06 1.97 1.87 2.08 9005.66 1.00\n", + " coefs[1] -0.02 0.03 -0.02 -0.07 0.04 11557.78 1.00\n", + " coefs[2] -0.06 0.07 -0.06 -0.16 0.05 4138.63 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.37 -0.26 7839.59 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.13 -0.02 8500.08 1.00\n", + " coefs[5] -0.20 0.03 -0.20 -0.25 -0.15 10663.93 1.00\n", + " coefs[6] 0.14 0.25 0.13 -0.25 0.55 3159.51 1.00\n", + " coefs[7] -0.61 0.15 -0.60 -0.85 -0.36 3309.15 1.00\n", + " coefs[8] 0.47 0.29 0.46 -0.03 0.91 3123.20 1.00\n", + " coefs[9] 0.01 0.03 0.01 -0.04 0.05 11937.39 1.00\n", + " coefs[10] 0.43 0.65 0.42 -0.71 1.44 3091.25 1.00\n", + " coefs[11] -0.05 0.29 -0.06 -0.57 0.39 3085.88 1.00\n", + " coefs[12] 0.07 0.65 0.06 -1.03 1.11 3094.82 1.00\n", + " coefs[13] -1.02 0.63 -0.96 -2.08 -0.04 5050.19 1.00\n", + " coefs[14] -0.47 0.68 -0.36 -1.53 0.53 5346.83 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.64 0.05 4722.58 1.00\n", + " coefs[16] -0.73 0.59 -0.62 -1.62 0.11 4855.77 1.00\n", + " coefs[17] -0.03 0.18 -0.03 -0.31 0.27 720.50 1.00\n", + " coefs[18] -0.55 0.66 -0.44 -1.55 0.43 6038.97 1.00\n", + " coefs[19] -0.47 0.69 -0.38 -1.51 0.66 5416.81 1.00\n", + " coefs[20] 0.02 0.98 0.01 -1.59 1.63 13208.44 1.00\n", + " coefs[21] 0.02 0.99 0.02 -1.54 1.70 10823.00 1.00\n", + " coefs[22] -0.02 0.07 -0.01 -0.13 0.10 1087.05 1.00\n", + " coefs[23] 0.05 0.25 0.05 -0.36 0.48 562.53 1.00\n", + " coefs[24] -0.06 0.17 -0.06 -0.34 0.21 601.03 1.00\n", + " coefs[25] -0.06 0.24 -0.05 -0.46 0.34 550.41 1.00\n", + " coefs[26] 0.07 0.19 0.07 -0.23 0.38 546.27 1.00\n", + " coefs[27] -0.72 0.61 -0.61 -1.61 0.15 4953.64 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.57 1.67 10744.99 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.06 0.20 590.76 1.00\n", + " coefs[30] 0.02 0.10 0.03 -0.14 0.18 710.84 1.00\n", + " coefs[31] -0.78 0.58 -0.66 -1.62 0.05 5056.04 1.00\n", + " coefs[32] 0.04 0.09 0.04 -0.11 0.20 568.43 1.00\n", + " coefs[33] 0.15 0.14 0.15 -0.06 0.39 546.49 1.00\n", + " coefs[34] 0.91 0.59 0.79 0.11 1.78 4921.83 1.00\n", + " coefs[35] 0.35 0.25 0.36 -0.08 0.74 542.19 1.00\n", + " coefs[36] 0.33 0.32 0.33 -0.19 0.88 538.22 1.00\n", + " coefs[37] 0.13 0.20 0.13 -0.19 0.48 539.85 1.00\n", + " coefs[38] 0.02 0.04 0.02 -0.05 0.10 1055.60 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.11 0.14 606.11 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.03 0.14 634.23 1.00\n", + " coefs[41] 0.02 0.06 0.03 -0.07 0.12 852.14 1.00\n", + " coefs[42] 0.07 0.43 0.08 -0.65 0.77 540.64 1.00\n", + " coefs[43] -0.04 0.24 -0.04 -0.44 0.35 546.56 1.00\n", + " coefs[44] 0.16 0.22 0.16 -0.19 0.53 536.30 1.00\n", + " coefs[45] 0.11 0.31 0.11 -0.39 0.64 535.15 1.00\n", + " coefs[46] 0.18 0.29 0.18 -0.30 0.65 540.24 1.00\n", + " coefs[47] -0.02 0.06 -0.01 -0.12 0.09 669.38 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.18 0.03 578.06 1.00\n", + " coefs[49] -0.79 0.60 -0.68 -1.66 0.02 4966.31 1.00\n", + " coefs[50] -0.84 0.58 -0.71 -1.69 -0.06 5157.37 1.00\n", + " coefs[51] -0.05 0.18 -0.04 -0.34 0.24 549.11 1.00\n", + " coefs[52] -0.13 0.17 -0.13 -0.41 0.13 546.42 1.00\n", + " coefs[53] -0.16 0.13 -0.16 -0.39 0.05 554.62 1.00\n", + " coefs[54] -1.64 0.19 -1.63 -1.95 -1.34 4052.25 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 15 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.05 0.06 2.05 1.94 2.14 9177.00 1.00\n", + " coefs[1] -0.06 0.03 -0.06 -0.12 -0.00 11743.81 1.00\n", + " coefs[2] -0.09 0.07 -0.09 -0.20 0.02 3628.73 1.00\n", + " coefs[3] -0.32 0.03 -0.32 -0.38 -0.27 7842.18 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.14 -0.03 8649.39 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.18 -0.07 10859.96 1.00\n", + " coefs[6] 0.37 0.27 0.36 -0.08 0.79 2752.83 1.00\n", + " coefs[7] -0.83 0.16 -0.83 -1.09 -0.56 2920.83 1.00\n", + " coefs[8] 0.83 0.31 0.82 0.31 1.33 2750.68 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.08 0.02 11841.94 1.00\n", + " coefs[10] 0.40 0.65 0.39 -0.70 1.44 3135.56 1.00\n", + " coefs[11] -0.01 0.29 -0.02 -0.49 0.47 3135.50 1.00\n", + " coefs[12] 0.15 0.65 0.14 -0.89 1.24 3127.87 1.00\n", + " coefs[13] -1.07 0.61 -1.01 -2.06 -0.10 5383.26 1.00\n", + " coefs[14] -0.45 0.66 -0.34 -1.47 0.56 5506.65 1.00\n", + " coefs[15] -0.80 0.57 -0.68 -1.68 0.01 4585.23 1.00\n", + " coefs[16] -0.72 0.59 -0.60 -1.59 0.12 5284.94 1.00\n", + " coefs[17] -0.27 0.22 -0.26 -0.63 0.09 1153.36 1.00\n", + " coefs[18] -0.52 0.67 -0.41 -1.54 0.47 5888.75 1.00\n", + " coefs[19] -0.45 0.68 -0.36 -1.55 0.63 6200.15 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.61 0.03 4811.83 1.00\n", + " coefs[21] -0.78 0.59 -0.67 -1.64 0.01 4300.73 1.00\n", + " coefs[22] 0.06 0.06 0.06 -0.04 0.15 790.42 1.01\n", + " coefs[23] 0.22 0.24 0.21 -0.16 0.62 521.03 1.01\n", + " coefs[24] -0.03 0.16 -0.03 -0.28 0.23 561.51 1.01\n", + " coefs[25] -0.05 0.23 -0.05 -0.42 0.32 512.26 1.01\n", + " coefs[26] 0.00 0.18 0.00 -0.28 0.29 515.81 1.01\n", + " coefs[27] -0.71 0.61 -0.59 -1.60 0.13 5153.89 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.60 1.67 11091.19 1.00\n", + " coefs[29] 0.01 0.08 0.01 -0.12 0.14 604.99 1.01\n", + " coefs[30] -0.09 0.13 -0.08 -0.29 0.12 1242.60 1.00\n", + " coefs[31] 0.04 0.07 0.04 -0.09 0.15 737.77 1.01\n", + " coefs[32] 0.05 0.09 0.05 -0.09 0.19 527.77 1.01\n", + " coefs[33] 0.14 0.13 0.14 -0.06 0.35 518.80 1.01\n", + " coefs[34] 0.92 0.59 0.80 0.10 1.76 4699.77 1.00\n", + " coefs[35] 0.31 0.24 0.31 -0.08 0.70 503.71 1.01\n", + " coefs[36] 0.31 0.31 0.31 -0.20 0.79 506.01 1.01\n", + " coefs[37] 0.10 0.19 0.10 -0.22 0.41 509.89 1.01\n", + " coefs[38] -0.01 0.04 -0.01 -0.08 0.05 903.45 1.01\n", + " coefs[39] 0.05 0.07 0.05 -0.06 0.17 542.48 1.01\n", + " coefs[40] 0.04 0.05 0.04 -0.05 0.12 655.54 1.01\n", + " coefs[41] 0.02 0.05 0.02 -0.07 0.10 905.27 1.01\n", + " coefs[42] 0.04 0.41 0.04 -0.61 0.71 503.61 1.01\n", + " coefs[43] -0.00 0.23 -0.00 -0.37 0.37 512.92 1.01\n", + " coefs[44] 0.16 0.21 0.15 -0.17 0.51 504.57 1.01\n", + " coefs[45] 0.07 0.29 0.07 -0.40 0.55 502.69 1.01\n", + " coefs[46] 0.18 0.27 0.18 -0.25 0.64 506.09 1.01\n", + " coefs[47] -0.07 0.07 -0.07 -0.18 0.04 782.66 1.01\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 544.83 1.01\n", + " coefs[49] -0.79 0.60 -0.67 -1.63 0.02 4838.35 1.00\n", + " coefs[50] -0.87 0.58 -0.75 -1.69 -0.08 4164.47 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.36 0.18 515.73 1.01\n", + " coefs[52] -0.12 0.16 -0.12 -0.38 0.13 507.39 1.01\n", + " coefs[53] -0.19 0.13 -0.19 -0.40 0.01 515.72 1.01\n", + " coefs[54] -1.66 0.18 -1.64 -1.96 -1.36 4343.76 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 16 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.99 0.06 1.99 1.89 2.09 9179.36 1.00\n", + " coefs[1] 0.01 0.03 0.01 -0.05 0.07 10791.72 1.00\n", + " coefs[2] 0.02 0.07 0.02 -0.10 0.14 3510.14 1.00\n", + " coefs[3] -0.36 0.03 -0.36 -0.42 -0.31 7615.67 1.00\n", + " coefs[4] -0.12 0.04 -0.12 -0.18 -0.06 8998.44 1.00\n", + " coefs[5] -0.14 0.03 -0.14 -0.19 -0.09 10867.82 1.00\n", + " coefs[6] 0.50 0.29 0.49 0.02 0.99 2920.24 1.00\n", + " coefs[7] -0.79 0.18 -0.79 -1.08 -0.48 3039.41 1.00\n", + " coefs[8] 0.87 0.35 0.86 0.27 1.42 2922.72 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 11173.31 1.00\n", + " coefs[10] 0.46 0.65 0.45 -0.57 1.54 3308.73 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.50 0.43 3324.22 1.00\n", + " coefs[12] 0.08 0.65 0.08 -0.96 1.14 3310.11 1.00\n", + " coefs[13] -1.05 0.62 -0.99 -2.00 -0.03 4531.52 1.00\n", + " coefs[14] -0.47 0.67 -0.36 -1.51 0.52 5577.25 1.00\n", + " coefs[15] -0.78 0.58 -0.68 -1.64 0.08 4391.98 1.00\n", + " coefs[16] -0.72 0.59 -0.60 -1.57 0.15 4813.23 1.00\n", + " coefs[17] -0.29 0.22 -0.28 -0.65 0.08 1050.49 1.00\n", + " coefs[18] -0.55 0.67 -0.43 -1.57 0.42 5579.16 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.60 0.54 5415.16 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.61 0.01 5013.34 1.00\n", + " coefs[21] -0.77 0.59 -0.65 -1.61 0.03 4630.94 1.00\n", + " coefs[22] 0.03 0.06 0.03 -0.06 0.13 831.29 1.00\n", + " coefs[23] 0.12 0.24 0.12 -0.28 0.51 565.03 1.01\n", + " coefs[24] 0.10 0.15 0.11 -0.14 0.36 566.50 1.01\n", + " coefs[25] -0.06 0.23 -0.06 -0.44 0.31 544.78 1.01\n", + " coefs[26] 0.04 0.18 0.04 -0.25 0.33 556.89 1.01\n", + " coefs[27] -0.72 0.61 -0.60 -1.59 0.13 4905.08 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.59 1.69 10411.65 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.09 0.17 596.47 1.01\n", + " coefs[30] 0.04 0.09 0.04 -0.11 0.18 684.25 1.00\n", + " coefs[31] 0.04 0.07 0.04 -0.07 0.15 717.08 1.01\n", + " coefs[32] 0.09 0.09 0.10 -0.06 0.23 560.88 1.01\n", + " coefs[33] 0.15 0.13 0.15 -0.06 0.36 550.32 1.01\n", + " coefs[34] 0.90 0.60 0.79 0.09 1.79 4522.53 1.00\n", + " coefs[35] 0.33 0.24 0.33 -0.06 0.72 542.54 1.01\n", + " coefs[36] 0.31 0.31 0.31 -0.19 0.81 538.21 1.01\n", + " coefs[37] 0.17 0.19 0.18 -0.16 0.47 545.27 1.01\n", + " coefs[38] 0.01 0.04 0.01 -0.05 0.07 873.71 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.11 0.15 679.04 1.00\n", + " coefs[40] 0.02 0.05 0.02 -0.05 0.10 628.08 1.01\n", + " coefs[41] -0.80 0.59 -0.67 -1.67 0.03 4771.75 1.00\n", + " coefs[42] 0.02 0.41 0.03 -0.65 0.68 537.69 1.01\n", + " coefs[43] -0.02 0.23 -0.02 -0.38 0.36 545.99 1.01\n", + " coefs[44] 0.19 0.21 0.19 -0.18 0.51 539.59 1.01\n", + " coefs[45] 0.07 0.30 0.07 -0.41 0.55 540.83 1.01\n", + " coefs[46] 0.22 0.28 0.23 -0.23 0.66 538.97 1.01\n", + " coefs[47] -0.02 0.07 -0.02 -0.13 0.09 789.16 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.17 0.04 598.54 1.01\n", + " coefs[49] -0.79 0.60 -0.67 -1.65 0.02 4719.61 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.70 -0.07 4374.23 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.38 0.17 547.36 1.01\n", + " coefs[52] -0.09 0.16 -0.09 -0.35 0.16 550.52 1.01\n", + " coefs[53] -0.12 0.13 -0.12 -0.33 0.08 546.83 1.01\n", + " coefs[54] -1.68 0.18 -1.67 -1.98 -1.38 3683.28 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 17 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.02 0.06 2.02 1.92 2.12 9825.76 1.00\n", + " coefs[1] -0.05 0.03 -0.05 -0.11 0.01 11491.29 1.00\n", + " coefs[2] -0.12 0.07 -0.12 -0.24 -0.02 4035.17 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.37 -0.26 7508.58 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.13 -0.02 8850.54 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.17 -0.07 10832.36 1.00\n", + " coefs[6] -0.03 0.25 -0.03 -0.43 0.39 3103.03 1.00\n", + " coefs[7] -0.49 0.15 -0.49 -0.74 -0.24 3302.29 1.00\n", + " coefs[8] 0.26 0.29 0.26 -0.20 0.74 3075.37 1.00\n", + " coefs[9] -0.08 0.03 -0.08 -0.12 -0.03 11096.54 1.00\n", + " coefs[10] 0.47 0.64 0.47 -0.61 1.49 3268.81 1.00\n", + " coefs[11] -0.08 0.29 -0.08 -0.59 0.35 3299.38 1.00\n", + " coefs[12] 0.07 0.64 0.06 -1.04 1.07 3296.69 1.00\n", + " coefs[13] -1.04 0.62 -0.98 -2.07 -0.09 4800.78 1.00\n", + " coefs[14] -0.45 0.67 -0.35 -1.51 0.52 5846.17 1.00\n", + " coefs[15] -0.79 0.57 -0.69 -1.62 0.06 4206.97 1.00\n", + " coefs[16] -0.71 0.58 -0.60 -1.58 0.14 5088.30 1.00\n", + " coefs[17] -0.05 0.18 -0.05 -0.33 0.24 599.68 1.01\n", + " coefs[18] -0.53 0.66 -0.41 -1.54 0.45 5927.75 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.59 0.58 5998.88 1.00\n", + " coefs[20] -0.78 0.59 -0.67 -1.62 0.01 4825.52 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1133.37 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.01 0.16 589.43 1.01\n", + " coefs[23] 0.15 0.25 0.15 -0.26 0.56 468.13 1.01\n", + " coefs[24] 0.13 0.16 0.13 -0.14 0.37 471.51 1.01\n", + " coefs[25] -0.03 0.23 -0.03 -0.41 0.36 459.24 1.01\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.33 473.85 1.01\n", + " coefs[27] -0.71 0.62 -0.59 -1.62 0.14 4955.11 1.00\n", + " coefs[28] 0.01 0.99 0.01 -1.53 1.73 10769.97 1.00\n", + " coefs[29] -0.00 0.08 -0.01 -0.13 0.13 522.04 1.01\n", + " coefs[30] 0.11 0.09 0.11 -0.04 0.25 527.10 1.01\n", + " coefs[31] 0.04 0.07 0.04 -0.08 0.16 648.90 1.01\n", + " coefs[32] 0.10 0.09 0.10 -0.04 0.25 479.99 1.01\n", + " coefs[33] 0.12 0.13 0.12 -0.10 0.34 472.55 1.01\n", + " coefs[34] 0.11 0.05 0.11 0.03 0.20 757.54 1.01\n", + " coefs[35] 0.29 0.25 0.29 -0.10 0.70 452.91 1.01\n", + " coefs[36] 0.34 0.31 0.34 -0.21 0.83 453.74 1.01\n", + " coefs[37] 0.16 0.20 0.16 -0.17 0.48 458.11 1.01\n", + " coefs[38] -0.01 0.04 -0.01 -0.08 0.05 759.34 1.01\n", + " coefs[39] -0.03 0.08 -0.03 -0.17 0.10 622.87 1.01\n", + " coefs[40] 0.08 0.05 0.08 -0.00 0.17 627.81 1.01\n", + " coefs[41] -0.78 0.60 -0.66 -1.68 0.02 5038.60 1.00\n", + " coefs[42] -0.02 0.42 -0.02 -0.68 0.70 454.27 1.01\n", + " coefs[43] -0.05 0.23 -0.05 -0.44 0.33 462.64 1.01\n", + " coefs[44] 0.19 0.22 0.18 -0.17 0.54 455.92 1.01\n", + " coefs[45] 0.11 0.30 0.11 -0.40 0.59 455.52 1.01\n", + " coefs[46] 0.20 0.28 0.20 -0.28 0.64 452.79 1.01\n", + " coefs[47] -0.03 0.07 -0.03 -0.14 0.08 647.18 1.01\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.02 503.96 1.01\n", + " coefs[49] -0.81 0.59 -0.69 -1.66 -0.01 4790.18 1.00\n", + " coefs[50] -0.85 0.59 -0.73 -1.69 -0.06 4353.25 1.00\n", + " coefs[51] -0.13 0.17 -0.13 -0.41 0.16 465.74 1.01\n", + " coefs[52] -0.13 0.16 -0.13 -0.39 0.14 460.95 1.01\n", + " coefs[53] -0.20 0.13 -0.20 -0.42 0.01 466.41 1.01\n", + " coefs[54] -1.69 0.18 -1.67 -1.97 -1.38 4247.42 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 18 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.01 0.06 2.01 1.91 2.11 9222.07 1.00\n", + " coefs[1] -0.07 0.03 -0.07 -0.13 -0.02 11037.73 1.00\n", + " coefs[2] -0.11 0.06 -0.11 -0.22 -0.01 3896.77 1.00\n", + " coefs[3] -0.38 0.03 -0.38 -0.44 -0.33 7697.55 1.00\n", + " coefs[4] -0.04 0.03 -0.05 -0.10 0.01 8703.86 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.10 10405.15 1.00\n", + " coefs[6] 0.12 0.23 0.12 -0.24 0.51 2968.23 1.00\n", + " coefs[7] -0.60 0.14 -0.60 -0.83 -0.36 3184.79 1.00\n", + " coefs[8] 0.42 0.27 0.42 -0.02 0.86 2967.49 1.00\n", + " coefs[9] 0.03 0.03 0.03 -0.02 0.08 11147.01 1.00\n", + " coefs[10] 0.44 0.65 0.44 -0.67 1.48 2962.23 1.00\n", + " coefs[11] -0.08 0.29 -0.08 -0.56 0.40 2974.48 1.00\n", + " coefs[12] 0.07 0.65 0.07 -1.00 1.15 2969.88 1.00\n", + " coefs[13] -0.99 0.64 -0.93 -2.05 0.01 4667.16 1.00\n", + " coefs[14] -0.47 0.66 -0.36 -1.50 0.52 5983.57 1.00\n", + " coefs[15] -0.78 0.58 -0.67 -1.66 0.06 4759.51 1.00\n", + " coefs[16] -0.70 0.58 -0.60 -1.57 0.13 5111.37 1.00\n", + " coefs[17] -0.02 0.17 -0.02 -0.30 0.25 723.30 1.01\n", + " coefs[18] -0.53 0.66 -0.41 -1.56 0.42 5519.08 1.00\n", + " coefs[19] -0.47 0.67 -0.38 -1.58 0.55 5869.82 1.00\n", + " coefs[20] -0.78 0.59 -0.67 -1.63 0.01 4721.83 1.00\n", + " coefs[21] -0.77 0.58 -0.66 -1.60 0.03 5203.05 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.01 0.16 742.09 1.01\n", + " coefs[23] 0.05 0.25 0.05 -0.36 0.45 635.21 1.01\n", + " coefs[24] -0.03 0.16 -0.03 -0.30 0.22 658.36 1.01\n", + " coefs[25] -0.07 0.23 -0.07 -0.46 0.30 612.30 1.01\n", + " coefs[26] 0.04 0.18 0.05 -0.26 0.33 624.90 1.01\n", + " coefs[27] -0.70 0.62 -0.58 -1.60 0.17 5010.88 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.62 1.66 10001.87 1.00\n", + " coefs[29] 0.03 0.08 0.03 -0.11 0.15 670.66 1.01\n", + " coefs[30] 0.07 0.09 0.07 -0.09 0.21 741.75 1.01\n", + " coefs[31] -0.00 0.08 -0.00 -0.13 0.12 871.75 1.01\n", + " coefs[32] 0.12 0.09 0.12 -0.03 0.26 641.81 1.01\n", + " coefs[33] 0.16 0.13 0.16 -0.06 0.37 606.63 1.01\n", + " coefs[34] 0.15 0.06 0.14 0.05 0.25 1321.74 1.00\n", + " coefs[35] 0.33 0.24 0.33 -0.08 0.71 602.00 1.01\n", + " coefs[36] 0.33 0.31 0.33 -0.17 0.84 599.72 1.01\n", + " coefs[37] 0.18 0.20 0.18 -0.14 0.50 607.37 1.01\n", + " coefs[38] 0.01 0.03 0.01 -0.05 0.07 825.58 1.01\n", + " coefs[39] 0.00 0.08 0.00 -0.12 0.13 688.22 1.01\n", + " coefs[40] 0.03 0.05 0.03 -0.05 0.11 737.72 1.01\n", + " coefs[41] 0.01 0.07 0.02 -0.10 0.12 1492.59 1.00\n", + " coefs[42] 0.02 0.41 0.02 -0.68 0.69 602.54 1.01\n", + " coefs[43] -0.03 0.23 -0.03 -0.42 0.34 613.82 1.01\n", + " coefs[44] 0.19 0.21 0.19 -0.16 0.54 604.50 1.01\n", + " coefs[45] 0.13 0.30 0.14 -0.39 0.59 603.75 1.01\n", + " coefs[46] 0.23 0.28 0.23 -0.23 0.68 609.11 1.01\n", + " coefs[47] -0.07 0.07 -0.06 -0.18 0.05 933.07 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 672.42 1.01\n", + " coefs[49] -0.80 0.59 -0.69 -1.65 0.00 4630.65 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.08 4276.88 1.00\n", + " coefs[51] -0.07 0.17 -0.07 -0.35 0.21 624.71 1.01\n", + " coefs[52] -0.13 0.16 -0.13 -0.40 0.12 615.24 1.01\n", + " coefs[53] -0.17 0.13 -0.17 -0.38 0.04 608.75 1.01\n", + " coefs[54] -1.65 0.19 -1.64 -1.94 -1.35 3844.77 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 19 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.09 0.06 2.09 1.99 2.20 9900.43 1.00\n", + " coefs[1] -0.09 0.04 -0.09 -0.15 -0.03 12225.38 1.00\n", + " coefs[2] -0.09 0.07 -0.09 -0.21 0.03 3777.37 1.00\n", + " coefs[3] -0.27 0.03 -0.27 -0.32 -0.21 8256.62 1.00\n", + " coefs[4] -0.13 0.04 -0.13 -0.18 -0.07 9095.25 1.00\n", + " coefs[5] -0.20 0.03 -0.20 -0.25 -0.15 11139.58 1.00\n", + " coefs[6] 0.43 0.28 0.42 -0.03 0.90 3032.91 1.00\n", + " coefs[7] -0.85 0.17 -0.84 -1.13 -0.56 3189.63 1.00\n", + " coefs[8] 0.87 0.33 0.86 0.30 1.40 3022.08 1.00\n", + " coefs[9] 0.00 0.03 0.00 -0.05 0.05 12442.31 1.00\n", + " coefs[10] 0.41 0.65 0.40 -0.72 1.41 3331.08 1.00\n", + " coefs[11] -0.06 0.29 -0.07 -0.54 0.41 3341.18 1.00\n", + " coefs[12] 0.12 0.65 0.11 -1.03 1.10 3333.96 1.00\n", + " coefs[13] -1.07 0.61 -1.01 -2.05 -0.08 5218.74 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.54 0.52 5822.97 1.00\n", + " coefs[15] -0.79 0.57 -0.68 -1.65 0.06 4591.28 1.00\n", + " coefs[16] -0.72 0.59 -0.61 -1.62 0.14 5379.81 1.00\n", + " coefs[17] 0.00 0.17 0.01 -0.26 0.29 769.45 1.00\n", + " coefs[18] -0.53 0.66 -0.41 -1.56 0.42 6037.22 1.00\n", + " coefs[19] -0.44 0.68 -0.36 -1.52 0.62 6056.28 1.00\n", + " coefs[20] -0.77 0.60 -0.65 -1.63 0.03 4989.46 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 1593.75 1.00\n", + " coefs[22] 0.09 0.05 0.10 0.01 0.18 737.03 1.00\n", + " coefs[23] 0.20 0.25 0.21 -0.21 0.61 633.08 1.00\n", + " coefs[24] 0.08 0.16 0.09 -0.17 0.34 632.23 1.00\n", + " coefs[25] -0.10 0.24 -0.10 -0.46 0.31 630.33 1.00\n", + " coefs[26] 0.08 0.18 0.08 -0.21 0.39 615.33 1.00\n", + " coefs[27] -0.67 0.63 -0.55 -1.59 0.22 5405.23 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.67 1.63 11841.95 1.00\n", + " coefs[29] 0.01 0.08 0.01 -0.13 0.13 726.36 1.00\n", + " coefs[30] 0.10 0.09 0.10 -0.05 0.23 715.32 1.00\n", + " coefs[31] -0.03 0.10 -0.02 -0.18 0.13 1298.58 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.09 0.21 653.45 1.00\n", + " coefs[33] 0.11 0.13 0.11 -0.12 0.32 620.44 1.00\n", + " coefs[34] 0.93 0.59 0.82 0.12 1.77 4759.24 1.00\n", + " coefs[35] 0.35 0.25 0.36 -0.04 0.76 611.41 1.00\n", + " coefs[36] 0.34 0.31 0.35 -0.18 0.84 609.07 1.00\n", + " coefs[37] 0.18 0.20 0.18 -0.16 0.49 617.89 1.00\n", + " coefs[38] -0.01 0.03 -0.01 -0.07 0.05 798.81 1.00\n", + " coefs[39] -0.05 0.09 -0.05 -0.20 0.09 945.47 1.00\n", + " coefs[40] 0.08 0.05 0.08 -0.00 0.16 775.94 1.00\n", + " coefs[41] -0.79 0.59 -0.67 -1.68 0.02 5087.86 1.00\n", + " coefs[42] 0.02 0.42 0.03 -0.65 0.71 610.24 1.00\n", + " coefs[43] 0.01 0.23 0.01 -0.36 0.40 613.65 1.00\n", + " coefs[44] 0.16 0.22 0.16 -0.19 0.52 615.17 1.00\n", + " coefs[45] 0.04 0.30 0.05 -0.46 0.52 611.35 1.00\n", + " coefs[46] 0.18 0.28 0.19 -0.27 0.65 618.14 1.00\n", + " coefs[47] -0.86 0.56 -0.74 -1.70 -0.08 4596.20 1.00\n", + " coefs[48] -0.08 0.06 -0.08 -0.19 0.02 670.20 1.00\n", + " coefs[49] 0.03 1.00 0.04 -1.57 1.71 11583.95 1.00\n", + " coefs[50] -0.87 0.57 -0.76 -1.69 -0.08 4887.46 1.00\n", + " coefs[51] -0.14 0.17 -0.14 -0.41 0.14 618.30 1.00\n", + " coefs[52] -0.19 0.16 -0.19 -0.45 0.08 619.52 1.00\n", + " coefs[53] -0.19 0.13 -0.18 -0.40 0.02 624.71 1.00\n", + " coefs[54] -1.69 0.19 -1.68 -1.99 -1.39 4128.48 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 20 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.89 0.06 1.89 1.79 1.99 9246.42 1.00\n", + " coefs[1] -0.08 0.03 -0.08 -0.13 -0.02 11208.54 1.00\n", + " coefs[2] 0.01 0.06 0.01 -0.09 0.11 3502.44 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.32 -0.21 7328.68 1.00\n", + " coefs[4] -0.08 0.04 -0.08 -0.14 -0.02 7942.68 1.00\n", + " coefs[5] -0.11 0.03 -0.11 -0.16 -0.06 11139.29 1.00\n", + " coefs[6] 0.47 0.24 0.45 0.07 0.84 2645.70 1.00\n", + " coefs[7] -0.73 0.15 -0.73 -0.97 -0.49 2807.38 1.00\n", + " coefs[8] 0.85 0.28 0.83 0.40 1.30 2626.09 1.00\n", + " coefs[9] -0.04 0.03 -0.04 -0.09 0.01 12620.86 1.00\n", + " coefs[10] 0.39 0.65 0.38 -0.73 1.44 2934.75 1.00\n", + " coefs[11] -0.04 0.29 -0.04 -0.51 0.45 2942.71 1.00\n", + " coefs[12] 0.11 0.65 0.10 -0.95 1.21 2939.57 1.00\n", + " coefs[13] -0.97 0.64 -0.91 -1.94 0.13 4606.51 1.00\n", + " coefs[14] -0.46 0.66 -0.35 -1.52 0.51 5983.50 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.65 0.07 3909.10 1.00\n", + " coefs[16] -0.72 0.58 -0.61 -1.62 0.11 5133.14 1.00\n", + " coefs[17] -0.27 0.23 -0.26 -0.65 0.09 826.22 1.00\n", + " coefs[18] -0.56 0.66 -0.44 -1.59 0.38 5573.30 1.00\n", + " coefs[19] -0.47 0.67 -0.38 -1.56 0.56 5610.96 1.00\n", + " coefs[20] 0.02 0.97 0.02 -1.57 1.63 10854.73 1.00\n", + " coefs[21] 0.01 0.03 0.01 -0.04 0.06 980.00 1.00\n", + " coefs[22] 0.05 0.06 0.05 -0.04 0.15 642.18 1.01\n", + " coefs[23] 0.01 0.25 0.01 -0.39 0.44 445.60 1.01\n", + " coefs[24] -0.04 0.16 -0.04 -0.30 0.23 464.65 1.01\n", + " coefs[25] -0.07 0.23 -0.07 -0.46 0.32 422.35 1.01\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.33 425.48 1.01\n", + " coefs[27] -0.70 0.61 -0.59 -1.58 0.16 5206.67 1.00\n", + " coefs[28] 0.03 0.99 0.04 -1.55 1.70 10690.05 1.00\n", + " coefs[29] 0.11 0.08 0.11 -0.02 0.23 447.83 1.01\n", + " coefs[30] -0.01 0.10 -0.01 -0.18 0.15 609.85 1.01\n", + " coefs[31] 0.03 0.08 0.03 -0.10 0.15 668.65 1.00\n", + " coefs[32] 0.10 0.09 0.10 -0.05 0.25 435.76 1.01\n", + " coefs[33] 0.15 0.13 0.15 -0.05 0.39 423.61 1.01\n", + " coefs[34] 0.92 0.59 0.80 0.10 1.77 4889.49 1.00\n", + " coefs[35] 0.35 0.24 0.35 -0.05 0.76 416.61 1.01\n", + " coefs[36] 0.32 0.31 0.32 -0.17 0.87 414.14 1.01\n", + " coefs[37] 0.18 0.20 0.18 -0.15 0.50 415.80 1.01\n", + " coefs[38] -0.04 0.05 -0.04 -0.12 0.04 964.69 1.00\n", + " coefs[39] -0.03 0.08 -0.02 -0.17 0.10 572.20 1.01\n", + " coefs[40] 0.07 0.05 0.07 -0.02 0.15 548.93 1.01\n", + " coefs[41] -0.78 0.59 -0.65 -1.66 0.03 4809.95 1.00\n", + " coefs[42] 0.10 0.42 0.10 -0.55 0.84 414.43 1.01\n", + " coefs[43] 0.00 0.23 0.01 -0.36 0.42 420.25 1.01\n", + " coefs[44] 0.18 0.22 0.19 -0.18 0.53 414.59 1.01\n", + " coefs[45] 0.13 0.30 0.13 -0.35 0.65 412.93 1.01\n", + " coefs[46] 0.22 0.28 0.22 -0.25 0.68 414.62 1.01\n", + " coefs[47] -0.12 0.09 -0.12 -0.27 0.01 846.25 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.18 0.02 450.84 1.01\n", + " coefs[49] -0.80 0.59 -0.69 -1.64 -0.00 5076.40 1.00\n", + " coefs[50] -0.83 0.58 -0.70 -1.66 -0.04 4703.44 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.37 0.19 420.59 1.01\n", + " coefs[52] -0.09 0.16 -0.09 -0.35 0.18 421.82 1.01\n", + " coefs[53] -0.16 0.13 -0.16 -0.38 0.05 430.31 1.01\n", + " coefs[54] -1.71 0.19 -1.70 -2.01 -1.40 3704.67 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 21 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.00 0.06 2.00 1.90 2.10 9762.19 1.00\n", + " coefs[1] -0.15 0.04 -0.15 -0.21 -0.09 11181.90 1.00\n", + " coefs[2] -0.09 0.07 -0.09 -0.21 0.03 3538.15 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.31 -0.21 7643.43 1.00\n", + " coefs[4] -0.11 0.03 -0.11 -0.16 -0.05 8365.70 1.00\n", + " coefs[5] -0.09 0.03 -0.09 -0.14 -0.04 10974.91 1.00\n", + " coefs[6] 0.16 0.29 0.16 -0.31 0.64 2862.26 1.00\n", + " coefs[7] -0.60 0.18 -0.60 -0.90 -0.32 2967.20 1.00\n", + " coefs[8] 0.53 0.34 0.52 -0.03 1.09 2843.52 1.00\n", + " coefs[9] 0.04 0.03 0.04 -0.01 0.09 11309.82 1.00\n", + " coefs[10] 0.41 0.65 0.40 -0.67 1.47 3281.18 1.00\n", + " coefs[11] 0.01 0.29 0.01 -0.48 0.47 3284.19 1.00\n", + " coefs[12] 0.09 0.65 0.09 -0.96 1.18 3281.82 1.00\n", + " coefs[13] -1.04 0.62 -0.98 -2.00 -0.03 4929.61 1.00\n", + " coefs[14] -0.45 0.67 -0.34 -1.51 0.55 6576.05 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.66 0.04 4629.92 1.00\n", + " coefs[16] -0.70 0.59 -0.59 -1.60 0.15 5257.19 1.00\n", + " coefs[17] -0.06 0.17 -0.06 -0.35 0.21 740.58 1.00\n", + " coefs[18] -0.54 0.66 -0.42 -1.55 0.44 5842.99 1.00\n", + " coefs[19] -0.43 0.67 -0.34 -1.50 0.63 5996.43 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.62 0.02 5050.51 1.00\n", + " coefs[21] -0.77 0.60 -0.66 -1.63 0.04 4806.38 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.01 0.17 781.54 1.00\n", + " coefs[23] 0.14 0.24 0.14 -0.25 0.54 588.58 1.00\n", + " coefs[24] 0.05 0.15 0.05 -0.21 0.30 592.89 1.00\n", + " coefs[25] -0.12 0.23 -0.12 -0.49 0.26 569.03 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.26 0.32 570.36 1.00\n", + " coefs[27] -0.70 0.62 -0.58 -1.59 0.18 5348.57 1.00\n", + " coefs[28] 0.03 0.99 0.02 -1.56 1.72 10094.24 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.04 0.21 603.97 1.00\n", + " coefs[30] 0.04 0.09 0.04 -0.12 0.19 749.44 1.00\n", + " coefs[31] -0.00 0.08 0.00 -0.13 0.13 924.25 1.00\n", + " coefs[32] 0.08 0.09 0.08 -0.07 0.22 588.87 1.00\n", + " coefs[33] 0.10 0.13 0.10 -0.11 0.31 568.07 1.00\n", + " coefs[34] 0.14 0.06 0.14 0.04 0.24 1356.03 1.00\n", + " coefs[35] 0.28 0.24 0.28 -0.09 0.69 556.98 1.00\n", + " coefs[36] 0.31 0.31 0.31 -0.18 0.82 553.33 1.00\n", + " coefs[37] 0.17 0.19 0.17 -0.14 0.49 559.88 1.00\n", + " coefs[38] 0.01 0.03 0.01 -0.04 0.07 757.07 1.00\n", + " coefs[39] 0.05 0.07 0.05 -0.07 0.17 647.92 1.00\n", + " coefs[40] 0.04 0.05 0.04 -0.04 0.12 641.85 1.00\n", + " coefs[41] -0.02 0.07 -0.02 -0.13 0.09 1297.18 1.00\n", + " coefs[42] 0.00 0.41 0.00 -0.64 0.69 553.97 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.34 0.40 559.55 1.00\n", + " coefs[44] 0.19 0.21 0.20 -0.15 0.54 560.54 1.00\n", + " coefs[45] 0.08 0.29 0.08 -0.39 0.56 556.92 1.00\n", + " coefs[46] 0.24 0.28 0.24 -0.18 0.72 555.62 1.00\n", + " coefs[47] -0.08 0.07 -0.08 -0.20 0.03 894.80 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 627.40 1.00\n", + " coefs[49] 0.04 1.01 0.03 -1.59 1.70 10909.59 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.09 4571.07 1.00\n", + " coefs[51] -0.15 0.17 -0.15 -0.41 0.13 561.78 1.00\n", + " coefs[52] -0.14 0.16 -0.14 -0.39 0.12 562.22 1.00\n", + " coefs[53] -0.17 0.13 -0.17 -0.37 0.05 562.71 1.00\n", + " coefs[54] -1.66 0.18 -1.65 -1.96 -1.38 4130.36 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 22 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.04 0.06 2.04 1.94 2.15 8792.94 1.00\n", + " coefs[1] -0.02 0.04 -0.02 -0.08 0.04 11601.13 1.00\n", + " coefs[2] -0.16 0.07 -0.16 -0.27 -0.05 4312.41 1.00\n", + " coefs[3] -0.32 0.03 -0.32 -0.37 -0.26 6939.66 1.00\n", + " coefs[4] -0.10 0.04 -0.10 -0.16 -0.05 7411.87 1.00\n", + " coefs[5] -0.15 0.03 -0.15 -0.20 -0.10 10025.50 1.00\n", + " coefs[6] -0.04 0.25 -0.04 -0.45 0.37 3331.37 1.00\n", + " coefs[7] -0.57 0.15 -0.57 -0.82 -0.32 3563.81 1.00\n", + " coefs[8] 0.29 0.29 0.29 -0.18 0.78 3339.59 1.00\n", + " coefs[9] 0.04 0.03 0.04 -0.00 0.09 10370.34 1.00\n", + " coefs[10] 0.39 0.66 0.39 -0.69 1.46 3233.84 1.00\n", + " coefs[11] -0.04 0.29 -0.04 -0.54 0.42 3237.79 1.00\n", + " coefs[12] 0.11 0.65 0.11 -1.03 1.12 3237.01 1.00\n", + " coefs[13] -1.01 0.63 -0.95 -2.04 -0.03 4483.64 1.00\n", + " coefs[14] -0.47 0.67 -0.36 -1.52 0.52 5759.36 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.65 0.04 4528.41 1.00\n", + " coefs[16] -0.72 0.59 -0.60 -1.60 0.14 4801.30 1.00\n", + " coefs[17] -0.07 0.17 -0.07 -0.35 0.22 832.85 1.00\n", + " coefs[18] -0.53 0.66 -0.42 -1.57 0.40 5510.81 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.54 0.60 5378.76 1.00\n", + " coefs[20] 0.02 0.98 0.02 -1.59 1.66 12635.21 1.00\n", + " coefs[21] 0.00 0.03 0.00 -0.05 0.05 1578.97 1.00\n", + " coefs[22] 0.07 0.06 0.07 -0.03 0.15 799.11 1.00\n", + " coefs[23] 0.08 0.25 0.08 -0.32 0.50 631.44 1.00\n", + " coefs[24] 0.03 0.16 0.03 -0.24 0.28 665.12 1.00\n", + " coefs[25] -0.16 0.23 -0.16 -0.52 0.25 629.61 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.33 649.75 1.00\n", + " coefs[27] -0.73 0.61 -0.61 -1.62 0.12 4951.62 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.63 1.60 9968.12 1.00\n", + " coefs[29] 0.04 0.08 0.04 -0.09 0.17 691.13 1.00\n", + " coefs[30] 0.04 0.09 0.04 -0.10 0.20 752.47 1.00\n", + " coefs[31] 0.01 0.08 0.02 -0.12 0.14 1127.34 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.09 0.20 667.50 1.00\n", + " coefs[33] 0.15 0.13 0.15 -0.07 0.37 635.17 1.00\n", + " coefs[34] 0.14 0.06 0.14 0.04 0.25 1416.76 1.00\n", + " coefs[35] 0.33 0.25 0.33 -0.09 0.72 623.44 1.00\n", + " coefs[36] 0.34 0.32 0.34 -0.16 0.87 612.20 1.00\n", + " coefs[37] 0.15 0.20 0.15 -0.19 0.46 622.84 1.00\n", + " coefs[38] -0.05 0.05 -0.05 -0.13 0.03 1609.92 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 723.00 1.00\n", + " coefs[40] 0.09 0.05 0.09 0.00 0.17 829.79 1.00\n", + " coefs[41] 0.03 0.05 0.03 -0.05 0.12 884.95 1.00\n", + " coefs[42] 0.05 0.42 0.05 -0.64 0.73 619.81 1.00\n", + " coefs[43] -0.03 0.24 -0.02 -0.43 0.34 621.58 1.00\n", + " coefs[44] 0.15 0.22 0.15 -0.20 0.51 617.23 1.00\n", + " coefs[45] 0.09 0.30 0.09 -0.39 0.60 618.28 1.00\n", + " coefs[46] 0.22 0.28 0.23 -0.23 0.69 608.95 1.00\n", + " coefs[47] -0.02 0.06 -0.02 -0.13 0.08 790.25 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.21 0.00 689.44 1.00\n", + " coefs[49] -0.81 0.60 -0.70 -1.67 0.00 4347.16 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.68 -0.08 4436.04 1.00\n", + " coefs[51] -0.14 0.17 -0.13 -0.41 0.15 622.46 1.00\n", + " coefs[52] -0.14 0.16 -0.14 -0.41 0.12 634.06 1.00\n", + " coefs[53] -0.11 0.13 -0.11 -0.32 0.11 641.85 1.00\n", + " coefs[54] -1.65 0.18 -1.63 -1.93 -1.33 3934.98 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 23 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.93 0.06 1.93 1.83 2.03 9689.88 1.00\n", + " coefs[1] -0.05 0.03 -0.05 -0.10 0.01 12545.20 1.00\n", + " coefs[2] -0.02 0.07 -0.02 -0.13 0.09 3898.07 1.00\n", + " coefs[3] -0.27 0.03 -0.27 -0.32 -0.21 7686.11 1.00\n", + " coefs[4] -0.10 0.03 -0.10 -0.16 -0.05 8700.67 1.00\n", + " coefs[5] -0.18 0.03 -0.18 -0.23 -0.13 10401.49 1.00\n", + " coefs[6] 0.26 0.25 0.25 -0.14 0.68 2980.05 1.00\n", + " coefs[7] -0.67 0.15 -0.67 -0.92 -0.42 3112.42 1.00\n", + " coefs[8] 0.57 0.29 0.56 0.11 1.07 2948.98 1.00\n", + " coefs[9] -0.05 0.03 -0.05 -0.10 0.00 12414.78 1.00\n", + " coefs[10] 0.44 0.65 0.43 -0.63 1.52 2846.10 1.00\n", + " coefs[11] -0.01 0.29 -0.02 -0.51 0.45 2871.59 1.00\n", + " coefs[12] 0.10 0.65 0.10 -0.98 1.17 2857.64 1.00\n", + " coefs[13] -1.09 0.63 -1.03 -2.05 -0.01 4990.59 1.00\n", + " coefs[14] -0.47 0.66 -0.36 -1.50 0.54 6165.47 1.00\n", + " coefs[15] -0.81 0.57 -0.71 -1.69 0.02 5048.22 1.00\n", + " coefs[16] -0.75 0.58 -0.64 -1.60 0.08 4824.68 1.00\n", + " coefs[17] -0.16 0.19 -0.15 -0.48 0.13 848.87 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.56 0.40 5827.61 1.00\n", + " coefs[19] -0.45 0.67 -0.36 -1.53 0.58 6544.98 1.00\n", + " coefs[20] -0.76 0.59 -0.65 -1.61 0.04 5423.70 1.00\n", + " coefs[21] 0.03 0.04 0.03 -0.03 0.09 1947.02 1.00\n", + " coefs[22] 0.03 0.06 0.03 -0.06 0.13 874.06 1.00\n", + " coefs[23] 0.07 0.24 0.07 -0.32 0.47 585.54 1.00\n", + " coefs[24] -0.02 0.16 -0.02 -0.28 0.23 603.12 1.00\n", + " coefs[25] -0.07 0.23 -0.08 -0.44 0.32 562.41 1.00\n", + " coefs[26] -0.00 0.18 -0.00 -0.28 0.31 574.26 1.00\n", + " coefs[27] -0.62 0.64 -0.50 -1.58 0.31 5547.06 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.58 1.68 10670.31 1.00\n", + " coefs[29] 0.08 0.08 0.08 -0.04 0.21 627.27 1.00\n", + " coefs[30] 0.01 0.09 0.01 -0.15 0.16 741.73 1.00\n", + " coefs[31] -0.00 0.08 0.00 -0.12 0.13 840.86 1.00\n", + " coefs[32] 0.07 0.09 0.06 -0.08 0.21 588.23 1.00\n", + " coefs[33] 0.17 0.13 0.16 -0.04 0.39 570.20 1.00\n", + " coefs[34] 0.92 0.59 0.80 0.10 1.77 5030.01 1.00\n", + " coefs[35] 0.31 0.24 0.31 -0.08 0.70 559.22 1.00\n", + " coefs[36] 0.30 0.31 0.29 -0.20 0.82 552.54 1.00\n", + " coefs[37] 0.15 0.19 0.14 -0.17 0.47 551.24 1.00\n", + " coefs[38] -0.02 0.04 -0.02 -0.08 0.05 1035.24 1.00\n", + " coefs[39] -0.00 0.08 -0.00 -0.13 0.12 664.01 1.00\n", + " coefs[40] -0.01 0.05 -0.01 -0.09 0.07 667.57 1.00\n", + " coefs[41] -0.03 0.07 -0.02 -0.13 0.09 1390.68 1.00\n", + " coefs[42] 0.02 0.41 0.01 -0.65 0.69 555.94 1.00\n", + " coefs[43] -0.03 0.23 -0.03 -0.42 0.33 561.70 1.00\n", + " coefs[44] 0.16 0.21 0.15 -0.18 0.51 561.34 1.00\n", + " coefs[45] 0.06 0.30 0.06 -0.43 0.54 558.07 1.00\n", + " coefs[46] 0.19 0.28 0.19 -0.27 0.63 558.31 1.00\n", + " coefs[47] -0.10 0.09 -0.10 -0.23 0.05 1359.88 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.19 0.01 608.20 1.00\n", + " coefs[49] 0.03 1.00 0.02 -1.51 1.75 12878.55 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.68 -0.07 4962.08 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.38 0.16 577.83 1.00\n", + " coefs[52] -0.08 0.16 -0.08 -0.35 0.17 562.72 1.00\n", + " coefs[53] -0.11 0.13 -0.11 -0.31 0.10 564.13 1.00\n", + " coefs[54] -1.61 0.18 -1.60 -1.89 -1.29 4385.25 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 24 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.07 0.06 2.07 1.97 2.18 9888.07 1.00\n", + " coefs[1] -0.04 0.04 -0.04 -0.10 0.02 10935.57 1.00\n", + " coefs[2] -0.22 0.07 -0.22 -0.34 -0.10 3416.86 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.36 -0.25 8028.48 1.00\n", + " coefs[4] -0.12 0.04 -0.12 -0.18 -0.06 8680.12 1.00\n", + " coefs[5] -0.14 0.03 -0.14 -0.19 -0.08 11561.50 1.00\n", + " coefs[6] -0.11 0.29 -0.11 -0.60 0.36 2742.04 1.00\n", + " coefs[7] -0.47 0.18 -0.47 -0.76 -0.17 2872.73 1.00\n", + " coefs[8] 0.11 0.34 0.11 -0.46 0.65 2724.86 1.00\n", + " coefs[9] -0.05 0.03 -0.05 -0.10 0.00 11593.39 1.00\n", + " coefs[10] 0.46 0.65 0.45 -0.61 1.52 3002.02 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.48 0.47 3004.38 1.00\n", + " coefs[12] 0.07 0.65 0.06 -0.97 1.17 2999.89 1.00\n", + " coefs[13] -1.05 0.62 -0.99 -2.05 -0.03 4368.86 1.00\n", + " coefs[14] -0.46 0.68 -0.34 -1.53 0.53 5985.35 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.70 0.01 4554.68 1.00\n", + " coefs[16] -0.71 0.60 -0.60 -1.63 0.13 5072.77 1.00\n", + " coefs[17] 0.08 0.16 0.08 -0.17 0.35 613.24 1.00\n", + " coefs[18] -0.56 0.66 -0.44 -1.57 0.41 5692.96 1.00\n", + " coefs[19] -0.46 0.68 -0.37 -1.57 0.59 5682.49 1.00\n", + " coefs[20] -0.78 0.58 -0.67 -1.61 0.01 4910.05 1.00\n", + " coefs[21] -0.00 0.03 0.00 -0.05 0.05 1340.87 1.00\n", + " coefs[22] -0.00 0.07 0.00 -0.12 0.11 1151.16 1.00\n", + " coefs[23] 0.19 0.25 0.19 -0.20 0.61 571.15 1.00\n", + " coefs[24] 0.07 0.15 0.07 -0.18 0.32 570.76 1.00\n", + " coefs[25] -0.12 0.23 -0.12 -0.52 0.25 570.00 1.00\n", + " coefs[26] 0.06 0.18 0.06 -0.24 0.36 570.92 1.00\n", + " coefs[27] -0.71 0.62 -0.59 -1.61 0.14 4857.10 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.63 1.63 11053.83 1.00\n", + " coefs[29] 0.02 0.08 0.02 -0.10 0.15 601.17 1.00\n", + " coefs[30] 0.08 0.09 0.08 -0.07 0.22 653.46 1.00\n", + " coefs[31] 0.02 0.07 0.02 -0.10 0.14 780.03 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.09 0.20 587.20 1.00\n", + " coefs[33] 0.11 0.13 0.11 -0.10 0.33 578.82 1.00\n", + " coefs[34] 0.91 0.59 0.78 0.09 1.76 4633.63 1.00\n", + " coefs[35] 0.32 0.24 0.32 -0.10 0.70 562.55 1.00\n", + " coefs[36] 0.24 0.31 0.24 -0.25 0.78 550.52 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.16 0.48 553.24 1.00\n", + " coefs[38] -0.06 0.04 -0.06 -0.12 0.00 887.46 1.00\n", + " coefs[39] 0.04 0.08 0.04 -0.08 0.17 641.10 1.00\n", + " coefs[40] 0.09 0.05 0.08 0.00 0.16 677.50 1.00\n", + " coefs[41] 0.03 0.05 0.03 -0.06 0.12 940.91 1.00\n", + " coefs[42] -0.06 0.42 -0.06 -0.71 0.66 556.19 1.00\n", + " coefs[43] -0.06 0.23 -0.06 -0.44 0.33 559.39 1.00\n", + " coefs[44] 0.14 0.21 0.14 -0.21 0.50 553.46 1.00\n", + " coefs[45] 0.07 0.30 0.07 -0.43 0.56 553.47 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.25 0.68 554.58 1.00\n", + " coefs[47] -0.04 0.07 -0.04 -0.15 0.07 783.37 1.00\n", + " coefs[48] -0.11 0.06 -0.11 -0.22 -0.01 604.14 1.00\n", + " coefs[49] -0.81 0.60 -0.68 -1.69 -0.01 4306.68 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.68 -0.06 4711.24 1.00\n", + " coefs[51] -0.16 0.17 -0.16 -0.43 0.13 568.23 1.00\n", + " coefs[52] -0.11 0.16 -0.11 -0.38 0.15 568.33 1.00\n", + " coefs[53] -0.16 0.13 -0.16 -0.38 0.05 579.79 1.00\n", + " coefs[54] -1.60 0.18 -1.58 -1.89 -1.30 3802.32 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 25 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.02 0.06 2.02 1.91 2.12 10309.61 1.00\n", + " coefs[1] -0.03 0.03 -0.03 -0.09 0.03 12124.19 1.00\n", + " coefs[2] -0.06 0.07 -0.06 -0.18 0.05 3571.48 1.00\n", + " coefs[3] -0.28 0.03 -0.28 -0.33 -0.22 7482.98 1.00\n", + " coefs[4] -0.14 0.04 -0.14 -0.20 -0.08 8459.79 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.10 10634.42 1.00\n", + " coefs[6] 0.38 0.27 0.38 -0.08 0.82 2778.57 1.00\n", + " coefs[7] -0.76 0.17 -0.76 -1.02 -0.47 2903.10 1.00\n", + " coefs[8] 0.74 0.32 0.74 0.20 1.26 2757.86 1.00\n", + " coefs[9] 0.02 0.03 0.02 -0.03 0.07 12221.01 1.00\n", + " coefs[10] 0.41 0.65 0.41 -0.69 1.46 3052.96 1.00\n", + " coefs[11] -0.06 0.29 -0.06 -0.53 0.42 3052.24 1.00\n", + " coefs[12] 0.13 0.65 0.12 -0.94 1.21 3059.80 1.00\n", + " coefs[13] -1.04 0.62 -0.98 -2.09 -0.09 4412.03 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.53 0.53 5862.03 1.00\n", + " coefs[15] -0.78 0.57 -0.68 -1.65 0.05 5014.93 1.00\n", + " coefs[16] -0.70 0.59 -0.58 -1.58 0.17 5030.84 1.00\n", + " coefs[17] -0.27 0.23 -0.25 -0.61 0.13 1177.44 1.00\n", + " coefs[18] -0.53 0.66 -0.41 -1.54 0.43 5614.50 1.00\n", + " coefs[19] -0.43 0.68 -0.34 -1.54 0.61 5929.27 1.00\n", + " coefs[20] 0.02 0.97 0.01 -1.48 1.69 12485.30 1.00\n", + " coefs[21] -0.00 0.03 0.00 -0.05 0.05 1268.53 1.00\n", + " coefs[22] 0.06 0.05 0.06 -0.03 0.15 729.52 1.00\n", + " coefs[23] 0.19 0.25 0.19 -0.24 0.57 558.82 1.00\n", + " coefs[24] 0.05 0.16 0.05 -0.21 0.31 580.78 1.00\n", + " coefs[25] -0.08 0.23 -0.08 -0.50 0.27 548.09 1.00\n", + " coefs[26] 0.09 0.18 0.09 -0.22 0.38 547.89 1.00\n", + " coefs[27] -0.70 0.61 -0.58 -1.60 0.15 5096.35 1.00\n", + " coefs[28] 0.02 0.99 0.02 -1.66 1.61 10390.05 1.00\n", + " coefs[29] 0.06 0.08 0.06 -0.06 0.19 580.62 1.00\n", + " coefs[30] 0.09 0.09 0.10 -0.05 0.24 628.19 1.00\n", + " coefs[31] -0.75 0.58 -0.63 -1.62 0.07 4801.85 1.00\n", + " coefs[32] 0.09 0.09 0.09 -0.05 0.24 565.21 1.00\n", + " coefs[33] 0.15 0.13 0.16 -0.06 0.37 550.40 1.00\n", + " coefs[34] 0.09 0.05 0.09 0.01 0.18 895.13 1.00\n", + " coefs[35] 0.33 0.24 0.34 -0.07 0.74 535.96 1.00\n", + " coefs[36] 0.32 0.31 0.33 -0.19 0.84 533.22 1.00\n", + " coefs[37] 0.14 0.20 0.14 -0.20 0.45 537.09 1.00\n", + " coefs[38] -0.02 0.04 -0.02 -0.09 0.04 939.95 1.00\n", + " coefs[39] 0.00 0.08 0.00 -0.12 0.13 647.96 1.00\n", + " coefs[40] 0.09 0.06 0.09 0.00 0.18 799.91 1.00\n", + " coefs[41] -0.02 0.07 -0.01 -0.12 0.10 1291.14 1.00\n", + " coefs[42] 0.07 0.42 0.08 -0.62 0.77 533.62 1.00\n", + " coefs[43] -0.02 0.23 -0.01 -0.40 0.37 534.58 1.00\n", + " coefs[44] 0.16 0.22 0.17 -0.20 0.51 534.54 1.00\n", + " coefs[45] 0.09 0.30 0.10 -0.41 0.58 533.79 1.00\n", + " coefs[46] 0.22 0.28 0.23 -0.26 0.66 535.06 1.00\n", + " coefs[47] -0.08 0.07 -0.08 -0.20 0.03 832.04 1.00\n", + " coefs[48] -0.04 0.06 -0.04 -0.15 0.06 617.55 1.00\n", + " coefs[49] -0.81 0.60 -0.69 -1.67 -0.01 4879.90 1.00\n", + " coefs[50] -0.86 0.58 -0.73 -1.68 -0.08 4615.40 1.00\n", + " coefs[51] -0.14 0.17 -0.13 -0.43 0.13 546.89 1.00\n", + " coefs[52] -0.11 0.16 -0.11 -0.38 0.16 536.48 1.00\n", + " coefs[53] -0.18 0.13 -0.18 -0.40 0.03 552.97 1.00\n", + " coefs[54] -1.76 0.19 -1.75 -2.06 -1.45 3911.71 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 26 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.95 0.06 1.95 1.85 2.05 9697.28 1.00\n", + " coefs[1] -0.01 0.03 -0.01 -0.07 0.04 12200.46 1.00\n", + " coefs[2] -0.18 0.07 -0.18 -0.28 -0.07 3835.72 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.36 -0.25 7753.40 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.14 -0.02 8914.41 1.00\n", + " coefs[5] -0.19 0.03 -0.19 -0.24 -0.13 9799.48 1.00\n", + " coefs[6] -0.44 0.25 -0.44 -0.83 -0.02 3083.93 1.00\n", + " coefs[7] -0.24 0.15 -0.24 -0.48 0.01 3272.49 1.00\n", + " coefs[8] -0.25 0.29 -0.24 -0.73 0.22 3069.29 1.00\n", + " coefs[9] -0.01 0.03 -0.01 -0.06 0.04 11351.99 1.00\n", + " coefs[10] 0.42 0.65 0.41 -0.72 1.42 3244.67 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.50 0.46 3259.76 1.00\n", + " coefs[12] 0.12 0.65 0.11 -1.05 1.09 3243.82 1.00\n", + " coefs[13] -1.10 0.62 -1.04 -2.07 -0.06 4756.45 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.52 0.52 5832.99 1.00\n", + " coefs[15] -0.81 0.57 -0.70 -1.65 0.03 4664.33 1.00\n", + " coefs[16] -0.72 0.58 -0.60 -1.63 0.09 5437.49 1.00\n", + " coefs[17] -0.01 0.17 -0.01 -0.27 0.27 593.91 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.55 0.42 5946.46 1.00\n", + " coefs[19] -0.45 0.69 -0.35 -1.53 0.63 5809.86 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.62 0.02 4961.15 1.00\n", + " coefs[21] -0.77 0.58 -0.65 -1.61 0.02 5202.46 1.00\n", + " coefs[22] 0.05 0.05 0.05 -0.03 0.15 658.39 1.00\n", + " coefs[23] 0.17 0.25 0.17 -0.23 0.58 514.11 1.00\n", + " coefs[24] 0.08 0.16 0.08 -0.17 0.34 523.59 1.00\n", + " coefs[25] -0.08 0.24 -0.08 -0.46 0.32 507.06 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.32 507.58 1.00\n", + " coefs[27] -0.73 0.61 -0.60 -1.61 0.13 4905.48 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.60 1.69 10750.90 1.00\n", + " coefs[29] 0.06 0.08 0.06 -0.06 0.19 555.98 1.00\n", + " coefs[30] 0.01 0.10 0.01 -0.15 0.17 672.45 1.00\n", + " coefs[31] 0.01 0.08 0.01 -0.12 0.13 807.56 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.09 0.21 533.46 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.07 0.38 508.16 1.00\n", + " coefs[34] 0.93 0.60 0.80 0.11 1.79 4631.74 1.00\n", + " coefs[35] 0.30 0.24 0.30 -0.08 0.73 494.20 1.00\n", + " coefs[36] 0.34 0.31 0.34 -0.15 0.88 494.83 1.00\n", + " coefs[37] 0.15 0.20 0.15 -0.18 0.47 497.12 1.00\n", + " coefs[38] 0.04 0.04 0.04 -0.03 0.11 896.21 1.00\n", + " coefs[39] -0.01 0.08 -0.00 -0.14 0.12 622.27 1.00\n", + " coefs[40] 0.06 0.05 0.06 -0.01 0.15 578.36 1.00\n", + " coefs[41] -0.78 0.58 -0.66 -1.63 0.03 5017.98 1.00\n", + " coefs[42] 0.08 0.42 0.08 -0.62 0.76 493.89 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.34 0.43 499.52 1.00\n", + " coefs[44] 0.13 0.22 0.13 -0.21 0.50 496.38 1.00\n", + " coefs[45] 0.08 0.30 0.08 -0.44 0.56 492.93 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.28 0.65 498.64 1.00\n", + " coefs[47] -0.82 0.57 -0.71 -1.67 -0.05 4656.06 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.04 550.33 1.00\n", + " coefs[49] -0.80 0.59 -0.67 -1.65 -0.00 4704.70 1.00\n", + " coefs[50] -0.87 0.58 -0.74 -1.69 -0.07 4427.45 1.00\n", + " coefs[51] -0.11 0.17 -0.11 -0.40 0.17 502.20 1.00\n", + " coefs[52] -0.09 0.16 -0.09 -0.35 0.18 502.02 1.00\n", + " coefs[53] -0.16 0.13 -0.16 -0.38 0.05 512.18 1.00\n", + " coefs[54] -1.68 0.19 -1.66 -1.96 -1.36 3876.22 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 27 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.99 0.06 1.99 1.89 2.09 9664.80 1.00\n", + " coefs[1] -0.06 0.03 -0.06 -0.11 0.00 12273.76 1.00\n", + " coefs[2] -0.00 0.07 -0.00 -0.12 0.12 3990.60 1.00\n", + " coefs[3] -0.33 0.03 -0.33 -0.39 -0.28 8378.52 1.00\n", + " coefs[4] -0.08 0.04 -0.08 -0.14 -0.02 9122.81 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.22 -0.11 9835.89 1.00\n", + " coefs[6] 0.43 0.28 0.43 -0.05 0.88 3212.70 1.00\n", + " coefs[7] -0.79 0.17 -0.79 -1.08 -0.52 3328.05 1.00\n", + " coefs[8] 0.87 0.33 0.86 0.31 1.40 3201.38 1.00\n", + " coefs[9] 0.04 0.03 0.04 -0.01 0.09 12410.57 1.00\n", + " coefs[10] 0.39 0.65 0.38 -0.68 1.46 3077.07 1.00\n", + " coefs[11] -0.06 0.29 -0.06 -0.56 0.40 3088.73 1.00\n", + " coefs[12] 0.11 0.65 0.10 -0.94 1.19 3080.15 1.00\n", + " coefs[13] -1.00 0.63 -0.93 -2.05 -0.02 4853.41 1.00\n", + " coefs[14] -0.44 0.67 -0.33 -1.47 0.59 5749.68 1.00\n", + " coefs[15] -0.76 0.57 -0.66 -1.64 0.06 4580.98 1.00\n", + " coefs[16] -0.74 0.58 -0.63 -1.59 0.11 4965.06 1.00\n", + " coefs[17] 0.08 0.16 0.08 -0.20 0.33 757.62 1.00\n", + " coefs[18] -0.54 0.66 -0.42 -1.55 0.42 5849.73 1.00\n", + " coefs[19] -0.45 0.66 -0.36 -1.51 0.59 6230.51 1.00\n", + " coefs[20] -0.76 0.59 -0.64 -1.61 0.03 4981.49 1.00\n", + " coefs[21] 0.03 0.02 0.03 -0.01 0.07 1097.70 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.05 0.14 997.56 1.00\n", + " coefs[23] 0.11 0.25 0.11 -0.31 0.51 703.71 1.00\n", + " coefs[24] 0.01 0.16 0.01 -0.27 0.25 725.63 1.00\n", + " coefs[25] -0.05 0.23 -0.05 -0.44 0.32 685.14 1.00\n", + " coefs[26] 0.04 0.18 0.04 -0.26 0.33 689.06 1.00\n", + " coefs[27] -0.70 0.63 -0.58 -1.63 0.17 4768.90 1.00\n", + " coefs[28] 0.02 1.00 0.03 -1.60 1.70 11348.00 1.00\n", + " coefs[29] 0.02 0.08 0.02 -0.11 0.15 782.70 1.00\n", + " coefs[30] 0.00 0.10 0.00 -0.17 0.17 1066.32 1.00\n", + " coefs[31] -0.75 0.58 -0.63 -1.61 0.07 4989.76 1.00\n", + " coefs[32] 0.07 0.09 0.07 -0.08 0.21 711.07 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.06 0.37 689.21 1.00\n", + " coefs[34] 0.15 0.06 0.15 0.04 0.25 1520.05 1.00\n", + " coefs[35] 0.35 0.24 0.35 -0.05 0.75 671.45 1.00\n", + " coefs[36] 0.37 0.31 0.38 -0.15 0.87 674.78 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.16 0.49 677.33 1.00\n", + " coefs[38] 0.04 0.04 0.04 -0.02 0.10 942.01 1.00\n", + " coefs[39] -0.07 0.09 -0.06 -0.21 0.07 1046.12 1.00\n", + " coefs[40] 0.05 0.05 0.06 -0.03 0.14 837.95 1.00\n", + " coefs[41] -0.79 0.59 -0.66 -1.65 0.04 5069.57 1.00\n", + " coefs[42] 0.09 0.42 0.09 -0.60 0.76 671.11 1.00\n", + " coefs[43] 0.01 0.23 0.01 -0.37 0.40 680.37 1.00\n", + " coefs[44] 0.17 0.21 0.18 -0.18 0.53 673.74 1.00\n", + " coefs[45] 0.12 0.30 0.13 -0.35 0.64 669.63 1.00\n", + " coefs[46] 0.25 0.28 0.25 -0.19 0.73 674.48 1.00\n", + " coefs[47] -0.84 0.58 -0.71 -1.70 -0.04 4818.66 1.00\n", + " coefs[48] -0.05 0.06 -0.05 -0.16 0.05 730.24 1.00\n", + " coefs[49] -0.80 0.60 -0.68 -1.65 0.02 4871.11 1.00\n", + " coefs[50] -0.85 0.58 -0.73 -1.68 -0.08 4482.28 1.00\n", + " coefs[51] -0.10 0.17 -0.10 -0.38 0.17 679.51 1.00\n", + " coefs[52] -0.12 0.16 -0.12 -0.39 0.13 679.23 1.00\n", + " coefs[53] -0.14 0.13 -0.14 -0.35 0.08 691.74 1.00\n", + " coefs[54] -1.77 0.19 -1.76 -2.05 -1.45 4110.31 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 28 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.06 0.06 2.06 1.95 2.16 10589.43 1.00\n", + " coefs[1] -0.01 0.04 -0.01 -0.07 0.05 12371.89 1.00\n", + " coefs[2] -0.00 0.07 -0.00 -0.12 0.12 3405.65 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 8382.81 1.00\n", + " coefs[4] -0.10 0.03 -0.10 -0.16 -0.05 9570.33 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.22 -0.11 11024.17 1.00\n", + " coefs[6] 0.43 0.29 0.43 -0.05 0.92 2818.87 1.00\n", + " coefs[7] -0.81 0.18 -0.80 -1.10 -0.52 2976.70 1.00\n", + " coefs[8] 0.78 0.34 0.77 0.23 1.36 2826.32 1.00\n", + " coefs[9] 0.01 0.03 0.01 -0.04 0.06 11133.18 1.00\n", + " coefs[10] 0.46 0.65 0.46 -0.62 1.50 3195.00 1.00\n", + " coefs[11] -0.09 0.29 -0.09 -0.56 0.39 3191.49 1.00\n", + " coefs[12] 0.07 0.65 0.06 -0.99 1.13 3197.02 1.00\n", + " coefs[13] -0.99 0.63 -0.93 -2.01 0.02 5157.05 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.50 0.55 6122.62 1.00\n", + " coefs[15] -0.78 0.57 -0.67 -1.63 0.08 4822.13 1.00\n", + " coefs[16] -0.72 0.58 -0.60 -1.60 0.12 5059.19 1.00\n", + " coefs[17] -0.10 0.19 -0.09 -0.41 0.20 945.77 1.00\n", + " coefs[18] -0.56 0.66 -0.44 -1.56 0.41 5737.00 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.54 0.60 5933.46 1.00\n", + " coefs[20] -0.77 0.59 -0.66 -1.62 0.02 4978.14 1.00\n", + " coefs[21] 0.03 0.03 0.03 -0.02 0.07 1257.64 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.05 0.13 949.70 1.00\n", + " coefs[23] 0.08 0.24 0.09 -0.31 0.49 632.12 1.00\n", + " coefs[24] -0.02 0.16 -0.02 -0.28 0.24 651.47 1.00\n", + " coefs[25] -0.11 0.23 -0.10 -0.48 0.27 596.53 1.00\n", + " coefs[26] 0.04 0.18 0.04 -0.26 0.32 596.33 1.00\n", + " coefs[27] -0.73 0.62 -0.60 -1.63 0.14 5089.50 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.63 1.64 10446.30 1.00\n", + " coefs[29] 0.02 0.08 0.02 -0.11 0.14 685.01 1.00\n", + " coefs[30] 0.01 0.10 0.01 -0.16 0.17 939.40 1.00\n", + " coefs[31] -0.03 0.10 -0.02 -0.17 0.13 1350.65 1.00\n", + " coefs[32] 0.05 0.09 0.05 -0.09 0.20 622.62 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.05 0.38 604.88 1.00\n", + " coefs[34] 0.14 0.06 0.13 0.04 0.24 1503.83 1.00\n", + " coefs[35] 0.34 0.24 0.34 -0.06 0.72 589.40 1.00\n", + " coefs[36] 0.32 0.31 0.33 -0.18 0.83 582.35 1.00\n", + " coefs[37] 0.14 0.19 0.15 -0.17 0.46 591.16 1.00\n", + " coefs[38] -0.03 0.04 -0.02 -0.09 0.04 968.98 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.13 743.97 1.00\n", + " coefs[40] 0.02 0.05 0.02 -0.06 0.11 730.94 1.00\n", + " coefs[41] -0.80 0.58 -0.68 -1.68 -0.02 5204.80 1.00\n", + " coefs[42] 0.01 0.41 0.02 -0.67 0.66 584.43 1.00\n", + " coefs[43] -0.07 0.23 -0.07 -0.44 0.30 588.94 1.00\n", + " coefs[44] 0.17 0.21 0.17 -0.18 0.51 582.84 1.00\n", + " coefs[45] 0.17 0.29 0.18 -0.32 0.64 585.86 1.00\n", + " coefs[46] 0.23 0.27 0.23 -0.25 0.65 586.24 1.00\n", + " coefs[47] -0.12 0.09 -0.11 -0.26 0.02 1237.70 1.00\n", + " coefs[48] -0.09 0.06 -0.09 -0.18 0.02 645.34 1.00\n", + " coefs[49] -0.01 0.03 -0.01 -0.05 0.03 1713.26 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.68 -0.07 4466.26 1.00\n", + " coefs[51] -0.12 0.17 -0.11 -0.38 0.16 596.53 1.00\n", + " coefs[52] -0.13 0.16 -0.13 -0.38 0.13 593.47 1.00\n", + " coefs[53] -0.20 0.13 -0.19 -0.41 0.00 611.55 1.00\n", + " coefs[54] -1.71 0.19 -1.70 -2.01 -1.41 4242.11 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 29 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.99 0.06 1.99 1.89 2.09 10281.72 1.00\n", + " coefs[1] -0.08 0.03 -0.08 -0.14 -0.02 11111.60 1.00\n", + " coefs[2] -0.11 0.08 -0.11 -0.24 0.02 3283.15 1.00\n", + " coefs[3] -0.29 0.03 -0.29 -0.34 -0.23 7208.35 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.14 -0.03 8500.50 1.00\n", + " coefs[5] -0.10 0.03 -0.10 -0.16 -0.05 11522.62 1.00\n", + " coefs[6] -0.03 0.33 -0.03 -0.58 0.52 2779.03 1.00\n", + " coefs[7] -0.49 0.20 -0.49 -0.83 -0.17 2911.34 1.00\n", + " coefs[8] 0.24 0.39 0.24 -0.44 0.85 2776.23 1.00\n", + " coefs[9] -0.07 0.03 -0.07 -0.11 -0.02 10734.26 1.00\n", + " coefs[10] 0.41 0.65 0.41 -0.67 1.45 3176.70 1.00\n", + " coefs[11] -0.03 0.29 -0.03 -0.51 0.44 3179.52 1.00\n", + " coefs[12] 0.10 0.65 0.09 -0.97 1.16 3177.55 1.00\n", + " coefs[13] -1.00 0.64 -0.94 -2.00 0.02 4659.78 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.52 0.54 5589.40 1.00\n", + " coefs[15] -0.80 0.57 -0.70 -1.67 0.03 4418.25 1.00\n", + " coefs[16] -0.72 0.59 -0.60 -1.61 0.12 5208.44 1.00\n", + " coefs[17] -0.17 0.19 -0.16 -0.47 0.15 943.32 1.00\n", + " coefs[18] -0.57 0.66 -0.45 -1.58 0.39 5903.46 1.00\n", + " coefs[19] -0.47 0.69 -0.38 -1.55 0.61 5385.20 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.63 0.02 5011.82 1.00\n", + " coefs[21] 0.04 0.03 0.04 -0.01 0.09 1530.86 1.00\n", + " coefs[22] 0.09 0.05 0.09 0.00 0.17 733.93 1.00\n", + " coefs[23] 0.04 0.25 0.04 -0.37 0.44 635.37 1.00\n", + " coefs[24] -0.00 0.16 -0.01 -0.27 0.25 647.37 1.00\n", + " coefs[25] -0.14 0.23 -0.14 -0.51 0.26 626.98 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.28 0.32 634.01 1.00\n", + " coefs[27] -0.71 0.62 -0.59 -1.61 0.16 4950.71 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.58 1.65 10491.51 1.00\n", + " coefs[29] 0.08 0.08 0.08 -0.06 0.20 667.60 1.00\n", + " coefs[30] 0.04 0.09 0.04 -0.11 0.19 785.86 1.00\n", + " coefs[31] 0.04 0.07 0.05 -0.07 0.17 933.56 1.00\n", + " coefs[32] 0.07 0.09 0.07 -0.08 0.21 650.23 1.00\n", + " coefs[33] 0.20 0.13 0.20 -0.01 0.43 626.70 1.00\n", + " coefs[34] 0.92 0.59 0.80 0.11 1.77 4818.61 1.00\n", + " coefs[35] 0.31 0.24 0.30 -0.10 0.70 609.88 1.00\n", + " coefs[36] 0.31 0.31 0.31 -0.21 0.82 613.54 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.16 0.48 621.85 1.00\n", + " coefs[38] -0.02 0.05 -0.02 -0.11 0.06 1553.81 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.13 739.41 1.00\n", + " coefs[40] 0.10 0.05 0.10 0.01 0.19 890.30 1.00\n", + " coefs[41] -0.01 0.07 -0.00 -0.12 0.10 1456.92 1.00\n", + " coefs[42] 0.02 0.42 0.01 -0.67 0.69 613.09 1.00\n", + " coefs[43] -0.00 0.23 -0.01 -0.40 0.37 621.98 1.00\n", + " coefs[44] 0.15 0.22 0.15 -0.21 0.50 614.00 1.00\n", + " coefs[45] 0.07 0.30 0.07 -0.43 0.55 621.21 1.00\n", + " coefs[46] 0.19 0.28 0.19 -0.26 0.66 620.99 1.00\n", + " coefs[47] -0.14 0.09 -0.13 -0.28 0.00 1359.24 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.16 0.04 644.79 1.00\n", + " coefs[49] -0.82 0.60 -0.70 -1.68 -0.01 4763.74 1.00\n", + " coefs[50] -0.84 0.59 -0.72 -1.69 -0.06 4904.38 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.41 0.15 629.04 1.00\n", + " coefs[52] -0.08 0.16 -0.08 -0.34 0.18 630.19 1.00\n", + " coefs[53] -0.17 0.13 -0.17 -0.39 0.03 631.24 1.00\n", + " coefs[54] -1.64 0.19 -1.62 -1.93 -1.34 3831.89 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 30 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.90 0.06 1.90 1.80 2.00 9019.97 1.00\n", + " coefs[1] -0.04 0.03 -0.04 -0.10 0.02 10767.61 1.00\n", + " coefs[2] 0.02 0.07 0.02 -0.10 0.14 3295.95 1.00\n", + " coefs[3] -0.26 0.03 -0.26 -0.32 -0.21 7375.50 1.00\n", + " coefs[4] -0.08 0.04 -0.08 -0.14 -0.02 8457.63 1.00\n", + " coefs[5] -0.14 0.03 -0.14 -0.19 -0.09 10886.68 1.00\n", + " coefs[6] 0.50 0.29 0.50 0.03 0.97 2663.40 1.00\n", + " coefs[7] -0.78 0.18 -0.78 -1.08 -0.50 2793.04 1.00\n", + " coefs[8] 0.88 0.34 0.88 0.30 1.41 2672.27 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.07 0.02 10751.40 1.00\n", + " coefs[10] 0.42 0.65 0.41 -0.61 1.51 3393.24 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.48 0.47 3406.03 1.00\n", + " coefs[12] 0.07 0.65 0.07 -0.99 1.13 3403.50 1.00\n", + " coefs[13] -1.01 0.63 -0.95 -2.05 -0.03 4984.38 1.00\n", + " coefs[14] -0.46 0.66 -0.36 -1.47 0.53 5921.21 1.00\n", + " coefs[15] -0.78 0.57 -0.67 -1.64 0.05 4545.78 1.00\n", + " coefs[16] -0.73 0.57 -0.61 -1.58 0.10 5089.11 1.00\n", + " coefs[17] -0.14 0.19 -0.14 -0.44 0.17 1126.41 1.00\n", + " coefs[18] -0.55 0.66 -0.44 -1.55 0.41 5515.73 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.57 0.56 5501.46 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.61 0.03 5123.43 1.00\n", + " coefs[21] -0.76 0.59 -0.64 -1.61 0.05 4825.12 1.00\n", + " coefs[22] 0.02 0.07 0.03 -0.10 0.14 1548.35 1.00\n", + " coefs[23] 0.05 0.25 0.06 -0.35 0.47 783.10 1.00\n", + " coefs[24] 0.08 0.16 0.09 -0.16 0.35 779.21 1.00\n", + " coefs[25] -0.10 0.23 -0.09 -0.49 0.28 756.44 1.00\n", + " coefs[26] -0.00 0.18 0.00 -0.29 0.31 755.12 1.00\n", + " coefs[27] -0.71 0.63 -0.58 -1.63 0.17 4745.70 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.54 1.73 9981.61 1.00\n", + " coefs[29] 0.05 0.08 0.05 -0.08 0.18 854.92 1.00\n", + " coefs[30] -0.09 0.13 -0.08 -0.28 0.13 1528.49 1.00\n", + " coefs[31] -0.76 0.58 -0.64 -1.61 0.07 4759.95 1.00\n", + " coefs[32] 0.13 0.09 0.13 -0.02 0.27 775.07 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.05 0.39 764.75 1.00\n", + " coefs[34] 0.91 0.60 0.79 0.08 1.76 4523.52 1.00\n", + " coefs[35] 0.37 0.24 0.37 -0.02 0.79 745.02 1.01\n", + " coefs[36] 0.35 0.31 0.35 -0.13 0.90 743.92 1.00\n", + " coefs[37] 0.19 0.20 0.20 -0.13 0.52 747.52 1.00\n", + " coefs[38] -0.03 0.04 -0.02 -0.09 0.04 1238.03 1.00\n", + " coefs[39] 0.01 0.08 0.02 -0.11 0.14 874.10 1.00\n", + " coefs[40] 0.03 0.05 0.03 -0.06 0.11 917.48 1.00\n", + " coefs[41] 0.01 0.05 0.01 -0.08 0.10 1128.55 1.00\n", + " coefs[42] 0.05 0.41 0.05 -0.64 0.74 740.73 1.00\n", + " coefs[43] -0.04 0.23 -0.04 -0.41 0.36 744.09 1.00\n", + " coefs[44] 0.18 0.21 0.18 -0.16 0.55 748.09 1.00\n", + " coefs[45] 0.15 0.30 0.16 -0.32 0.67 742.57 1.00\n", + " coefs[46] 0.21 0.28 0.22 -0.24 0.68 748.05 1.00\n", + " coefs[47] -0.07 0.07 -0.07 -0.19 0.05 1192.87 1.00\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.03 845.74 1.00\n", + " coefs[49] -0.79 0.60 -0.68 -1.65 0.01 5087.76 1.00\n", + " coefs[50] -0.85 0.59 -0.72 -1.69 -0.05 4519.70 1.00\n", + " coefs[51] -0.09 0.17 -0.08 -0.37 0.19 749.63 1.00\n", + " coefs[52] -0.09 0.16 -0.09 -0.38 0.15 752.57 1.00\n", + " coefs[53] -0.13 0.13 -0.13 -0.36 0.07 766.61 1.00\n", + " coefs[54] -1.70 0.19 -1.69 -2.00 -1.40 4002.84 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 31 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.00 0.06 2.00 1.89 2.10 10506.43 1.00\n", + " coefs[1] -0.02 0.04 -0.02 -0.08 0.04 11576.31 1.00\n", + " coefs[2] -0.09 0.07 -0.09 -0.20 0.03 3713.76 1.00\n", + " coefs[3] -0.36 0.03 -0.36 -0.42 -0.31 8843.21 1.00\n", + " coefs[4] -0.05 0.04 -0.05 -0.10 0.01 9500.03 1.00\n", + " coefs[5] -0.09 0.03 -0.09 -0.14 -0.04 10864.35 1.00\n", + " coefs[6] 0.33 0.27 0.32 -0.10 0.76 2852.16 1.00\n", + " coefs[7] -0.76 0.16 -0.75 -1.01 -0.48 2964.01 1.00\n", + " coefs[8] 0.69 0.31 0.68 0.19 1.20 2847.07 1.00\n", + " coefs[9] 0.00 0.03 0.00 -0.05 0.05 11519.52 1.00\n", + " coefs[10] 0.39 0.65 0.39 -0.70 1.46 3245.63 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.50 0.46 3261.90 1.00\n", + " coefs[12] 0.11 0.65 0.11 -0.92 1.23 3256.33 1.00\n", + " coefs[13] -1.01 0.63 -0.95 -2.04 -0.03 5056.56 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.49 0.54 6112.69 1.00\n", + " coefs[15] -0.78 0.57 -0.68 -1.60 0.08 4585.07 1.00\n", + " coefs[16] -0.72 0.58 -0.61 -1.61 0.11 5040.88 1.00\n", + " coefs[17] -0.26 0.23 -0.25 -0.62 0.12 1111.71 1.00\n", + " coefs[18] -0.54 0.66 -0.42 -1.56 0.42 5994.44 1.00\n", + " coefs[19] -0.45 0.67 -0.35 -1.57 0.57 5768.92 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.62 0.01 5062.81 1.00\n", + " coefs[21] -0.77 0.59 -0.65 -1.61 0.02 5297.12 1.00\n", + " coefs[22] 0.06 0.06 0.06 -0.04 0.16 832.32 1.00\n", + " coefs[23] 0.14 0.25 0.14 -0.27 0.54 553.00 1.01\n", + " coefs[24] 0.09 0.16 0.09 -0.18 0.33 554.02 1.01\n", + " coefs[25] -0.12 0.24 -0.12 -0.51 0.26 538.13 1.01\n", + " coefs[26] 0.03 0.18 0.03 -0.28 0.32 545.03 1.01\n", + " coefs[27] -0.68 0.63 -0.56 -1.63 0.18 4961.27 1.00\n", + " coefs[28] 0.03 0.99 0.03 -1.62 1.65 10677.03 1.00\n", + " coefs[29] 0.09 0.08 0.09 -0.04 0.22 593.65 1.01\n", + " coefs[30] 0.07 0.09 0.07 -0.08 0.21 650.49 1.01\n", + " coefs[31] -0.02 0.10 -0.02 -0.18 0.13 1189.70 1.00\n", + " coefs[32] 0.11 0.09 0.11 -0.04 0.25 571.81 1.01\n", + " coefs[33] 0.16 0.13 0.16 -0.06 0.38 540.11 1.01\n", + " coefs[34] 0.15 0.07 0.14 0.04 0.25 1289.56 1.00\n", + " coefs[35] 0.35 0.25 0.35 -0.06 0.74 528.74 1.01\n", + " coefs[36] 0.31 0.31 0.31 -0.22 0.81 527.93 1.01\n", + " coefs[37] 0.15 0.20 0.15 -0.18 0.47 535.58 1.01\n", + " coefs[38] -0.82 0.58 -0.69 -1.66 -0.03 5038.93 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 632.38 1.01\n", + " coefs[40] 0.07 0.05 0.07 -0.01 0.15 644.97 1.01\n", + " coefs[41] -0.79 0.59 -0.67 -1.66 0.03 4898.98 1.00\n", + " coefs[42] 0.04 0.42 0.05 -0.68 0.69 530.13 1.01\n", + " coefs[43] 0.00 0.23 0.01 -0.38 0.38 535.88 1.01\n", + " coefs[44] 0.18 0.22 0.18 -0.19 0.52 531.17 1.01\n", + " coefs[45] 0.11 0.30 0.11 -0.39 0.60 527.06 1.01\n", + " coefs[46] 0.26 0.28 0.26 -0.21 0.71 527.83 1.01\n", + " coefs[47] -0.04 0.07 -0.04 -0.15 0.07 742.72 1.01\n", + " coefs[48] -0.07 0.06 -0.07 -0.17 0.03 592.25 1.01\n", + " coefs[49] -0.80 0.59 -0.68 -1.65 0.01 4900.71 1.00\n", + " coefs[50] -0.87 0.58 -0.75 -1.71 -0.09 4640.27 1.00\n", + " coefs[51] -0.11 0.17 -0.11 -0.40 0.16 539.58 1.01\n", + " coefs[52] -0.10 0.16 -0.10 -0.38 0.15 540.36 1.01\n", + " coefs[53] -0.17 0.13 -0.17 -0.38 0.04 553.93 1.01\n", + " coefs[54] -1.79 0.19 -1.77 -2.09 -1.49 4183.29 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 32 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.04 0.06 2.04 1.93 2.14 10125.47 1.00\n", + " coefs[1] -0.03 0.04 -0.03 -0.09 0.03 11574.62 1.00\n", + " coefs[2] -0.05 0.08 -0.05 -0.17 0.08 3281.43 1.00\n", + " coefs[3] -0.35 0.03 -0.35 -0.41 -0.29 7593.31 1.00\n", + " coefs[4] -0.07 0.04 -0.07 -0.13 -0.01 8084.89 1.00\n", + " coefs[5] -0.13 0.03 -0.13 -0.19 -0.08 10905.67 1.00\n", + " coefs[6] -0.31 0.31 -0.30 -0.82 0.18 2706.12 1.00\n", + " coefs[7] -0.31 0.19 -0.31 -0.64 -0.02 2873.98 1.00\n", + " coefs[8] -0.05 0.36 -0.04 -0.64 0.54 2711.99 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.08 0.01 11662.00 1.00\n", + " coefs[10] 0.36 0.65 0.35 -0.70 1.45 3104.82 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.55 0.40 3113.43 1.00\n", + " coefs[12] 0.13 0.65 0.11 -0.91 1.23 3110.90 1.00\n", + " coefs[13] -0.92 0.65 -0.85 -1.98 0.10 4557.60 1.00\n", + " coefs[14] -0.48 0.67 -0.37 -1.53 0.52 5472.45 1.00\n", + " coefs[15] -0.77 0.57 -0.67 -1.66 0.05 4497.69 1.00\n", + " coefs[16] -0.75 0.58 -0.64 -1.60 0.10 5133.58 1.00\n", + " coefs[17] -0.19 0.19 -0.18 -0.49 0.11 650.98 1.00\n", + " coefs[18] -0.56 0.66 -0.45 -1.58 0.38 5533.20 1.00\n", + " coefs[19] -0.48 0.68 -0.39 -1.60 0.56 5797.66 1.00\n", + " coefs[20] -0.77 0.58 -0.65 -1.62 0.02 5225.53 1.00\n", + " coefs[21] 0.85 0.59 0.73 0.05 1.69 4743.33 1.00\n", + " coefs[22] 0.08 0.06 0.08 -0.01 0.17 616.41 1.00\n", + " coefs[23] -0.12 0.26 -0.12 -0.55 0.27 509.35 1.00\n", + " coefs[24] 0.01 0.16 0.01 -0.26 0.26 505.07 1.00\n", + " coefs[25] -0.06 0.23 -0.06 -0.46 0.31 470.64 1.00\n", + " coefs[26] -0.01 0.18 -0.01 -0.32 0.28 466.27 1.00\n", + " coefs[27] -0.73 0.61 -0.61 -1.62 0.11 4885.26 1.00\n", + " coefs[28] 0.02 1.00 0.03 -1.53 1.77 10588.75 1.00\n", + " coefs[29] 0.06 0.08 0.06 -0.07 0.18 499.21 1.00\n", + " coefs[30] 0.00 0.10 0.00 -0.16 0.17 651.77 1.00\n", + " coefs[31] -0.02 0.09 -0.01 -0.17 0.13 974.28 1.00\n", + " coefs[32] 0.13 0.09 0.13 -0.02 0.28 487.05 1.00\n", + " coefs[33] 0.16 0.13 0.16 -0.06 0.37 456.31 1.00\n", + " coefs[34] 0.91 0.59 0.79 0.10 1.78 4689.58 1.00\n", + " coefs[35] 0.36 0.24 0.36 -0.03 0.77 458.75 1.00\n", + " coefs[36] 0.36 0.31 0.36 -0.15 0.86 453.29 1.00\n", + " coefs[37] 0.13 0.20 0.13 -0.18 0.46 457.34 1.00\n", + " coefs[38] 0.00 0.05 0.01 -0.08 0.09 1270.06 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.10 0.15 528.49 1.00\n", + " coefs[40] 0.06 0.05 0.06 -0.02 0.14 533.76 1.00\n", + " coefs[41] -0.02 0.07 -0.02 -0.13 0.09 1041.39 1.00\n", + " coefs[42] 0.09 0.42 0.08 -0.61 0.74 455.70 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.35 0.40 460.85 1.00\n", + " coefs[44] 0.14 0.22 0.15 -0.22 0.49 447.48 1.00\n", + " coefs[45] 0.10 0.30 0.10 -0.39 0.58 452.15 1.00\n", + " coefs[46] 0.17 0.28 0.17 -0.28 0.63 450.76 1.00\n", + " coefs[47] -0.14 0.09 -0.13 -0.28 0.00 959.11 1.00\n", + " coefs[48] -0.04 0.06 -0.04 -0.14 0.07 493.15 1.00\n", + " coefs[49] -0.81 0.59 -0.69 -1.65 -0.01 4845.43 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.07 4590.09 1.00\n", + " coefs[51] -0.14 0.17 -0.15 -0.43 0.12 466.09 1.00\n", + " coefs[52] -0.11 0.16 -0.11 -0.37 0.15 465.86 1.00\n", + " coefs[53] -0.13 0.13 -0.13 -0.34 0.08 473.04 1.00\n", + " coefs[54] -1.67 0.19 -1.66 -1.97 -1.36 4072.51 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 33 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.91 0.06 1.91 1.81 2.01 10511.47 1.00\n", + " coefs[1] -0.06 0.03 -0.06 -0.12 -0.01 12220.55 1.00\n", + " coefs[2] -0.07 0.07 -0.07 -0.19 0.04 3687.76 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.35 -0.24 7665.75 1.00\n", + " coefs[4] -0.06 0.03 -0.06 -0.11 -0.00 9077.63 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.18 -0.07 11684.74 1.00\n", + " coefs[6] 0.26 0.29 0.25 -0.20 0.75 2923.46 1.00\n", + " coefs[7] -0.61 0.18 -0.61 -0.89 -0.31 3050.64 1.00\n", + " coefs[8] 0.61 0.34 0.60 0.07 1.20 2919.52 1.00\n", + " coefs[9] -0.03 0.03 -0.03 -0.08 0.02 11351.45 1.00\n", + " coefs[10] 0.39 0.65 0.38 -0.73 1.41 3228.80 1.00\n", + " coefs[11] -0.04 0.29 -0.04 -0.54 0.41 3241.45 1.00\n", + " coefs[12] 0.11 0.64 0.11 -1.00 1.13 3238.02 1.00\n", + " coefs[13] -0.97 0.64 -0.91 -1.98 0.07 5249.99 1.00\n", + " coefs[14] -0.47 0.66 -0.37 -1.48 0.54 6066.89 1.00\n", + " coefs[15] -0.77 0.56 -0.67 -1.64 0.04 4986.07 1.00\n", + " coefs[16] -0.73 0.58 -0.62 -1.61 0.09 5444.07 1.00\n", + " coefs[17] -0.14 0.19 -0.14 -0.44 0.17 776.12 1.00\n", + " coefs[18] -0.53 0.67 -0.42 -1.55 0.44 6209.21 1.00\n", + " coefs[19] -0.47 0.67 -0.39 -1.57 0.55 6230.36 1.00\n", + " coefs[20] -0.78 0.59 -0.66 -1.62 0.02 5067.27 1.00\n", + " coefs[21] -0.76 0.58 -0.65 -1.59 0.05 5458.41 1.00\n", + " coefs[22] -0.00 0.07 0.00 -0.12 0.12 1121.18 1.00\n", + " coefs[23] 0.03 0.25 0.04 -0.37 0.44 541.73 1.00\n", + " coefs[24] 0.02 0.16 0.02 -0.24 0.27 539.71 1.00\n", + " coefs[25] -0.05 0.23 -0.06 -0.43 0.33 515.63 1.00\n", + " coefs[26] 0.05 0.18 0.05 -0.24 0.35 517.55 1.00\n", + " coefs[27] -0.72 0.61 -0.59 -1.60 0.15 5250.27 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.58 1.68 11408.51 1.00\n", + " coefs[29] 0.10 0.08 0.10 -0.03 0.22 537.16 1.00\n", + " coefs[30] 0.03 0.09 0.04 -0.11 0.18 614.05 1.00\n", + " coefs[31] -0.03 0.10 -0.02 -0.18 0.13 1169.25 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.08 0.21 546.97 1.00\n", + " coefs[33] 0.17 0.13 0.17 -0.04 0.39 519.49 1.00\n", + " coefs[34] 0.92 0.59 0.80 0.11 1.76 4777.97 1.00\n", + " coefs[35] 0.37 0.25 0.37 -0.01 0.78 501.98 1.00\n", + " coefs[36] 0.36 0.31 0.36 -0.17 0.85 498.97 1.00\n", + " coefs[37] 0.20 0.20 0.20 -0.13 0.51 509.05 1.00\n", + " coefs[38] -0.03 0.04 -0.03 -0.09 0.04 846.24 1.00\n", + " coefs[39] -0.02 0.08 -0.02 -0.14 0.12 639.66 1.00\n", + " coefs[40] 0.02 0.05 0.02 -0.06 0.10 608.38 1.00\n", + " coefs[41] -0.80 0.59 -0.68 -1.66 0.01 4980.95 1.00\n", + " coefs[42] 0.09 0.42 0.09 -0.57 0.79 505.92 1.00\n", + " coefs[43] 0.01 0.23 0.00 -0.37 0.39 510.07 1.00\n", + " coefs[44] 0.17 0.22 0.17 -0.17 0.53 501.53 1.00\n", + " coefs[45] 0.08 0.30 0.08 -0.42 0.56 499.88 1.00\n", + " coefs[46] 0.19 0.28 0.19 -0.29 0.62 505.21 1.00\n", + " coefs[47] -0.86 0.57 -0.74 -1.70 -0.06 4649.67 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.16 0.04 529.40 1.00\n", + " coefs[49] 0.04 1.00 0.02 -1.59 1.66 12157.87 1.00\n", + " coefs[50] -0.86 0.58 -0.73 -1.71 -0.08 4732.51 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.40 0.16 504.47 1.00\n", + " coefs[52] -0.08 0.16 -0.08 -0.33 0.19 511.03 1.00\n", + " coefs[53] -0.14 0.13 -0.14 -0.35 0.07 515.84 1.00\n", + " coefs[54] -1.71 0.19 -1.70 -2.01 -1.40 4097.08 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 34 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.05 0.06 2.05 1.95 2.16 10000.30 1.00\n", + " coefs[1] -0.02 0.04 -0.01 -0.07 0.05 10626.97 1.00\n", + " coefs[2] -0.14 0.07 -0.14 -0.26 -0.02 3772.39 1.00\n", + " coefs[3] -0.36 0.03 -0.36 -0.41 -0.30 7420.44 1.00\n", + " coefs[4] -0.05 0.03 -0.05 -0.11 0.01 8047.09 1.00\n", + " coefs[5] -0.19 0.03 -0.19 -0.24 -0.13 10672.51 1.00\n", + " coefs[6] -0.17 0.28 -0.17 -0.63 0.30 3074.31 1.00\n", + " coefs[7] -0.40 0.17 -0.40 -0.69 -0.13 3264.91 1.00\n", + " coefs[8] 0.07 0.33 0.07 -0.46 0.63 3067.33 1.00\n", + " coefs[9] 0.00 0.03 0.00 -0.05 0.05 11678.49 1.00\n", + " coefs[10] 0.45 0.65 0.44 -0.61 1.54 3198.32 1.00\n", + " coefs[11] -0.06 0.29 -0.06 -0.57 0.39 3220.36 1.00\n", + " coefs[12] 0.08 0.65 0.08 -1.01 1.14 3215.87 1.00\n", + " coefs[13] -1.07 0.62 -1.01 -2.06 -0.07 4551.88 1.00\n", + " coefs[14] -0.45 0.67 -0.35 -1.51 0.54 6254.49 1.00\n", + " coefs[15] -0.80 0.57 -0.69 -1.63 0.06 4416.51 1.00\n", + " coefs[16] -0.71 0.59 -0.60 -1.60 0.13 4831.45 1.00\n", + " coefs[17] 0.01 0.17 0.01 -0.26 0.28 591.23 1.00\n", + " coefs[18] -0.55 0.66 -0.43 -1.55 0.42 6005.73 1.00\n", + " coefs[19] -0.45 0.69 -0.36 -1.53 0.63 5509.96 1.00\n", + " coefs[20] -0.77 0.59 -0.66 -1.61 0.02 5084.54 1.00\n", + " coefs[21] 0.05 0.03 0.04 -0.01 0.10 1382.99 1.00\n", + " coefs[22] 0.10 0.05 0.10 0.02 0.19 596.70 1.00\n", + " coefs[23] 0.12 0.25 0.12 -0.30 0.51 508.75 1.00\n", + " coefs[24] 0.03 0.16 0.03 -0.23 0.28 514.96 1.00\n", + " coefs[25] -0.10 0.24 -0.11 -0.49 0.27 492.31 1.00\n", + " coefs[26] 0.02 0.18 0.02 -0.27 0.32 498.67 1.00\n", + " coefs[27] -0.71 0.61 -0.60 -1.61 0.13 4956.76 1.00\n", + " coefs[28] 0.01 0.99 0.01 -1.54 1.69 11010.12 1.00\n", + " coefs[29] 0.05 0.08 0.05 -0.08 0.18 556.65 1.00\n", + " coefs[30] 0.09 0.09 0.10 -0.05 0.24 614.00 1.00\n", + " coefs[31] 0.01 0.08 0.01 -0.12 0.14 795.57 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.08 0.21 512.23 1.00\n", + " coefs[33] 0.13 0.13 0.13 -0.09 0.35 502.30 1.00\n", + " coefs[34] 0.91 0.59 0.80 0.12 1.77 4902.15 1.00\n", + " coefs[35] 0.30 0.25 0.29 -0.11 0.70 491.25 1.00\n", + " coefs[36] 0.32 0.32 0.32 -0.20 0.82 483.51 1.00\n", + " coefs[37] 0.16 0.20 0.16 -0.17 0.47 490.31 1.00\n", + " coefs[38] -0.03 0.04 -0.03 -0.09 0.03 803.24 1.00\n", + " coefs[39] 0.02 0.08 0.02 -0.10 0.15 590.41 1.00\n", + " coefs[40] 0.06 0.05 0.06 -0.02 0.14 588.34 1.00\n", + " coefs[41] 0.01 0.07 0.01 -0.10 0.12 1292.79 1.00\n", + " coefs[42] -0.02 0.42 -0.02 -0.71 0.65 487.70 1.00\n", + " coefs[43] -0.03 0.23 -0.04 -0.42 0.34 497.84 1.00\n", + " coefs[44] 0.15 0.22 0.15 -0.20 0.51 490.22 1.00\n", + " coefs[45] 0.10 0.30 0.10 -0.39 0.60 486.10 1.00\n", + " coefs[46] 0.20 0.28 0.20 -0.27 0.64 490.41 1.00\n", + " coefs[47] -0.86 0.56 -0.75 -1.70 -0.08 4880.99 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.16 0.05 543.91 1.00\n", + " coefs[49] -0.81 0.60 -0.70 -1.66 0.01 4856.94 1.00\n", + " coefs[50] -0.84 0.59 -0.72 -1.70 -0.06 4479.77 1.00\n", + " coefs[51] -0.15 0.17 -0.15 -0.43 0.12 499.77 1.00\n", + " coefs[52] -0.12 0.16 -0.13 -0.38 0.14 497.92 1.00\n", + " coefs[53] -0.20 0.13 -0.20 -0.41 0.02 497.46 1.00\n", + " coefs[54] -1.64 0.18 -1.62 -1.92 -1.33 3835.59 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 35 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.97 0.06 1.97 1.87 2.07 9742.14 1.00\n", + " coefs[1] -0.06 0.04 -0.06 -0.12 -0.00 10941.17 1.00\n", + " coefs[2] -0.15 0.07 -0.15 -0.27 -0.04 3797.76 1.00\n", + " coefs[3] -0.37 0.03 -0.37 -0.42 -0.31 7795.70 1.00\n", + " coefs[4] -0.03 0.03 -0.03 -0.09 0.03 8579.09 1.00\n", + " coefs[5] -0.18 0.03 -0.18 -0.24 -0.13 10418.88 1.00\n", + " coefs[6] 0.05 0.28 0.05 -0.39 0.52 2999.81 1.00\n", + " coefs[7] -0.57 0.17 -0.57 -0.85 -0.29 3099.11 1.00\n", + " coefs[8] 0.46 0.33 0.46 -0.08 0.99 3002.13 1.00\n", + " coefs[9] -0.08 0.03 -0.08 -0.13 -0.03 10895.90 1.00\n", + " coefs[10] 0.47 0.64 0.48 -0.58 1.53 3303.11 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.49 0.44 3312.49 1.00\n", + " coefs[12] 0.07 0.64 0.07 -1.00 1.10 3315.68 1.00\n", + " coefs[13] -1.07 0.61 -1.00 -2.06 -0.09 4977.49 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.45 0.58 5820.49 1.00\n", + " coefs[15] -0.78 0.57 -0.67 -1.65 0.06 4544.59 1.00\n", + " coefs[16] -0.72 0.58 -0.60 -1.59 0.10 4799.76 1.00\n", + " coefs[17] 0.03 0.16 0.04 -0.24 0.30 739.13 1.01\n", + " coefs[18] -0.53 0.66 -0.41 -1.58 0.40 6011.13 1.00\n", + " coefs[19] -0.47 0.68 -0.37 -1.59 0.56 5503.24 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.63 0.02 4644.05 1.00\n", + " coefs[21] -0.78 0.58 -0.66 -1.63 0.01 4745.88 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.01 0.17 873.25 1.01\n", + " coefs[23] 0.09 0.25 0.09 -0.31 0.51 688.44 1.01\n", + " coefs[24] 0.03 0.16 0.03 -0.22 0.30 737.69 1.01\n", + " coefs[25] -0.05 0.23 -0.04 -0.42 0.36 662.47 1.01\n", + " coefs[26] 0.05 0.18 0.06 -0.24 0.36 675.97 1.01\n", + " coefs[27] -0.71 0.61 -0.59 -1.61 0.11 4795.73 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.61 1.69 10020.48 1.00\n", + " coefs[29] 0.07 0.08 0.07 -0.06 0.20 720.56 1.01\n", + " coefs[30] 0.05 0.09 0.05 -0.10 0.20 833.72 1.01\n", + " coefs[31] 0.02 0.08 0.02 -0.11 0.15 1020.81 1.00\n", + " coefs[32] 0.06 0.09 0.06 -0.08 0.21 684.55 1.01\n", + " coefs[33] 0.14 0.13 0.14 -0.07 0.36 677.90 1.01\n", + " coefs[34] 0.13 0.06 0.12 0.03 0.23 1738.80 1.00\n", + " coefs[35] 0.28 0.24 0.29 -0.13 0.67 646.54 1.01\n", + " coefs[36] 0.28 0.31 0.29 -0.23 0.81 657.65 1.01\n", + " coefs[37] 0.21 0.20 0.21 -0.11 0.54 652.29 1.01\n", + " coefs[38] 0.01 0.03 0.01 -0.05 0.07 862.31 1.01\n", + " coefs[39] -0.02 0.08 -0.02 -0.15 0.12 869.75 1.01\n", + " coefs[40] 0.05 0.05 0.05 -0.04 0.13 755.29 1.01\n", + " coefs[41] 0.03 0.05 0.03 -0.06 0.12 1142.51 1.00\n", + " coefs[42] -0.00 0.42 0.00 -0.67 0.72 652.36 1.01\n", + " coefs[43] -0.02 0.23 -0.02 -0.41 0.36 663.81 1.01\n", + " coefs[44] 0.14 0.22 0.14 -0.22 0.50 651.86 1.01\n", + " coefs[45] 0.07 0.30 0.07 -0.44 0.56 654.79 1.01\n", + " coefs[46] 0.19 0.28 0.20 -0.25 0.68 656.43 1.01\n", + " coefs[47] -0.07 0.07 -0.07 -0.19 0.05 993.49 1.00\n", + " coefs[48] -0.11 0.06 -0.11 -0.22 -0.01 734.51 1.01\n", + " coefs[49] -0.79 0.60 -0.67 -1.64 0.03 4950.47 1.00\n", + " coefs[50] -0.87 0.58 -0.74 -1.69 -0.08 4526.96 1.00\n", + " coefs[51] -0.13 0.17 -0.13 -0.41 0.15 668.74 1.01\n", + " coefs[52] -0.12 0.16 -0.11 -0.38 0.15 669.40 1.01\n", + " coefs[53] -0.20 0.13 -0.20 -0.41 0.02 676.97 1.01\n", + " coefs[54] -1.65 0.18 -1.64 -1.93 -1.34 4116.09 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 36 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.96 0.06 1.96 1.86 2.06 9372.47 1.00\n", + " coefs[1] -0.05 0.03 -0.05 -0.11 0.00 10822.01 1.00\n", + " coefs[2] -0.17 0.06 -0.17 -0.27 -0.07 3864.52 1.00\n", + " coefs[3] -0.33 0.03 -0.33 -0.39 -0.28 7410.99 1.00\n", + " coefs[4] -0.05 0.03 -0.05 -0.10 0.01 8105.01 1.00\n", + " coefs[5] -0.12 0.03 -0.12 -0.17 -0.06 10915.47 1.00\n", + " coefs[6] -0.03 0.22 -0.03 -0.40 0.33 2760.58 1.00\n", + " coefs[7] -0.48 0.13 -0.48 -0.69 -0.26 3090.19 1.00\n", + " coefs[8] 0.28 0.25 0.27 -0.12 0.72 2820.91 1.00\n", + " coefs[9] -0.02 0.03 -0.02 -0.07 0.03 11238.51 1.00\n", + " coefs[10] 0.40 0.65 0.40 -0.71 1.44 3232.80 1.00\n", + " coefs[11] -0.02 0.29 -0.02 -0.50 0.46 3242.27 1.00\n", + " coefs[12] 0.12 0.65 0.11 -0.97 1.18 3245.95 1.00\n", + " coefs[13] -1.05 0.63 -1.00 -2.09 -0.07 5192.61 1.00\n", + " coefs[14] -0.44 0.68 -0.33 -1.49 0.58 5836.55 1.00\n", + " coefs[15] -0.79 0.57 -0.69 -1.65 0.04 4569.53 1.00\n", + " coefs[16] -0.73 0.59 -0.62 -1.65 0.09 5300.47 1.00\n", + " coefs[17] -0.02 0.17 -0.02 -0.29 0.28 807.36 1.01\n", + " coefs[18] -0.56 0.66 -0.44 -1.59 0.38 5962.50 1.00\n", + " coefs[19] -0.47 0.67 -0.38 -1.57 0.57 5232.08 1.00\n", + " coefs[20] 0.02 0.98 0.03 -1.59 1.63 12107.78 1.00\n", + " coefs[21] -0.77 0.60 -0.64 -1.63 0.05 4698.56 1.00\n", + " coefs[22] 0.08 0.05 0.08 -0.00 0.17 756.90 1.01\n", + " coefs[23] 0.11 0.26 0.11 -0.32 0.52 701.29 1.01\n", + " coefs[24] 0.06 0.16 0.06 -0.21 0.31 635.73 1.01\n", + " coefs[25] -0.06 0.24 -0.06 -0.48 0.31 644.03 1.01\n", + " coefs[26] -0.01 0.19 -0.01 -0.31 0.30 665.28 1.01\n", + " coefs[27] -0.72 0.61 -0.61 -1.59 0.12 5029.47 1.00\n", + " coefs[28] 0.03 1.00 0.02 -1.63 1.65 10008.37 1.00\n", + " coefs[29] 0.01 0.08 0.01 -0.12 0.15 712.05 1.01\n", + " coefs[30] 0.03 0.09 0.03 -0.12 0.18 801.77 1.01\n", + " coefs[31] -0.05 0.10 -0.05 -0.20 0.11 1444.46 1.01\n", + " coefs[32] 0.13 0.09 0.13 -0.03 0.27 721.44 1.01\n", + " coefs[33] 0.11 0.14 0.12 -0.12 0.32 656.94 1.01\n", + " coefs[34] 0.91 0.60 0.78 0.09 1.79 4477.44 1.00\n", + " coefs[35] 0.29 0.25 0.29 -0.14 0.68 652.55 1.01\n", + " coefs[36] 0.30 0.32 0.30 -0.27 0.78 645.31 1.01\n", + " coefs[37] 0.12 0.20 0.13 -0.22 0.44 649.06 1.01\n", + " coefs[38] 0.00 0.03 0.00 -0.06 0.06 814.07 1.01\n", + " coefs[39] -0.01 0.08 -0.01 -0.15 0.13 885.40 1.01\n", + " coefs[40] 0.03 0.05 0.03 -0.06 0.11 786.68 1.01\n", + " coefs[41] 0.01 0.06 0.01 -0.08 0.10 1079.71 1.01\n", + " coefs[42] 0.03 0.43 0.03 -0.71 0.69 657.11 1.01\n", + " coefs[43] -0.04 0.24 -0.04 -0.45 0.34 660.02 1.01\n", + " coefs[44] 0.12 0.22 0.12 -0.26 0.46 643.07 1.01\n", + " coefs[45] 0.07 0.31 0.08 -0.44 0.56 656.44 1.01\n", + " coefs[46] 0.22 0.29 0.22 -0.26 0.68 652.23 1.01\n", + " coefs[47] -0.05 0.07 -0.05 -0.17 0.07 1065.65 1.01\n", + " coefs[48] -0.10 0.06 -0.09 -0.20 0.01 689.46 1.01\n", + " coefs[49] -0.81 0.60 -0.69 -1.67 -0.00 4683.36 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.69 -0.08 4867.74 1.00\n", + " coefs[51] -0.12 0.17 -0.12 -0.41 0.16 682.73 1.01\n", + " coefs[52] -0.14 0.17 -0.14 -0.43 0.11 670.78 1.01\n", + " coefs[53] -0.17 0.13 -0.17 -0.39 0.05 678.49 1.01\n", + " coefs[54] -1.63 0.18 -1.61 -1.92 -1.32 3991.08 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 37 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.02 0.06 2.02 1.92 2.12 10190.29 1.00\n", + " coefs[1] 0.03 0.04 0.03 -0.03 0.09 11618.83 1.00\n", + " coefs[2] -0.08 0.07 -0.08 -0.19 0.04 3901.96 1.00\n", + " coefs[3] -0.30 0.03 -0.30 -0.35 -0.24 8168.46 1.00\n", + " coefs[4] -0.06 0.04 -0.06 -0.12 -0.00 9352.54 1.00\n", + " coefs[5] -0.17 0.03 -0.17 -0.23 -0.12 11575.01 1.00\n", + " coefs[6] 0.44 0.27 0.42 -0.00 0.87 3054.71 1.00\n", + " coefs[7] -0.85 0.16 -0.84 -1.11 -0.58 3227.23 1.00\n", + " coefs[8] 0.81 0.31 0.80 0.29 1.31 3054.83 1.00\n", + " coefs[9] 0.04 0.03 0.04 -0.01 0.09 11497.32 1.00\n", + " coefs[10] 0.43 0.65 0.42 -0.66 1.50 3059.84 1.00\n", + " coefs[11] -0.07 0.29 -0.08 -0.57 0.39 3069.11 1.00\n", + " coefs[12] 0.05 0.65 0.04 -1.03 1.12 3065.23 1.00\n", + " coefs[13] -0.95 0.64 -0.89 -1.95 0.10 5155.64 1.00\n", + " coefs[14] -0.45 0.67 -0.34 -1.46 0.60 6013.74 1.00\n", + " coefs[15] -0.76 0.58 -0.65 -1.62 0.10 4813.79 1.00\n", + " coefs[16] -0.70 0.59 -0.58 -1.57 0.16 5147.70 1.00\n", + " coefs[17] -0.85 0.55 -0.76 -1.68 -0.01 4545.60 1.00\n", + " coefs[18] -0.56 0.66 -0.43 -1.54 0.44 6040.82 1.00\n", + " coefs[19] -0.47 0.67 -0.37 -1.57 0.55 6180.31 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.60 0.04 5180.47 1.00\n", + " coefs[21] -0.78 0.59 -0.66 -1.62 0.03 5257.24 1.00\n", + " coefs[22] 0.04 0.06 0.04 -0.06 0.13 996.95 1.00\n", + " coefs[23] 0.05 0.24 0.05 -0.38 0.42 686.43 1.00\n", + " coefs[24] 0.14 0.15 0.14 -0.12 0.38 671.57 1.00\n", + " coefs[25] -0.12 0.23 -0.11 -0.49 0.26 670.77 1.00\n", + " coefs[26] 0.11 0.18 0.12 -0.18 0.39 661.76 1.00\n", + " coefs[27] -0.70 0.62 -0.59 -1.60 0.17 5031.16 1.00\n", + " coefs[28] 0.02 1.00 0.02 -1.63 1.68 10507.75 1.00\n", + " coefs[29] 0.03 0.08 0.03 -0.10 0.16 760.67 1.00\n", + " coefs[30] 0.10 0.09 0.10 -0.05 0.24 811.00 1.00\n", + " coefs[31] -0.76 0.59 -0.63 -1.60 0.08 4563.06 1.00\n", + " coefs[32] 0.11 0.09 0.11 -0.04 0.25 686.24 1.00\n", + " coefs[33] 0.18 0.13 0.18 -0.03 0.39 665.40 1.00\n", + " coefs[34] 0.93 0.59 0.81 0.13 1.80 4500.21 1.00\n", + " coefs[35] 0.39 0.24 0.40 -0.02 0.76 645.92 1.00\n", + " coefs[36] 0.43 0.31 0.43 -0.11 0.90 646.61 1.00\n", + " coefs[37] 0.20 0.19 0.20 -0.13 0.50 649.74 1.00\n", + " coefs[38] 0.04 0.04 0.04 -0.02 0.10 945.88 1.00\n", + " coefs[39] 0.04 0.08 0.04 -0.09 0.16 786.82 1.00\n", + " coefs[40] 0.12 0.05 0.12 0.03 0.20 849.33 1.00\n", + " coefs[41] -0.78 0.59 -0.65 -1.66 0.03 5036.10 1.00\n", + " coefs[42] 0.02 0.41 0.03 -0.70 0.64 646.14 1.00\n", + " coefs[43] 0.01 0.23 0.01 -0.39 0.36 650.33 1.00\n", + " coefs[44] 0.23 0.21 0.23 -0.16 0.53 641.32 1.00\n", + " coefs[45] 0.16 0.29 0.17 -0.35 0.62 645.40 1.00\n", + " coefs[46] 0.28 0.27 0.28 -0.20 0.70 644.22 1.00\n", + " coefs[47] -0.04 0.07 -0.04 -0.16 0.07 992.72 1.00\n", + " coefs[48] -0.06 0.06 -0.06 -0.17 0.03 734.82 1.00\n", + " coefs[49] -0.01 0.03 -0.01 -0.05 0.04 1801.99 1.00\n", + " coefs[50] -0.85 0.59 -0.74 -1.69 -0.05 4857.12 1.00\n", + " coefs[51] -0.08 0.17 -0.08 -0.38 0.17 656.17 1.00\n", + " coefs[52] -0.06 0.16 -0.06 -0.34 0.17 660.34 1.00\n", + " coefs[53] -0.15 0.13 -0.15 -0.36 0.05 673.66 1.00\n", + " coefs[54] -1.86 0.20 -1.84 -2.17 -1.51 4098.42 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 38 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.97 0.06 1.96 1.87 2.07 10096.48 1.00\n", + " coefs[1] -0.06 0.03 -0.06 -0.12 -0.01 12244.36 1.00\n", + " coefs[2] -0.04 0.06 -0.04 -0.15 0.07 4159.98 1.00\n", + " coefs[3] -0.33 0.03 -0.33 -0.38 -0.27 7749.88 1.00\n", + " coefs[4] -0.08 0.03 -0.08 -0.14 -0.02 8882.58 1.00\n", + " coefs[5] -0.11 0.03 -0.11 -0.16 -0.06 11482.48 1.00\n", + " coefs[6] 0.07 0.24 0.06 -0.32 0.47 3120.93 1.00\n", + " coefs[7] -0.51 0.15 -0.51 -0.75 -0.26 3283.63 1.00\n", + " coefs[8] 0.42 0.28 0.42 -0.05 0.87 3098.35 1.00\n", + " coefs[9] -0.06 0.03 -0.06 -0.11 -0.01 11951.39 1.00\n", + " coefs[10] 0.45 0.65 0.44 -0.62 1.53 3260.72 1.00\n", + " coefs[11] -0.04 0.29 -0.05 -0.56 0.40 3274.76 1.00\n", + " coefs[12] 0.06 0.65 0.05 -1.00 1.15 3282.00 1.00\n", + " coefs[13] -1.05 0.62 -1.00 -2.12 -0.12 5389.23 1.00\n", + " coefs[14] -0.46 0.68 -0.35 -1.52 0.56 6658.42 1.00\n", + " coefs[15] -0.79 0.56 -0.69 -1.65 0.05 5438.21 1.00\n", + " coefs[16] -0.70 0.59 -0.59 -1.60 0.15 5338.59 1.00\n", + " coefs[17] -0.27 0.23 -0.25 -0.63 0.11 1265.14 1.00\n", + " coefs[18] -0.57 0.66 -0.46 -1.59 0.38 5781.56 1.00\n", + " coefs[19] -0.46 0.68 -0.36 -1.53 0.61 6188.61 1.00\n", + " coefs[20] -0.76 0.59 -0.64 -1.62 0.04 5486.01 1.00\n", + " coefs[21] 0.03 0.04 0.03 -0.03 0.09 1964.40 1.00\n", + " coefs[22] 0.01 0.07 0.01 -0.11 0.13 1235.89 1.00\n", + " coefs[23] 0.10 0.25 0.10 -0.32 0.49 591.69 1.00\n", + " coefs[24] 0.08 0.16 0.08 -0.19 0.32 595.98 1.00\n", + " coefs[25] -0.08 0.23 -0.08 -0.47 0.30 576.69 1.00\n", + " coefs[26] 0.03 0.18 0.03 -0.26 0.33 584.84 1.00\n", + " coefs[27] -0.71 0.61 -0.59 -1.60 0.14 5240.14 1.00\n", + " coefs[28] 0.03 1.00 0.03 -1.59 1.68 11781.73 1.00\n", + " coefs[29] 0.06 0.08 0.07 -0.06 0.19 634.64 1.00\n", + " coefs[30] 0.04 0.09 0.04 -0.12 0.18 665.09 1.00\n", + " coefs[31] -0.76 0.58 -0.64 -1.62 0.05 4939.89 1.00\n", + " coefs[32] 0.04 0.09 0.04 -0.10 0.19 595.34 1.00\n", + " coefs[33] 0.15 0.13 0.15 -0.05 0.38 588.17 1.00\n", + " coefs[34] 0.91 0.59 0.79 0.10 1.77 4449.06 1.00\n", + " coefs[35] 0.29 0.24 0.30 -0.12 0.68 566.20 1.00\n", + " coefs[36] 0.35 0.31 0.35 -0.19 0.84 565.96 1.00\n", + " coefs[37] 0.19 0.20 0.19 -0.12 0.52 569.22 1.00\n", + " coefs[38] -0.06 0.04 -0.05 -0.12 0.01 935.97 1.00\n", + " coefs[39] 0.01 0.08 0.01 -0.12 0.14 737.66 1.00\n", + " coefs[40] 0.05 0.05 0.05 -0.04 0.13 682.67 1.00\n", + " coefs[41] -0.02 0.07 -0.01 -0.12 0.10 1363.24 1.00\n", + " coefs[42] 0.05 0.42 0.05 -0.64 0.72 564.74 1.00\n", + " coefs[43] 0.03 0.23 0.03 -0.38 0.39 570.94 1.00\n", + " coefs[44] 0.18 0.21 0.19 -0.18 0.53 568.55 1.00\n", + " coefs[45] 0.15 0.30 0.15 -0.35 0.63 562.05 1.00\n", + " coefs[46] 0.23 0.28 0.23 -0.24 0.68 565.69 1.00\n", + " coefs[47] -0.84 0.57 -0.72 -1.69 -0.04 4863.24 1.00\n", + " coefs[48] -0.10 0.06 -0.09 -0.20 0.01 649.56 1.00\n", + " coefs[49] 0.03 1.01 0.02 -1.55 1.72 11743.21 1.00\n", + " coefs[50] -0.85 0.58 -0.72 -1.68 -0.06 5084.52 1.00\n", + " coefs[51] -0.09 0.17 -0.09 -0.38 0.18 574.15 1.00\n", + " coefs[52] -0.13 0.16 -0.13 -0.41 0.12 576.37 1.00\n", + " coefs[53] -0.18 0.13 -0.17 -0.39 0.03 578.29 1.00\n", + " coefs[54] -1.71 0.19 -1.69 -2.00 -1.38 4122.53 1.00\n", + "\n", + "\n", + "\n", + " =============================== SUBPOSTERIOR 39 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 2.02 0.06 2.02 1.92 2.13 10022.35 1.00\n", + " coefs[1] -0.07 0.04 -0.07 -0.13 -0.02 11930.67 1.00\n", + " coefs[2] 0.09 0.07 0.09 -0.03 0.21 3565.47 1.00\n", + " coefs[3] -0.31 0.03 -0.31 -0.36 -0.25 7874.95 1.00\n", + " coefs[4] -0.10 0.04 -0.10 -0.16 -0.04 8677.59 1.00\n", + " coefs[5] -0.16 0.03 -0.16 -0.21 -0.11 11143.46 1.00\n", + " coefs[6] 0.64 0.30 0.63 0.17 1.14 2850.68 1.00\n", + " coefs[7] -0.90 0.18 -0.89 -1.21 -0.61 3006.07 1.00\n", + " coefs[8] 1.05 0.35 1.04 0.50 1.63 2848.02 1.00\n", + " coefs[9] 0.05 0.03 0.05 0.00 0.10 11434.28 1.00\n", + " coefs[10] 0.38 0.65 0.37 -0.73 1.41 3027.13 1.00\n", + " coefs[11] -0.05 0.29 -0.05 -0.56 0.40 3049.82 1.00\n", + " coefs[12] 0.14 0.65 0.14 -0.93 1.20 3039.84 1.00\n", + " coefs[13] -1.01 0.63 -0.94 -2.00 -0.00 4993.50 1.00\n", + " coefs[14] -0.46 0.67 -0.35 -1.52 0.53 5614.94 1.00\n", + " coefs[15] -0.78 0.57 -0.68 -1.63 0.06 4675.04 1.00\n", + " coefs[16] -0.70 0.58 -0.59 -1.57 0.15 5153.50 1.00\n", + " coefs[17] -0.05 0.17 -0.04 -0.32 0.23 652.24 1.01\n", + " coefs[18] -0.52 0.66 -0.40 -1.52 0.44 6037.65 1.00\n", + " coefs[19] -0.46 0.68 -0.36 -1.55 0.61 6114.54 1.00\n", + " coefs[20] -0.77 0.59 -0.65 -1.60 0.02 4987.38 1.00\n", + " coefs[21] -0.75 0.59 -0.64 -1.59 0.05 4951.24 1.00\n", + " coefs[22] -0.75 0.60 -0.63 -1.63 0.05 4435.53 1.00\n", + " coefs[23] 0.12 0.24 0.12 -0.27 0.51 500.82 1.01\n", + " coefs[24] 0.03 0.15 0.03 -0.24 0.26 526.83 1.01\n", + " coefs[25] -0.04 0.23 -0.04 -0.42 0.33 494.40 1.01\n", + " coefs[26] 0.01 0.17 0.01 -0.28 0.30 506.35 1.01\n", + " coefs[27] -0.71 0.62 -0.59 -1.59 0.16 5403.79 1.00\n", + " coefs[28] 0.02 0.99 0.03 -1.55 1.70 10861.75 1.00\n", + " coefs[29] 0.06 0.08 0.06 -0.06 0.19 543.44 1.01\n", + " coefs[30] 0.08 0.09 0.08 -0.06 0.22 601.06 1.01\n", + " coefs[31] -0.02 0.09 -0.01 -0.17 0.13 1105.50 1.00\n", + " coefs[32] 0.08 0.09 0.08 -0.06 0.23 526.65 1.01\n", + " coefs[33] 0.12 0.13 0.12 -0.10 0.32 494.20 1.01\n", + " coefs[34] 0.93 0.59 0.81 0.12 1.79 4585.26 1.00\n", + " coefs[35] 0.34 0.24 0.34 -0.05 0.72 491.75 1.01\n", + " coefs[36] 0.37 0.30 0.37 -0.14 0.86 486.39 1.01\n", + " coefs[37] 0.15 0.19 0.15 -0.16 0.47 488.15 1.01\n", + " coefs[38] -0.01 0.03 -0.01 -0.07 0.05 676.92 1.01\n", + " coefs[39] 0.05 0.07 0.05 -0.07 0.17 570.31 1.01\n", + " coefs[40] 0.02 0.05 0.03 -0.05 0.11 563.75 1.01\n", + " coefs[41] -0.78 0.59 -0.66 -1.63 0.03 4822.95 1.00\n", + " coefs[42] 0.05 0.40 0.06 -0.59 0.74 487.94 1.01\n", + " coefs[43] 0.01 0.23 0.01 -0.36 0.38 491.71 1.01\n", + " coefs[44] 0.19 0.21 0.20 -0.17 0.52 491.92 1.01\n", + " coefs[45] 0.07 0.29 0.08 -0.42 0.53 489.32 1.01\n", + " coefs[46] 0.20 0.27 0.20 -0.26 0.63 486.73 1.01\n", + " coefs[47] -0.10 0.07 -0.10 -0.21 0.01 773.52 1.01\n", + " coefs[48] -0.12 0.06 -0.12 -0.22 -0.02 540.35 1.01\n", + " coefs[49] -0.81 0.60 -0.69 -1.66 -0.02 4748.32 1.00\n", + " coefs[50] -0.86 0.58 -0.74 -1.70 -0.08 4705.07 1.00\n", + " coefs[51] -0.13 0.16 -0.13 -0.40 0.14 498.31 1.01\n", + " coefs[52] -0.13 0.16 -0.13 -0.38 0.13 504.10 1.01\n", + " coefs[53] -0.15 0.13 -0.14 -0.35 0.06 502.86 1.01\n", + " coefs[54] -1.75 0.19 -1.74 -2.05 -1.45 4340.91 1.00\n", + "\n", + "\n" + ] + } + ], + "source": [ + "rngs = random.split(random.PRNGKey(1), K)\n", + "subposteriors = []\n", + "for i, (rng, shard) in enumerate(zip(rngs, shards)):\n", + " sep = '=' * 31\n", + " print('\\n ' + sep + ' SUBPOSTERIOR {:02d} '.format(i) + sep, end='')\n", + " samples = get_subposterior(rng, shard, K)\n", + " if not os.path.exists('.results'):\n", + " os.makedirs('.results')\n", + " np.save('.results/subposterior_{:02d}.npy'.format(i), samples)\n", + " subposteriors.append(samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### merge subposteriors" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "consensus_samples = consensus(subposteriors, 10000)\n", + "parametric_samples = parametric_draws(subposteriors, 10000)\n", + "np.save('.results/consensus_samples.npy', consensus_samples)\n", + "np.save('.results/parametric_samples.npy', parametric_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### predict" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def predict(model, X, rng, sample):\n", + " model = substitute(seed(model, rng), sample)\n", + " model_trace = trace(model).get_trace(X, None)\n", + " return model_trace['y']['value']" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Consensus accuaracy: 0.771\n", + "Parametric accuaracy: 0.771\n" + ] + } + ], + "source": [ + "rngs = random.split(random.PRNGKey(2), 10000)\n", + "\n", + "y_consensus = vmap(partial(predict, model, X_test))(rngs, consensus_samples)\n", + "y_consensus = (y_consensus.sum(axis=0) / y_consensus.shape[0]) >= 0.5\n", + "acc = (y_consensus == y_test).sum() / y_test.shape[0]\n", + "print('Consensus accuaracy: {}'.format(round(acc.item(), 4)))\n", + "\n", + "y_parametric = vmap(partial(predict, model, X_test))(rngs, parametric_samples)\n", + "y_parametric = (y_parametric.sum(axis=0) / y_parametric.shape[0]) >= 0.5\n", + "acc = (y_parametric == y_test).sum() / y_test.shape[0]\n", + "print('Parametric accuaracy: {}'.format(round(acc.item(), 4)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### train iaf" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "rng_guide, rng_init, rng_train = random.split(random.PRNGKey(3), 3)\n", + "opt_init, opt_update, get_params = optimizers.adam(0.001)\n", + "guide = AutoIAFNormal(rng_guide, model, get_params, nonlinearity=stax.Elu,\n", + " skip_connections=False)\n", + "batch_size = 1000\n", + "ll_scale = X_train.shape[0] // batch_size\n", + "svi_init, svi_update, _ = svi(model, guide, elbo, opt_init, opt_update, get_params,\n", + " likelihood_scale=ll_scale)\n", + "num_iters = ll_scale\n", + "\n", + "def epoch_train(epoch, opt_state, rng):\n", + " # shuffle data\n", + " rng, rng_shuffle = random.split(rng)\n", + " idx = random.shuffle(rng_shuffle, np.arange(X_train.shape[0]))\n", + " X = X_train[idx]\n", + " y = y_train[idx]\n", + " offset = epoch * num_iters\n", + "\n", + " def body_fn(val, i):\n", + " batch_X = lax.dynamic_slice_in_dim(X, i * batch_size, batch_size)\n", + " batch_y = lax.dynamic_slice_in_dim(y, i * batch_size, batch_size)\n", + " opt_state_, rng_ = val\n", + " loss, opt_state_, rng_ = svi_update(offset + i, rng_, opt_state_,\n", + " (batch_X, batch_y), (batch_X, batch_y))\n", + " return (opt_state_, rng_), loss\n", + "\n", + " (opt_state, _), losses = lax.scan(body_fn, (opt_state, rng), np.arange(num_iters))\n", + " return opt_state, losses" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "opt_state, _ = svi_init(rng_init,\n", + " (X_train[:batch_size], y_train[:batch_size]),\n", + " (X_train[:batch_size], y_train[:batch_size]))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 00 - loss 1883.5496 - acc 0.7612\n", + "Epoch 01 - loss 688.8702 - acc 0.7706\n", + "Epoch 02 - loss 617.3635 - acc 0.7685\n", + "Epoch 03 - loss 601.3757 - acc 0.7711\n", + "Epoch 04 - loss 598.3813 - acc 0.7687\n", + "Epoch 05 - loss 593.7759 - acc 0.7708\n", + "Epoch 06 - loss 593.0955 - acc 0.7692\n", + "Epoch 07 - loss 590.5724 - acc 0.7714\n", + "Epoch 08 - loss 589.2113 - acc 0.7693\n", + "Epoch 09 - loss 588.8226 - acc 0.7721\n" + ] + } + ], + "source": [ + "losses = np.array([])\n", + "num_epochs = 10\n", + "rngs = random.split(random.PRNGKey(2), 10000)\n", + "for epoch in range(num_epochs):\n", + " rng = random.fold_in(rng_train, epoch)\n", + " opt_state, epoch_loss = epoch_train(epoch, opt_state, rng)\n", + " iaf_samples = guide.sample_posterior(random.PRNGKey(4), opt_state, sample_shape=(10000,))\n", + " y_iaf = vmap(partial(predict, model, X_test))(rngs, iaf_samples)\n", + " y_iaf = (y_iaf.sum(axis=0) / y_iaf.shape[0]) >= 0.5\n", + " acc = (y_iaf == y_test).sum() / y_test.shape[0]\n", + " print(\"Epoch {:02d} - loss {:.4f} - acc {}\".format(\n", + " epoch, np.mean(epoch_loss), round(acc.item(), 4)))\n", + " losses = np.concatenate([losses, epoch_loss])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flow HMC" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "transform = guide.get_transform(opt_state)\n", + "unpack_fn = guide.unpack_latent\n", + "latent_size = guide.latent_size" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "def make_transformed_pe(potential_fn, transform, unpack_fn, prior_scale):\n", + " def transformed_potential_fn(z):\n", + " u, intermediates = transform.call_with_intermediates(z)\n", + " logdet = transform.log_abs_det_jacobian(z, u, intermediates=intermediates) * prior_scale\n", + " return potential_fn(unpack_fn(u)) + logdet\n", + "\n", + " return transformed_potential_fn" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "def get_flow_subposterior(rng, shard, K):\n", + " X, y = shard\n", + " init_params = random.normal(rng, (4, latent_size))\n", + " _, potential_fn, _ = initialize_model(rng, model, X, y, prior_scale=1 / K)\n", + " transformed_potential_fn = make_transformed_pe(potential_fn, transform, unpack_fn, 1 / K)\n", + " samples = mcmc(num_warmup=1000, num_samples=2500, init_params=init_params,\n", + " num_chains=4, potential_fn=transformed_potential_fn)\n", + " return samples" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "warmup: 100%|██████████| 1000/1000 [03:07<00:00, 5.63it/s, 1023 steps of size 6.92e-05. acc. prob=0.78]\n", + "sample: 100%|██████████| 2500/2500 [07:29<00:00, 5.58it/s, 1023 steps of size 6.92e-05. acc. prob=0.88]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " Param:0[0] -13.94 0.25 -14.01 -14.26 -13.50 6.02 1.01\n", + " Param:0[1] 3.60 0.10 3.58 3.46 3.77 4.80 1.81\n", + " Param:0[2] -1.00 0.36 -1.06 -1.56 -0.42 4.99 1.35\n", + " Param:0[3] -5.20 0.33 -5.32 -5.57 -4.54 3.37 1.68\n", + " Param:0[4] -2.45 0.67 -2.45 -3.60 -1.51 2.59 2.69\n", + " Param:0[5] 6.63 0.44 6.74 5.81 7.18 3.79 1.65\n", + " Param:0[6] 0.34 0.57 0.30 -0.56 1.29 7.26 1.01\n", + " Param:0[7] -1.72 0.30 -1.72 -2.22 -1.24 4.35 1.86\n", + " Param:0[8] 10.02 0.59 9.89 9.13 11.04 4.90 1.15\n", + " Param:0[9] -6.03 0.49 -5.89 -6.84 -5.33 3.51 1.69\n", + "Param:0[10] 11.40 0.53 11.44 10.59 12.21 3.57 2.19\n", + "Param:0[11] 15.31 0.38 15.24 14.73 15.97 12.57 1.01\n", + "Param:0[12] 30.34 0.88 30.54 28.70 31.54 5.96 1.01\n", + "Param:0[13] -0.24 0.57 -0.25 -1.15 0.54 4.01 1.41\n", + "Param:0[14] -8.89 0.47 -8.82 -9.67 -8.16 4.70 1.05\n", + "Param:0[15] 0.82 0.64 0.97 -0.55 1.62 4.95 1.11\n", + "Param:0[16] 0.62 0.32 0.54 0.20 1.18 4.59 1.12\n", + "Param:0[17] -10.90 1.00 -10.76 -12.52 -9.27 5.20 1.45\n", + "Param:0[18] 0.62 0.16 0.59 0.37 0.86 4.88 1.16\n", + "Param:0[19] -6.58 0.50 -6.55 -7.44 -5.74 8.45 1.00\n", + "Param:0[20] -14.14 0.68 -14.13 -15.11 -13.16 2.59 2.48\n", + "Param:0[21] 5.05 0.25 4.98 4.72 5.46 3.38 1.72\n", + "Param:0[22] 1.46 0.41 1.49 0.84 2.22 3.58 1.89\n", + "Param:0[23] -4.04 0.42 -4.07 -4.73 -3.47 3.97 1.82\n", + "Param:0[24] -7.94 1.89 -7.75 -11.41 -5.26 2.97 2.36\n", + "Param:0[25] -0.50 0.55 -0.55 -1.22 0.30 2.99 2.22\n", + "Param:0[26] -2.05 0.53 -2.09 -2.85 -1.06 9.19 1.39\n", + "Param:0[27] 5.06 1.25 5.22 3.21 7.47 4.65 1.36\n", + "Param:0[28] 8.44 0.82 8.39 7.00 9.66 4.58 1.64\n", + "Param:0[29] 0.19 0.28 0.26 -0.38 0.54 3.76 1.61\n", + "Param:0[30] 14.60 1.78 15.01 11.66 17.62 3.66 1.63\n", + "Param:0[31] 20.82 0.90 20.76 19.62 22.35 5.42 1.29\n", + "Param:0[32] -31.48 3.68 -31.31 -37.17 -25.47 5.27 1.00\n", + "Param:0[33] -42.52 1.82 -42.42 -45.33 -39.70 26.26 1.01\n", + "Param:0[34] -49.77 3.01 -50.29 -54.42 -46.00 2.74 2.70\n", + "Param:0[35] 17.45 2.33 17.69 13.41 21.19 4.13 1.76\n", + "Param:0[36] 4.63 6.34 5.31 -5.43 13.28 3.42 1.61\n", + "Param:0[37] 13.86 4.16 12.31 8.42 20.54 4.86 1.02\n", + "Param:0[38] 0.78 1.44 0.71 -1.81 2.61 13.06 1.09\n", + "Param:0[39] 28.69 2.32 27.99 25.57 32.94 4.43 1.47\n", + "Param:0[40] -20.61 2.50 -20.76 -23.80 -16.05 7.42 1.47\n", + "Param:0[41] -53.15 9.93 -51.85 -68.62 -35.56 7.21 1.08\n", + "Param:0[42] 2.50 2.45 2.10 -1.07 5.54 10.09 1.02\n", + "Param:0[43] 0.90 0.26 0.88 0.53 1.41 3.39 2.19\n", + "Param:0[44] -99.67 4.76 -98.73 -107.37 -92.83 6.72 1.09\n", + "Param:0[45] -115.56 11.62 -116.65 -134.54 -93.48 8.19 1.00\n", + "Param:0[46] -1.78 0.41 -1.73 -2.51 -1.21 4.37 1.60\n", + "Param:0[47] 106.94 5.34 107.00 98.59 115.20 6.45 1.00\n", + "Param:0[48] 9.21 1.05 9.52 7.30 10.58 3.92 1.52\n", + "Param:0[49] 23.49 11.20 26.47 1.60 37.24 3.97 1.60\n", + "Param:0[50] -3.87 0.64 -3.84 -5.00 -2.86 11.39 1.01\n", + "Param:0[51] -30.30 4.26 -29.63 -39.68 -24.57 5.93 1.08\n", + "Param:0[52] 9.28 0.64 9.41 7.95 10.14 6.93 1.01\n", + "Param:0[53] 22.34 4.76 20.76 16.82 31.59 3.29 1.54\n", + "Param:0[54] 262.73 36.32 270.82 191.77 306.70 8.09 1.05\n", + "\n", + "\n" + ] + } + ], + "source": [ + "init_params = random.normal(random.PRNGKey(1), (latent_size,))\n", + "_, potential_fn, _ = initialize_model(rng, model, X, y, prior_scale=1 / K)\n", + "transformed_potential_fn = make_transformed_pe(potential_fn, transform, unpack_fn, 1 / K)\n", + "samples = mcmc(num_warmup=1000, num_samples=2500, init_params=init_params,\n", + " num_chains=1, potential_fn=transformed_potential_fn)" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], + "source": [ + "flow_samples = vmap(lambda x: unpack_fn(transform(x)))(samples)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [], + "source": [ + "from numpyro.diagnostics import summary" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DeviceArray(0.7682474, dtype=float32)" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rngs = random.split(random.PRNGKey(2), 2500)\n", + "y_flow = vmap(partial(predict, model, X_test))(rngs, flow_samples)\n", + "y_flow = (y_flow.sum(axis=0) / y_flow.shape[0]) >= 0.5\n", + "acc = (y_flow == y_test).sum() / y_test.shape[0]\n", + "acc" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n", + " coefs[0] 1.97 0.07 1.97 1.86 2.09 17.99 1.01\n", + " coefs[1] -0.02 0.02 -0.02 -0.05 0.02 21.80 1.02\n", + " coefs[2] -0.12 0.02 -0.12 -0.14 -0.08 8.34 1.05\n", + " coefs[3] -0.31 0.02 -0.31 -0.34 -0.28 7.72 1.17\n", + " coefs[4] -0.11 0.02 -0.11 -0.14 -0.08 10.66 1.01\n", + " coefs[5] -0.10 0.02 -0.09 -0.12 -0.07 65.96 1.00\n", + " coefs[6] 0.01 0.02 0.01 -0.03 0.05 7.04 1.15\n", + " coefs[7] -0.49 0.03 -0.49 -0.53 -0.44 14.74 1.00\n", + " coefs[8] 0.24 0.02 0.23 0.20 0.27 5.82 1.47\n", + " coefs[9] -0.01 0.01 -0.01 -0.03 0.02 6.66 1.48\n", + " coefs[10] 1.67 0.04 1.68 1.61 1.74 6.33 1.03\n", + " coefs[11] 0.53 0.02 0.53 0.49 0.57 11.40 1.22\n", + " coefs[12] 1.44 0.03 1.44 1.39 1.50 7.69 1.05\n", + " coefs[13] -0.80 0.22 -0.81 -1.13 -0.50 3.51 1.65\n", + " coefs[14] -2.65 0.16 -2.65 -2.92 -2.38 10.49 1.06\n", + " coefs[15] -0.95 0.16 -0.92 -1.23 -0.68 5.82 1.14\n", + " coefs[16] -0.74 0.12 -0.78 -0.90 -0.53 4.76 1.15\n", + " coefs[17] -0.21 0.02 -0.20 -0.25 -0.17 17.49 1.02\n", + " coefs[18] -0.06 0.11 -0.07 -0.23 0.12 5.46 1.10\n", + " coefs[19] -1.63 0.07 -1.63 -1.73 -1.50 8.42 1.22\n", + " coefs[20] -2.43 0.15 -2.45 -2.66 -2.20 2.83 2.25\n", + " coefs[21] 0.00 0.02 -0.00 -0.03 0.03 6.51 1.23\n", + " coefs[22] -0.03 0.02 -0.03 -0.07 0.00 3.49 2.16\n", + " coefs[23] -0.14 0.04 -0.14 -0.22 -0.09 3.17 2.54\n", + " coefs[24] -0.17 0.04 -0.17 -0.25 -0.11 4.80 1.64\n", + " coefs[25] -0.02 0.03 -0.02 -0.05 0.03 4.50 1.61\n", + " coefs[26] -0.04 0.01 -0.04 -0.06 -0.02 10.97 1.32\n", + " coefs[27] -1.01 0.05 -1.00 -1.10 -0.94 6.59 1.02\n", + " coefs[28] 0.36 0.36 0.35 -0.23 0.93 2.95 2.12\n", + " coefs[29] 0.09 0.02 0.09 0.06 0.12 5.30 1.13\n", + " coefs[30] 0.10 0.03 0.10 0.05 0.15 32.94 1.14\n", + " coefs[31] 0.05 0.04 0.05 -0.02 0.11 9.05 1.01\n", + " coefs[32] 0.12 0.01 0.12 0.10 0.13 4.93 1.31\n", + " coefs[33] 0.11 0.01 0.11 0.09 0.14 9.51 1.19\n", + " coefs[34] 0.07 0.03 0.07 0.02 0.12 40.27 1.01\n", + " coefs[35] 0.35 0.02 0.35 0.32 0.38 4.23 1.46\n", + " coefs[36] 0.36 0.02 0.36 0.33 0.38 10.62 1.04\n", + " coefs[37] 0.16 0.01 0.16 0.14 0.18 11.52 1.00\n", + " coefs[38] -0.02 0.02 -0.02 -0.05 0.01 27.97 1.04\n", + " coefs[39] -0.01 0.03 -0.01 -0.05 0.03 17.64 1.04\n", + " coefs[40] 0.00 0.02 0.00 -0.04 0.04 16.42 1.15\n", + " coefs[41] -1.13 0.11 -1.12 -1.31 -0.99 8.21 1.09\n", + " coefs[42] 0.09 0.02 0.09 0.07 0.12 9.71 1.28\n", + " coefs[43] -0.08 0.02 -0.07 -0.12 -0.04 8.79 1.26\n", + " coefs[44] 0.14 0.02 0.15 0.10 0.18 5.45 1.52\n", + " coefs[45] 0.09 0.02 0.08 0.06 0.12 15.35 1.09\n", + " coefs[46] 0.16 0.02 0.16 0.14 0.19 20.08 1.02\n", + " coefs[47] -0.01 0.03 -0.01 -0.06 0.05 22.08 1.16\n", + " coefs[48] -0.09 0.02 -0.09 -0.11 -0.05 27.91 1.19\n", + " coefs[49] 1.08 0.15 1.07 0.83 1.31 6.21 1.15\n", + " coefs[50] -1.99 0.29 -1.95 -2.48 -1.56 15.78 1.00\n", + " coefs[51] -0.11 0.02 -0.11 -0.14 -0.07 11.80 1.24\n", + " coefs[52] -0.13 0.02 -0.12 -0.16 -0.10 18.72 1.00\n", + " coefs[53] -0.15 0.02 -0.15 -0.19 -0.12 48.88 1.03\n", + " coefs[54] -2.20 0.06 -2.21 -2.28 -2.09 4.78 1.54\n", + "\n", + "\n" + ] + } + ], + "source": [ + "summary({'coefs': real_samples['coefs'][None, ...]})" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "X, y = shards[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " =============================== SUBPOSTERIOR 00 ===============================\n", + "\n", + " mean std median 5.0% 95.0% n_eff r_hat\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0msep\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'='\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0;36m31\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'\\n '\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0msep\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m' SUBPOSTERIOR {:02d} '\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0msep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m''\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0msamples\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_flow_subposterior\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrng\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mK\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'.results/flow'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmakedirs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'.results/flow'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mget_flow_subposterior\u001b[0;34m(rng, shard, K)\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mtransformed_potential_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmake_transformed_pe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpotential_fn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munpack_fn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m samples = mcmc(num_warmup=1000, num_samples=2500, init_params=init_params,\n\u001b[0;32m----> 7\u001b[0;31m num_chains=4, potential_fn=transformed_potential_fn)\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0msamples\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/numpyro/numpyro/mcmc.py\u001b[0m in \u001b[0;36mmcmc\u001b[0;34m(num_warmup, num_samples, init_params, num_chains, sampler, constrain_fn, print_summary, **sampler_kwargs)\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 426\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mprint_summary\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 427\u001b[0;31m \u001b[0msummary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msamples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 428\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0msamples_flat\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 429\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/numpyro/numpyro/diagnostics.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(samples, prob)\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0mrow_format\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname_format\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m' {:>9.2f} {:>9.2f} {:>9.2f} {:>9.2f} {:>9.2f} {:>9.2f} {:>9.2f}'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msamples\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 225\u001b[0;31m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice_get\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 226\u001b[0m \u001b[0mvalue_flat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0monp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 227\u001b[0m \u001b[0mmean\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue_flat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniconda3/envs/pydata/lib/python3.6/site-packages/jax/api.py\u001b[0m in \u001b[0;36mdevice_get\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 1109\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0my\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtree_leaves\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1110\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1111\u001b[0;31m \u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy_to_host_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1112\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1113\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniconda3/envs/pydata/lib/python3.6/site-packages/jax/interpreters/pxla.py\u001b[0m in \u001b[0;36mcopy_to_host_async\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_npy_value\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 449\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbuf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice_buffers\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 450\u001b[0;31m \u001b[0mbuf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy_to_host_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 451\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 452\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdelete\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "rngs = random.split(random.PRNGKey(1), K)\n", + "subposteriors = []\n", + "for i, (rng, shard) in enumerate(zip(rngs, shards)):\n", + " if i > 0:\n", + " break\n", + " sep = '=' * 31\n", + " print('\\n ' + sep + ' SUBPOSTERIOR {:02d} '.format(i) + sep, end='')\n", + " samples = get_flow_subposterior(rng, shard, K)\n", + " if not os.path.exists('.results/flow'):\n", + " os.makedirs('.results/flow')\n", + " np.save('.results/flow/subposterior_{:02d}.npy'.format(i), samples)\n", + " subposteriors.append(samples)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python (pydata)", + "language": "python", + "name": "pydata" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 7e3064bcf82fc25941052efe071a40a2da8c32bd Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Tue, 17 Sep 2019 16:46:01 -0400 Subject: [PATCH 24/35] add block neural arn implementation --- numpyro/contrib/nn/block_neural_arn.py | 130 +++++++++++++++++++++++++ numpyro/contrib/nn/bna_nn.py | 53 ---------- numpyro/contrib/nn/masked_dense.py | 2 + numpyro/distributions/constraints.py | 3 +- numpyro/distributions/util.py | 13 +++ 5 files changed, 147 insertions(+), 54 deletions(-) create mode 100644 numpyro/contrib/nn/block_neural_arn.py delete mode 100644 numpyro/contrib/nn/bna_nn.py diff --git a/numpyro/contrib/nn/block_neural_arn.py b/numpyro/contrib/nn/block_neural_arn.py new file mode 100644 index 000000000..c43d88d02 --- /dev/null +++ b/numpyro/contrib/nn/block_neural_arn.py @@ -0,0 +1,130 @@ +from jax import ops, random +from jax.nn.initializer import glorot_uniform, normal, uniform + +from numpyro.distributions.util import softplus + + +def BlockMaskedDense(num_blocks, in_factor, out_factor, bias=True, W_init=glorot_uniform()): + """ + Module that implements a linear layer with block matrices with positive diagonal blocks. + Moreover, it uses Weight Normalization (https://arxiv.org/abs/1602.07868) for stability. + + :param int num_blocks: Number of block matrices. + :param int in_factor: number of rows in each block. + :param int out_factor: number of columns in each block. + :param W_init: initialization method for the weights. + :return: an (`init_fn`, `update_fn`) pair. + """ + input_dim, out_dim = num_blocks * in_factor, num_blocks * out_factor + # construct mask_d, mask_o for formula (8) of Ref [1] + # Diagonal block mask + mask_d = np.identity(num_block)[..., None] + mask_d = np.tile(mask_d, (1, in_factor, out_factor)).reshape(input_dim, out_dim) + # Off-diagonal block mask for lower triangular weight matrix + mask_o = vec_to_tril_matrix(np.ones(dim * (dim - 1) // 2), diagonal=-1)[..., None] + mask_o = np.tile(mask_o, (1, in_factor, out_factor)).reshape(input_dim, out_dim) + + def init_fun(rng, input_shape): + assert input_dim == input_shape[-1] + *k1, k2, k3 = random.split(rng, num_blocks + 2) + + # Initialize each column block using W_init + W = np.zeros((input_dim, out_dim) + for i in range(num_blocks): + W = ops.index_add( + W, + ops.index[:(i + 1) * in_factor, i * out_factor:(i + 1) * out_factor], + W_init(k1[i], ((i + 1) * in_factor, out_factor)) + ) + + # initialize weight scale + ws = np.log(uniform(1.)(k2, (out_dim,))) + + if bias: + b = (uniform(1.)(k3, mask.shape[-1:]) - 0.5) * (2 / np.sqrt(out_dim)) + params = (W, ws, b) + else: + params = (W, ws) + return input_shape[:-1] + (outdim,), params + + def apply_fun(params, inputs, **kwargs): + x, logdet = inputs + if bias: + W, ws, b = params + else: + W, ws = params + + # Form block weight matrix, making sure it's positive on diagonal! + w = np.exp(W) * mask_d + W * mask_o + + # Compute norm of each column (i.e. each output features) + w_norm = np.linalg.norm(w ** 2, axis=-2, keepdims=True) + + # Normalize weight and rescale + w = np.exp(ws) * w / w_norm + + out = np.dot(x, w) + if bias: + out = out + b + + dense_logdet = ws + W - np.log(w_norm) + # logdet of block diagonal + dense_logdet = logdet[mask_d.astype(bool)].reshape(dim, in_factor, out_factor) + logdet = dense_logdet if logdet is None else logmatmulexp(logdet, dense_logdet) + return out, logdet + + return init_fun, apply_fun + + +def Tanh(): + def init_fun(rng, input_shape): + return input_shape, () + + def apply_fun(params, inputs, **kwargs): + x, logdet = inputs + out = np.tanh(x) + tanh_logdet = -2 * (s + softplus(-2 * s)- np.log(2.)) + # logdet.shape = batch_shape + (num_blocks, in_factor, out_factor) + # tanh_logdet.shape = batch_shape + (num_blocks x out_factor,) + # so we need to reshape tanh_logdet to: batch_shape + (num_blocks, 1, out_factor) + tanh_logdet = tanh_logdet.reshape(logdet.shape[:-2] + (1, logdet.shape[-1])) + return out, logdet + tanh_logdet + + +def FanInNormal(): + """ + Similar to stax.FanInSum but also keeps track of log determinant of Jacobian. + """ + # x + f(x) + def init_fun(rng, input_shape): + pass + + def apply_fun(params, inputs, **kwargs): + pass + + +def FanInGated(gate_init=normal(1.)): + """ + Similar to FanInNormal uses a learnable parameter `gate` to interpolate two fan-in branches. + """ + # a * x + (1 - a) * f(x) + def init_fun(rng, input_shape): + pass + + def apply_fun(params, inputs, **kwargs): + pass + + +def BlockNeuralAutoregressiveNN(input_dim, hidden_factors, residual=None): + layers = [] + in_factor = 1 + for i, hidden_factor in enumerate(hidden_factors): + layers.append(BlockMaskedDense(input_dim, in_factor, hidden_factor)) + layers.append(Tanh()) + in_factor = hidden_factor + layers.append(BlockMaskedDense(input_dim, in_factor, 1)) + arn = stax.serial(*layers) + if residual is None + return arn + else: + return stax.serial(stax.FanOut(2), stax.parallel(stax.Identity, arn), residual()) diff --git a/numpyro/contrib/nn/bna_nn.py b/numpyro/contrib/nn/bna_nn.py deleted file mode 100644 index 81e9650a8..000000000 --- a/numpyro/contrib/nn/bna_nn.py +++ /dev/null @@ -1,53 +0,0 @@ -from numpyro.distributions.util import softplus - - -def MaskedBlockDense(): - def init_fun(rng, input_shape): - return output_shape, params - - def apply_fun(params, inputs, **kwargs): - x, logdet = inputs - # TODO: implement - return o, logdet - - -def Tanh(): - def init_fun(rng, input_shape): - return input_shape, () - - def apply_fun(params, inputs, **kwargs): - x, logdet = inputs - y = np.tanh(x) - tanh_logdet = - 2 * (x - np.log(2.) + softplus(-2 * x)) - return y, logdet + tanh_logdet # TODO: reshape? - - -def stax_serial_with_jacobian(*layers): - """ - Works like `stax.serial` but also forward the log determinant of Jacobian. - """ - nlayers = len(layers) - init_funs, apply_funs = zip(*layers) - - def init_fun(rng, input_shape): - params = [] - for init_fun in init_funs: - rng, layer_rng = random.split(rng) - input_shape, param = init_fun(layer_rng, input_shape) - params.append(param) - return input_shape, params - - def apply_fun(params, inputs, **kwargs): - rng = kwargs.pop('rng', None) - rngs = random.split(rng, nlayers) if rng is not None else (None,) * nlayers - for fun, param, rng in zip(apply_funs, params, rngs): - inputs = fun(param, inputs, rng=rng, **kwargs) - return inputs - - return init_fun, apply_fun - - -def BlockNeuralAutoregressiveNN(input_dim, hidden_factor): - # TODO: support multi hidden factors - layers = [MaskedBlockDense(hidden_factor), Tanh(), MaskedBlockDense(input_dim)] - return stax_serial_with_jacobian(*layers) diff --git a/numpyro/contrib/nn/masked_dense.py b/numpyro/contrib/nn/masked_dense.py index a1593c319..ce0459787 100644 --- a/numpyro/contrib/nn/masked_dense.py +++ b/numpyro/contrib/nn/masked_dense.py @@ -2,6 +2,8 @@ from jax.experimental.stax import glorot, randn import jax.numpy as np +from numpyro.distributions.util import vec_to_tril_matrix + def MaskedDense(mask, bias=True, W_init=glorot(), b_init=randn()): """ diff --git a/numpyro/distributions/constraints.py b/numpyro/distributions/constraints.py index 190944835..51379088c 100644 --- a/numpyro/distributions/constraints.py +++ b/numpyro/distributions/constraints.py @@ -35,6 +35,7 @@ get_dtype, matrix_to_tril_vec, signed_stick_breaking_tril, + softplus, sum_rightmost, vec_to_tril_matrix ) @@ -361,7 +362,7 @@ def log_abs_det_jacobian(self, x, y, intermediates=None): z1m_cumprod_tril = matrix_to_tril_vec(z1m_cumprod, diagonal=-2) stick_breaking_logdet = 0.5 * np.sum(np.log(z1m_cumprod_tril), axis=-1) - tanh_logdet = -2 * np.sum(np.log(np.cosh(x)), axis=-1) + tanh_logdet = -2 * np.sum(x + softplus(-2 * x) - np.log(2.), axis=-1) return stick_breaking_logdet + tanh_logdet diff --git a/numpyro/distributions/util.py b/numpyro/distributions/util.py index 168863d6b..1c19051dd 100644 --- a/numpyro/distributions/util.py +++ b/numpyro/distributions/util.py @@ -171,12 +171,14 @@ def cholesky_inverse(matrix): return solve_triangular(tril_inv, identity, lower=True) +# TODO: move upstream to jax.nn def binary_cross_entropy_with_logits(x, y): # compute -y * log(sigmoid(x)) - (1 - y) * log(1 - sigmoid(x)) # Ref: https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits return np.clip(x, 0) + np.log1p(np.exp(-np.abs(x))) - x * y +# TODO: use upstream jax.nn.softmax def softmax(x, axis=-1): unnormalized = np.exp(x - np.max(x, axis, keepdims=True)) return unnormalized / np.sum(unnormalized, axis, keepdims=True) @@ -263,10 +265,21 @@ def signed_stick_breaking_tril(t): return y +# TODO: use upstream jax.nn.softplus def softplus(x): return np.logaddexp(x, 0.) +def logmatmulexp(x, y): + """ + Numerically stable version of ``(x.log() @ y.log()).exp()``. + """ + x_shift = np.amax(x, -1, keepdims=True) + y_shift = np.amax(y, -2, keepdims=True) + xy = np.log(np.matmul((x - x_shift).exp(), (y - y_shift).exp())) + return xy + x_shift + y_shift + + # The is sourced from: torch.distributions.util.py # # Copyright (c) 2016- Facebook, Inc (Adam Paszke) From 0e95a9b0c37abd411bdd2eb1dd4c86b924185a7f Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Tue, 17 Sep 2019 22:50:24 -0400 Subject: [PATCH 25/35] implement residual gate --- numpyro/contrib/nn/block_neural_arn.py | 60 +++++++++++++++++++++----- numpyro/distributions/flows.py | 42 ++++++++++-------- 2 files changed, 74 insertions(+), 28 deletions(-) diff --git a/numpyro/contrib/nn/block_neural_arn.py b/numpyro/contrib/nn/block_neural_arn.py index c43d88d02..cd39153be 100644 --- a/numpyro/contrib/nn/block_neural_arn.py +++ b/numpyro/contrib/nn/block_neural_arn.py @@ -1,7 +1,8 @@ from jax import ops, random +from jax.experimental import stax +from jax.nn import softplus from jax.nn.initializer import glorot_uniform, normal, uniform - -from numpyro.distributions.util import softplus +import jax.numpy as np def BlockMaskedDense(num_blocks, in_factor, out_factor, bias=True, W_init=glorot_uniform()): @@ -77,6 +78,11 @@ def apply_fun(params, inputs, **kwargs): def Tanh(): + """ + Tanh nonlinearity with its log jacobian. + + :return: an (`init_fn`, `update_fn`) pair. + """ def init_fun(rng, input_shape): return input_shape, () @@ -90,32 +96,64 @@ def apply_fun(params, inputs, **kwargs): tanh_logdet = tanh_logdet.reshape(logdet.shape[:-2] + (1, logdet.shape[-1])) return out, logdet + tanh_logdet + return init_fun, apply_fun -def FanInNormal(): + +def FanInResidualNormal(): """ Similar to stax.FanInSum but also keeps track of log determinant of Jacobian. + It is required that the second fan-in branch is identity. + + :return: an (`init_fn`, `update_fn`) pair. """ - # x + f(x) def init_fun(rng, input_shape): - pass + return input_shape[0], () def apply_fun(params, inputs, **kwargs): - pass + # f(x) + x + (fx, logdet), (x, _) = inputs + return fx + x, softplus(logdet) + + return init_fun, apply_fun -def FanInGated(gate_init=normal(1.)): +def FanInResidualGated(gate_init=normal(1.)): """ Similar to FanInNormal uses a learnable parameter `gate` to interpolate two fan-in branches. + It is required that the second fan-in branch is identity. + + :param gate_init: initialization method for the gate. + :return: an (`init_fn`, `update_fn`) pair. """ - # a * x + (1 - a) * f(x) def init_fun(rng, input_shape): - pass + return input_shape[0], gate_init(rng, ()) def apply_fun(params, inputs, **kwargs): - pass + # a * f(x) + (1 - a) * x + (fx, logdet), (x, _) = inputs + gate = np.sigmoid(params) + out = gate * fx + (1 - gate) * x + logdet = softplus(logdet + params) - softplus(params) + return out, logdet + + return init_fun, apply_fun def BlockNeuralAutoregressiveNN(input_dim, hidden_factors, residual=None): + """ + An implementation of Block Neural Autoregressive neural network. + + **References** + + 1. *Block Neural Autoregressive Flow*, + Nicola De Cao, Ivan Titov, Wilker Aziz + + :param int input_dim: The dimensionality of the input. + :param list hidden_factors: Hidden layer i has ``hidden_factors[i]`` hidden units per + input dimension. This corresponds to both :math:`a` and :math:`b` in reference [1]. + The elements of hidden_factors must be integers. + :param residual: Type of residual connections to use. + """ layers = [] in_factor = 1 for i, hidden_factor in enumerate(hidden_factors): @@ -127,4 +165,4 @@ def BlockNeuralAutoregressiveNN(input_dim, hidden_factors, residual=None): if residual is None return arn else: - return stax.serial(stax.FanOut(2), stax.parallel(stax.Identity, arn), residual()) + return stax.serial(stax.FanOut(2), stax.parallel(arn, stax.Identity), residual()) diff --git a/numpyro/distributions/flows.py b/numpyro/distributions/flows.py index f3e922908..ef65e3aa3 100644 --- a/numpyro/distributions/flows.py +++ b/numpyro/distributions/flows.py @@ -83,25 +83,33 @@ def log_abs_det_jacobian(self, x, y, intermediates=None): class BlockNeuralAutoregressiveTransform(Transform): event_dim = 1 - def __init__(self, bna_nn, params): - self.bna_nn = bna_nn - self.params = params + def __init__(self, bn_arn): + self.bn_arn = bn_arn def __call__(self, x): - self._cached_x = x - y, self._cached_logdet = self.bna_nn(self.params, x) - return y + """ + :param numpy.ndarray x: the input into the transform + """ + return self.call_with_intermediates(x)[0] - def inv(self, y, caching=True): - if caching: - return self._cached_x - else: - raise ValueError("Block neural autoregressive transform does not have an analytic" - " inverse implemented.") + def call_with_intermediates(self, x): + y, logdet = self.bn_arn(x) + return y, logdet + + def inv(self, y): + raise RuntimeError("Block neural autoregressive transform does not have an analytic" + " inverse implemented.") + + def log_abs_det_jacobian(self, x, y, intermediates=None): + """ + Calculates the elementwise determinant of the log jacobian. - def log_abs_det_jacobian(self, x, y, caching=True): - if caching: - return self._cached_logdet + :param numpy.ndarray x: the input to the transform + :param numpy.ndarray y: the output of the transform + """ + if intermediates is None: + logdet = self.bn_arn(x)[1] + return logdet.sum(-1) else: - _, logdet = self.bna_nn(self.params, x) - return logdet + log_scale = intermediates + return log_scale.sum(-1) From db797c44f81d9c962dd4dfc770edeaac4c082aae Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 18 Sep 2019 00:44:20 -0400 Subject: [PATCH 26/35] updates nn for jax46 --- numpyro/contrib/distributions/multivariate.py | 2 +- numpyro/contrib/nn/masked_dense.py | 4 ++-- numpyro/distributions/constraints.py | 3 ++- numpyro/distributions/discrete.py | 2 +- numpyro/distributions/util.py | 6 +----- 5 files changed, 7 insertions(+), 10 deletions(-) diff --git a/numpyro/contrib/distributions/multivariate.py b/numpyro/contrib/distributions/multivariate.py index 510fdad6c..53ab63501 100644 --- a/numpyro/contrib/distributions/multivariate.py +++ b/numpyro/contrib/distributions/multivariate.py @@ -7,7 +7,7 @@ # All rights reserved. from jax import lax, random -from jax.experimental.stax import softmax +from jax.nn import softmax import jax.numpy as np from jax.numpy.lax_numpy import _promote_dtypes from jax.scipy.special import digamma, entr, gammaln, logsumexp diff --git a/numpyro/contrib/nn/masked_dense.py b/numpyro/contrib/nn/masked_dense.py index a1593c319..11e0e5a56 100644 --- a/numpyro/contrib/nn/masked_dense.py +++ b/numpyro/contrib/nn/masked_dense.py @@ -1,9 +1,9 @@ from jax import random -from jax.experimental.stax import glorot, randn +from jax.nn.initilizers import glorot_normal, normal import jax.numpy as np -def MaskedDense(mask, bias=True, W_init=glorot(), b_init=randn()): +def MaskedDense(mask, bias=True, W_init=glorot_normal(), b_init=normal()): """ As in jax.experimental.stax, each layer constructor function returns an (init_fun, apply_fun) pair, where `init_fun` takes an rng key and diff --git a/numpyro/distributions/constraints.py b/numpyro/distributions/constraints.py index 190944835..1b6d92528 100644 --- a/numpyro/distributions/constraints.py +++ b/numpyro/distributions/constraints.py @@ -26,6 +26,7 @@ from jax import ops from jax.lib.xla_bridge import canonicalize_dtype +from jax.nn import softplus import jax.numpy as np from jax.scipy.special import expit, logit @@ -361,7 +362,7 @@ def log_abs_det_jacobian(self, x, y, intermediates=None): z1m_cumprod_tril = matrix_to_tril_vec(z1m_cumprod, diagonal=-2) stick_breaking_logdet = 0.5 * np.sum(np.log(z1m_cumprod_tril), axis=-1) - tanh_logdet = -2 * np.sum(np.log(np.cosh(x)), axis=-1) + tanh_logdet = -2 * np.sum(x + softplus(-2 * x) - np.log(2.), axis=-1) return stick_breaking_logdet + tanh_logdet diff --git a/numpyro/distributions/discrete.py b/numpyro/distributions/discrete.py index c99a4654a..8194124ab 100644 --- a/numpyro/distributions/discrete.py +++ b/numpyro/distributions/discrete.py @@ -24,6 +24,7 @@ from jax import lax from jax.lib import xla_bridge +from jax.nn import softmax import jax.numpy as np import jax.random as random from jax.scipy.special import gammaln, logsumexp @@ -40,7 +41,6 @@ multinomial, poisson, promote_shapes, - softmax, sum_rightmost, xlog1py, xlogy diff --git a/numpyro/distributions/util.py b/numpyro/distributions/util.py index 540bb7314..439d92870 100644 --- a/numpyro/distributions/util.py +++ b/numpyro/distributions/util.py @@ -171,17 +171,13 @@ def cholesky_inverse(matrix): return solve_triangular(tril_inv, identity, lower=True) +# TODO: move upstream to jax.nn def binary_cross_entropy_with_logits(x, y): # compute -y * log(sigmoid(x)) - (1 - y) * log(1 - sigmoid(x)) # Ref: https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits return np.clip(x, 0) + np.log1p(np.exp(-np.abs(x))) - x * y -def softmax(x, axis=-1): - unnormalized = np.exp(x - np.max(x, axis, keepdims=True)) - return unnormalized / np.sum(unnormalized, axis, keepdims=True) - - @custom_transforms def cumsum(x): return np.cumsum(x, axis=-1) From 46faa8ea830575f9b2f4bc79cef15eee8edc1834 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 18 Sep 2019 00:49:27 -0400 Subject: [PATCH 27/35] relax version restriction --- setup.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/setup.py b/setup.py index 9a8d5df46..2fec477e8 100644 --- a/setup.py +++ b/setup.py @@ -31,8 +31,8 @@ author_email='npradhan@uber.com', install_requires=[ # TODO: pin to a specific version for the next release (unless JAX's API becomes stable) - 'jax==0.1.44', - 'jaxlib==0.1.27', + 'jax>=0.1.44', + 'jaxlib>=0.1.27', 'tqdm', ], extras_require={ From 904adb8439c21455d232d0ed4b600c9119447591 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 18 Sep 2019 00:53:47 -0400 Subject: [PATCH 28/35] change softmax import in ts notebook --- notebooks/source/time_series_forecasting.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/notebooks/source/time_series_forecasting.ipynb b/notebooks/source/time_series_forecasting.ipynb index cc2d91c46..19903f3e3 100644 --- a/notebooks/source/time_series_forecasting.ipynb +++ b/notebooks/source/time_series_forecasting.ipynb @@ -32,14 +32,14 @@ "import jax.numpy as np\n", "from jax import lax, random, vmap\n", "from jax.config import config; config.update(\"jax_platform_name\", \"cpu\")\n", + "from jax.nn import softmax\n", "\n", "import numpyro\n", "import numpyro.distributions as dist\n", "from numpyro.diagnostics import autocorrelation, hpdi\n", - "from numpyro.distributions.util import softmax\n", "from numpyro import handlers\n", "from numpyro.mcmc import MCMC, NUTS\n", - "assert numpyro.__version__.startswith('0.2.0')\n" + "assert numpyro.__version__.startswith('0.2.0')" ] }, { From 45c849cdf5ac3cf229f6701d8efaf774ae913c3a Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 18 Sep 2019 10:00:36 -0400 Subject: [PATCH 29/35] make sure that mask_o is upper triangular matrix, not lower --- numpyro/contrib/nn/block_neural_arn.py | 4 ++-- test/contrib/test_auto_regressive_nn.py | 8 +++++++- test/test_distributions.py | 2 +- test/test_flows.py | 6 +++++- 4 files changed, 15 insertions(+), 5 deletions(-) diff --git a/numpyro/contrib/nn/block_neural_arn.py b/numpyro/contrib/nn/block_neural_arn.py index 743212aff..cd70755b1 100644 --- a/numpyro/contrib/nn/block_neural_arn.py +++ b/numpyro/contrib/nn/block_neural_arn.py @@ -23,8 +23,8 @@ def BlockMaskedDense(num_blocks, in_factor, out_factor, bias=True, W_init=glorot # Diagonal block mask mask_d = np.identity(num_blocks)[..., None] mask_d = np.tile(mask_d, (1, in_factor, out_factor)).reshape(input_dim, out_dim) - # Off-diagonal block mask for lower triangular weight matrix - mask_o = vec_to_tril_matrix(np.ones(num_blocks * (num_blocks - 1) // 2), diagonal=-1)[..., None] + # Off-diagonal block mask for upper triangular weight matrix + mask_o = vec_to_tril_matrix(np.ones(num_blocks * (num_blocks - 1) // 2), diagonal=-1).T[..., None] mask_o = np.tile(mask_o, (1, in_factor, out_factor)).reshape(input_dim, out_dim) def init_fun(rng, input_shape): diff --git a/test/contrib/test_auto_regressive_nn.py b/test/contrib/test_auto_regressive_nn.py index ea1a8fe4c..68ed877ad 100644 --- a/test/contrib/test_auto_regressive_nn.py +++ b/test/contrib/test_auto_regressive_nn.py @@ -9,6 +9,7 @@ from numpyro.contrib.nn.auto_reg_nn import AutoregressiveNN, create_mask from numpyro.contrib.nn.block_neural_arn import BlockNeuralAutoregressiveNN +from numpyro.distributions.util import matrix_to_tril_vec @pytest.mark.parametrize('input_dim', [5]) @@ -50,7 +51,8 @@ def test_auto_reg_nn(input_dim, hidden_dims, param_dims, skip_connections): permuted_jac[..., j, k] = jac[..., perm[j], perm[k]] # make sure jacobians are triangular - assert onp.sum(onp.abs(onp.triu(permuted_jac))) == 0.0 + assert onp.sum(onp.abs(onp.triu(permuted_jac, k=1))) == 0.0 + assert onp.all(onp.abs(matrix_to_tril_vec(jac)) > 0) @pytest.mark.parametrize('input_dim', [5, 8]) @@ -123,3 +125,7 @@ def test_block_neural_arn(input_dim, hidden_factors, residual, batch_shape): else: jac = jacfwd(lambda x: arn(init_params, x)[0])(x) assert_allclose(logdet.sum(-1), np.linalg.slogdet(jac)[1], rtol=1e-6) + + # make sure jacobians are lower triangular + assert onp.sum(onp.abs(onp.triu(jac, k=1))) == 0.0 + assert onp.all(onp.abs(matrix_to_tril_vec(jac)) > 0) diff --git a/test/test_distributions.py b/test/test_distributions.py index 6ec633a8a..4128cdb71 100644 --- a/test/test_distributions.py +++ b/test/test_distributions.py @@ -557,7 +557,7 @@ def test_distribution_constraints(jax_dist, sp_dist, params, prepend_shape): expected = sp_dist(*valid_params).logpdf(valid_samples) except AttributeError: expected = sp_dist(*valid_params).logpmf(valid_samples) - assert_allclose(d.log_prob(valid_samples), expected, atol=1e-5) + assert_allclose(d.log_prob(valid_samples), expected, atol=1e-5, rtol=1e-5) # Out of support samples throw ValueError oob_samples = gen_values_outside_bounds(d.support, size=prepend_shape + d.batch_shape + d.event_shape) diff --git a/test/test_flows.py b/test/test_flows.py index 219283e24..6c1dd569e 100644 --- a/test/test_flows.py +++ b/test/test_flows.py @@ -8,6 +8,7 @@ from numpyro.contrib.nn import AutoregressiveNN, BlockNeuralAutoregressiveNN from numpyro.distributions.flows import BlockNeuralAutoregressiveTransform, InverseAutoregressiveTransform +from numpyro.distributions.util import matrix_to_tril_vec def _make_iaf_args(input_dim, hidden_dims): @@ -63,4 +64,7 @@ def test_flows(flow_class, flow_args, input_dim, batch_shape): for k in range(input_dim): permuted_jac[j, k] = jac[perm[j], perm[k]] - assert onp.sum(onp.abs(onp.triu(permuted_jac, 1))) == 0.00 + jac = permuted_jac + + assert onp.sum(onp.abs(onp.triu(jac, 1))) == 0.00 + assert onp.all(onp.abs(matrix_to_tril_vec(jac)) > 0) From 8f04ca3b040752135c81bbd3a6c081ea5b1439d9 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 18 Sep 2019 13:31:14 -0400 Subject: [PATCH 30/35] use Elu for IAF --- test/test_flows.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/test/test_flows.py b/test/test_flows.py index 6c1dd569e..847818837 100644 --- a/test/test_flows.py +++ b/test/test_flows.py @@ -5,6 +5,7 @@ import pytest from jax import jacfwd, random +from jax.experimental import stax from numpyro.contrib.nn import AutoregressiveNN, BlockNeuralAutoregressiveNN from numpyro.distributions.flows import BlockNeuralAutoregressiveTransform, InverseAutoregressiveTransform @@ -14,7 +15,10 @@ def _make_iaf_args(input_dim, hidden_dims): _, rng_perm = random.split(random.PRNGKey(0)) perm = random.shuffle(rng_perm, onp.arange(input_dim)) - arn_init, arn = AutoregressiveNN(input_dim, hidden_dims, param_dims=[1, 1], permutation=perm) + # we use Elu nonlinearity because the default one, Relu, masks out negative hidden values, + # which in turn create some zero entries in the lower triangular part of Jacobian. + arn_init, arn = AutoregressiveNN(input_dim, hidden_dims, param_dims=[1, 1], + permutation=perm, nonlinearity=stax.Elu) _, init_params = arn_init(random.PRNGKey(0), (input_dim,)) return partial(arn, init_params), From 0bc59d1f7f4ef596a4c8987783c3b3f6d08736cd Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 18 Sep 2019 13:33:22 -0400 Subject: [PATCH 31/35] revert arn test --- test/contrib/test_auto_regressive_nn.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/test/contrib/test_auto_regressive_nn.py b/test/contrib/test_auto_regressive_nn.py index 68ed877ad..1116b8a42 100644 --- a/test/contrib/test_auto_regressive_nn.py +++ b/test/contrib/test_auto_regressive_nn.py @@ -51,8 +51,7 @@ def test_auto_reg_nn(input_dim, hidden_dims, param_dims, skip_connections): permuted_jac[..., j, k] = jac[..., perm[j], perm[k]] # make sure jacobians are triangular - assert onp.sum(onp.abs(onp.triu(permuted_jac, k=1))) == 0.0 - assert onp.all(onp.abs(matrix_to_tril_vec(jac)) > 0) + assert onp.sum(onp.abs(onp.triu(permuted_jac))) == 0.0 @pytest.mark.parametrize('input_dim', [5, 8]) From deeee196d2233022e94c209ba2f4664e206f9045 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 18 Sep 2019 14:00:14 -0400 Subject: [PATCH 32/35] add bnaf autoguide --- numpyro/contrib/autoguide/__init__.py | 59 ++++++++++++++++++++++++--- test/contrib/test_autoguide.py | 27 ++++++------ 2 files changed, 68 insertions(+), 18 deletions(-) diff --git a/numpyro/contrib/autoguide/__init__.py b/numpyro/contrib/autoguide/__init__.py index aa82e9081..ff0a7ccfd 100644 --- a/numpyro/contrib/autoguide/__init__.py +++ b/numpyro/contrib/autoguide/__init__.py @@ -10,10 +10,11 @@ import numpyro from numpyro import handlers from numpyro.contrib.nn.auto_reg_nn import AutoregressiveNN +from numpyro.contrib.nn.block_neural_arn import BlockNeuralAutoregressiveNN import numpyro.distributions as dist from numpyro.distributions import constraints from numpyro.distributions.constraints import AffineTransform, ComposeTransform, PermuteTransform, biject_to -from numpyro.distributions.flows import InverseAutoregressiveTransform +from numpyro.distributions.flows import BlockNeuralAutoregressiveTransform, InverseAutoregressiveTransform from numpyro.distributions.util import sum_rightmost from numpyro.infer_util import constrain_fn, find_valid_initial_params, init_to_median, transform_fn @@ -112,9 +113,9 @@ def _setup_prototype(self, *args, **kwargs): super(AutoContinuous, self)._setup_prototype(*args, **kwargs) rng = numpyro.sample("_{}_rng_init".format(self.prefix), dist.PRNGIdentity()) # FIXME: without block statement, get AssertionError: all sites must have unique names - init_params, is_valid = handlers.block(find_valid_initial_params)(rng, self.model, *args, - init_strategy=self.init_strategy, - **kwargs) + init_params, _ = handlers.block(find_valid_initial_params)(rng, self.model, *args, + init_strategy=self.init_strategy, + **kwargs) self._inv_transforms = {} self._has_transformed_dist = False unconstrained_sites = {} @@ -315,7 +316,7 @@ class AutoIAFNormal(AutoContinuous): Usage:: guide = AutoIAFNormal(rng, model, get_params, hidden_dims=[20], skip_connections=True, ...) - svi_init, svi_update, _ = svi(model, guide, ...) + svi = SVI(model, guide, ...) :param jax.random.PRNGKey rng: random key to be used as the source of randomness to initialize the guide. @@ -360,3 +361,51 @@ def _get_transform(self): arnn = numpyro.module('{}_arn__{}'.format(self.prefix, i), arn, (self.latent_size,)) flows.append(InverseAutoregressiveTransform(arnn)) return ComposeTransform(flows) + + +class AutoBNAFNormal(AutoContinuous): + """ + This implementation of :class:`AutoContinuous` uses a Diagonal Normal + distribution transformed via a + :class:`~numpyro.distributions.iaf.InverseAutoregressiveTransform` + to construct a guide over the entire latent space. The guide does not + depend on the model's ``*args, **kwargs``. + + Usage:: + + guide = AutoBNAFNormal(rng, model, get_params, num_flows=1, hidden_factors=[50, 50]) + svi = SVI(model, guide, ...) + + **References** + + 1. *Block Neural Autoregressive Flow*, + Nicola De Cao, Ivan Titov, Wilker Aziz + + :param jax.random.PRNGKey rng: random key to be used as the source of randomness + to initialize the guide. + :param callable model: a generative model. + :param str prefix: a prefix that will be prefixed to all param internal sites. + :param callable init_strategy: A per-site initialization function. + :param int num_flows: the number of flows to be used, defaults to 3. + :param list hidden_factors: Hidden layer i has ``hidden_factors[i]`` hidden units per + input dimension. This corresponds to both :math:`a` and :math:`b` in reference [1]. + The elements of hidden_factors must be integers. + """ + def __init__(self, model, prefix="auto", init_strategy=init_to_median, num_flows=1, + hidden_factors=[8, 8]): + self.num_flows = num_flows + self._hidden_factors = hidden_factors + super(AutoBNAFNormal, self).__init__(model, prefix=prefix, init_strategy=init_strategy) + + def _get_transform(self): + if self.latent_size == 1: + raise ValueError('latent dim = 1. Consider using AutoDiagonalNormal instead') + flows = [] + for i in range(self.num_flows): + if i > 0: + flows.append(PermuteTransform(np.arange(self.latent_size)[::-1])) + residual = "gated" if i < (self.num_flows - 1) else None + arn = BlockNeuralAutoregressiveNN(self.latent_size, self._hidden_factors, residual) + arnn = numpyro.module('{}_arn__{}'.format(self.prefix, i), arn, (self.latent_size,)) + flows.append(BlockNeuralAutoregressiveTransform(arnn)) + return ComposeTransform(flows) diff --git a/test/contrib/test_autoguide.py b/test/contrib/test_autoguide.py index 30b1b6460..d0bc0ce8e 100644 --- a/test/contrib/test_autoguide.py +++ b/test/contrib/test_autoguide.py @@ -9,7 +9,7 @@ import numpyro from numpyro import optim -from numpyro.contrib.autoguide import AutoDiagonalNormal, AutoIAFNormal +from numpyro.contrib.autoguide import AutoBNAFNormal, AutoDiagonalNormal, AutoIAFNormal from numpyro.contrib.nn.auto_reg_nn import AutoregressiveNN import numpyro.distributions as dist from numpyro.distributions import constraints @@ -22,6 +22,7 @@ @pytest.mark.parametrize('auto_class', [ AutoDiagonalNormal, AutoIAFNormal, + AutoBNAFNormal, ]) def test_beta_bernoulli(auto_class): data = np.array([[1.0] * 8 + [0.0] * 2, @@ -32,15 +33,15 @@ def model(data): numpyro.sample('obs', dist.Bernoulli(f), obs=data) adam = optim.Adam(0.01) - guide = auto_class(model) + guide = auto_class(model, hidden_factors=[8, 8]) if auto_class is AutoBNAFNormal else auto_class(model) svi = SVI(model, guide, elbo, adam) svi_state = svi.init(random.PRNGKey(1), model_args=(data,), guide_args=(data,)) def body_fn(i, val): - svi_state, loss = svi.update(val, model_args=(data,), guide_args=(data,)) + svi_state, _ = svi.update(val, model_args=(data,), guide_args=(data,)) return svi_state - svi_state = fori_loop(0, 2000, body_fn, svi_state) + svi_state = fori_loop(0, 3000, body_fn, svi_state) params = svi.get_params(svi_state) true_coefs = (np.sum(data, axis=0) + 1) / (data.shape[0] + 2) # test .sample_posterior method @@ -51,6 +52,7 @@ def body_fn(i, val): @pytest.mark.parametrize('auto_class', [ AutoDiagonalNormal, AutoIAFNormal, + AutoBNAFNormal, ]) def test_logistic_regression(auto_class): N, dim = 3000, 3 @@ -71,12 +73,12 @@ def model(data, labels): svi_state = svi.init(rng_init, model_args=(data, labels), guide_args=(data, labels)) def body_fn(i, val): - svi_state, loss = svi.update(val, model_args=(data, labels), guide_args=(data, labels)) + svi_state, _ = svi.update(val, model_args=(data, labels), guide_args=(data, labels)) return svi_state svi_state = fori_loop(0, 2000, body_fn, svi_state) params = svi.get_params(svi_state) - if auto_class is not AutoIAFNormal: + if auto_class not in (AutoIAFNormal, AutoBNAFNormal): median = guide.median(params) assert_allclose(median['coefs'], true_coefs, rtol=0.1) # test .quantile method @@ -117,16 +119,15 @@ def model(data, labels): for i in range(guide.num_flows): if i > 0: flows.append(constraints.PermuteTransform(np.arange(dim + 1)[::-1])) - arn_init, arn_apply = AutoregressiveNN(dim + 1, [dim + 1, dim + 1], - permutation=np.arange(dim + 1), - skip_connections=guide._skip_connections, - nonlinearity=guide._nonlinearity) + _, arn_apply = AutoregressiveNN(dim + 1, [dim + 1, dim + 1], + permutation=np.arange(dim + 1), + skip_connections=guide._skip_connections, + nonlinearity=guide._nonlinearity) arn = partial(arn_apply, params['auto_arn__{}$params'.format(i)]) flows.append(InverseAutoregressiveTransform(arn)) transform = constraints.ComposeTransform(flows) - rng_seed, rng_sample = random.split(rng) - expected_sample = guide.unpack_latent(transform(dist.Normal(np.zeros(dim + 1), 1).sample(rng_sample))) + expected_sample = guide.unpack_latent(transform(dist.Normal(np.zeros(dim + 1), 1).sample(rng))) expected_output = transform(x) assert_allclose(actual_sample['coefs'], expected_sample['coefs']) assert_allclose(actual_sample['offset'], @@ -150,7 +151,7 @@ def model(data): svi_state = svi.init(rng_init, model_args=(data,), guide_args=(data,)) def body_fn(i, val): - svi_state, loss = svi.update(val, model_args=(data,), guide_args=(data,)) + svi_state, _ = svi.update(val, model_args=(data,), guide_args=(data,)) return svi_state svi_state = fori_loop(0, 1000, body_fn, svi_state) From 38add0acef07746f61c3fe41f3648391310628fa Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 18 Sep 2019 15:16:01 -0400 Subject: [PATCH 33/35] use bnaf in neutra --- examples/neutra.py | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/examples/neutra.py b/examples/neutra.py index a9bd5e244..b900eb1a1 100644 --- a/examples/neutra.py +++ b/examples/neutra.py @@ -13,7 +13,7 @@ import numpyro from numpyro import optim -from numpyro.contrib.autoguide import AutoIAFNormal +from numpyro.contrib.autoguide import AutoBNAFNormal from numpyro.diagnostics import summary import numpyro.distributions as dist from numpyro.hmc_util import initialize_model @@ -40,7 +40,7 @@ def dual_moon_pe(x): def dual_moon_model(): - x = numpyro.sample('x', dist.Uniform(-4 * np.ones(2), 4 * np.ones(2))) + x = numpyro.sample('x', dist.Normal(np.zeros(2), 100)) pe = dual_moon_pe(x) numpyro.sample('log_density', dist.Delta(log_density=-pe), obs=0.) @@ -63,9 +63,9 @@ def main(args): mcmc.run(random.PRNGKey(11), init_params=np.array([2., 0.])) vanilla_samples = mcmc.get_samples() - adam = optim.Adam(0.001) + adam = optim.Adam(0.01) rng_init, rng_train = random.split(random.PRNGKey(1), 2) - guide = AutoIAFNormal(dual_moon_model, hidden_dims=[args.num_hidden], skip_connections=True) + guide = AutoBNAFNormal(dual_moon_model, hidden_factors=[50, 50]) svi = SVI(dual_moon_model, guide, elbo, adam) svi_state = svi.init(rng_init) @@ -89,10 +89,12 @@ def main(args): # Issue: https://github.com/pyro-ppl/numpyro/issues/256 nuts_kernel = NUTS(potential_fn=transformed_potential_fn) mcmc = MCMC(nuts_kernel, args.num_warmup, args.num_samples) - mcmc.run(random.PRNGKey(10), init_params=init_params) + mcmc.run(random.PRNGKey(10), init_params=init_params, collect_fields=('z', 'potential_energy')) zs = mcmc.get_samples() + print(zs) print("Transform samples into unwarped space...") samples = vmap(transformed_constrain_fn)(zs) + print(samples) summary(tree_map(lambda x: x[None, ...], samples)) # make plots @@ -151,10 +153,10 @@ def main(args): if __name__ == "__main__": assert numpyro.__version__.startswith('0.2.0') parser = argparse.ArgumentParser(description="NeuTra HMC") - parser.add_argument('-n', '--num-samples', nargs='?', default=20000, type=int) - parser.add_argument('--num-warmup', nargs='?', default=0, type=int) + parser.add_argument('-n', '--num-samples', nargs='?', default=5000, type=int) + parser.add_argument('--num-warmup', nargs='?', default=5000, type=int) parser.add_argument('--num-hidden', nargs='?', default=20, type=int) - parser.add_argument('--num-iters', nargs='?', default=200000, type=int) + parser.add_argument('--num-iters', nargs='?', default=20000, type=int) parser.add_argument('--device', default='cpu', type=str, help='use "cpu" or "gpu".') args = parser.parse_args() main(args) From 952e8ef3c4db36617b8e4ad248891abb0c7ed03e Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 18 Sep 2019 23:03:44 -0400 Subject: [PATCH 34/35] finalllygit add -u .git add -u .! neutra example works --- examples/neutra.py | 60 ++++++++++++--------------- numpyro/contrib/autoguide/__init__.py | 2 +- 2 files changed, 27 insertions(+), 35 deletions(-) diff --git a/examples/neutra.py b/examples/neutra.py index b900eb1a1..707c47c5b 100644 --- a/examples/neutra.py +++ b/examples/neutra.py @@ -1,5 +1,4 @@ import argparse -import os from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt @@ -20,10 +19,6 @@ from numpyro.mcmc import MCMC, NUTS from numpyro.svi import SVI, elbo -# TODO: remove when the issue https://github.com/google/jax/issues/939 is fixed upstream -# The behaviour when training guide under fast math mode is unstable. -os.environ["XLA_FLAGS"] = "--xla_cpu_enable_fast_math=false" - """ This example illustrates how to use a trained AutoIAFNormal autoguide to transform a posterior to a Gaussian-like one. The transform will be used to get better mixing rate for NUTS sampler. @@ -49,7 +44,7 @@ def make_transformed_pe(potential_fn, transform, unpack_fn): def transformed_potential_fn(z): u, intermediates = transform.call_with_intermediates(z) logdet = transform.log_abs_det_jacobian(z, u, intermediates=intermediates) - return potential_fn(unpack_fn(u)) + logdet + return potential_fn(unpack_fn(u)) - logdet return transformed_potential_fn @@ -58,23 +53,23 @@ def main(args): jax_config.update('jax_platform_name', args.device) print("Start vanilla HMC...") - nuts_kernel = NUTS(potential_fn=dual_moon_pe) + nuts_kernel = NUTS(dual_moon_model) mcmc = MCMC(nuts_kernel, args.num_warmup, args.num_samples) - mcmc.run(random.PRNGKey(11), init_params=np.array([2., 0.])) - vanilla_samples = mcmc.get_samples() + mcmc.run(random.PRNGKey(0)) + mcmc.print_summary() + vanilla_samples = mcmc.get_samples()['x'].copy() adam = optim.Adam(0.01) - rng_init, rng_train = random.split(random.PRNGKey(1), 2) - guide = AutoBNAFNormal(dual_moon_model, hidden_factors=[50, 50]) + guide = AutoBNAFNormal(dual_moon_model, hidden_factors=[args.hidden_factor, args.hidden_factor]) svi = SVI(dual_moon_model, guide, elbo, adam) - svi_state = svi.init(rng_init) + svi_state = svi.init(random.PRNGKey(1)) print("Start training guide...") last_state, losses = lax.scan(lambda state, i: svi.update(state), svi_state, np.zeros(args.num_iters)) params = svi.get_params(last_state) print("Finish training guide. Extract samples...") guide_samples = guide.sample_posterior(random.PRNGKey(0), params, - sample_shape=(args.num_samples,)) + sample_shape=(args.num_samples,))['x'].copy() transform = guide.get_transform(params) unpack_fn = guide.unpack_latent @@ -83,25 +78,22 @@ def main(args): transformed_potential_fn = make_transformed_pe(potential_fn, transform, unpack_fn) transformed_constrain_fn = lambda x: constrain_fn(unpack_fn(transform(x))) # noqa: E731 - init_params = np.zeros(guide.latent_size) print("\nStart NeuTra HMC...") - # TODO: exlore why neutra samples are not good - # Issue: https://github.com/pyro-ppl/numpyro/issues/256 nuts_kernel = NUTS(potential_fn=transformed_potential_fn) mcmc = MCMC(nuts_kernel, args.num_warmup, args.num_samples) - mcmc.run(random.PRNGKey(10), init_params=init_params, collect_fields=('z', 'potential_energy')) + init_params = np.zeros(guide.latent_size) + mcmc.run(random.PRNGKey(2), init_params=init_params) + mcmc.print_summary() zs = mcmc.get_samples() - print(zs) print("Transform samples into unwarped space...") - samples = vmap(transformed_constrain_fn)(zs) - print(samples) + samples = vmap(transformed_constrain_fn)(zs)['x'].copy() summary(tree_map(lambda x: x[None, ...], samples)) # make plots - # IAF guide samples (for plotting) - iaf_base_samples = dist.Normal(np.zeros(2), 1.).sample(random.PRNGKey(0), (1000,)) - iaf_trans_samples = vmap(transformed_constrain_fn)(iaf_base_samples)['x'] + # BNAF guide samples (for plotting) + bnaf_base_samples = dist.Normal(np.zeros(2), 1.).sample(random.PRNGKey(0), (1000,)) + bnaf_trans_samples = vmap(transformed_constrain_fn)(bnaf_base_samples)['x'] x1 = np.linspace(-3, 3, 100) x2 = np.linspace(-3, 3, 100) @@ -121,28 +113,28 @@ def main(args): ax1.set_title('Autoguide training log loss (after 1000 steps)') ax2.contourf(X1, X2, P, cmap='OrRd') - sns.kdeplot(guide_samples['x'][:, 0].copy(), guide_samples['x'][:, 1].copy(), n_levels=30, ax=ax2) + sns.kdeplot(guide_samples[:, 0], guide_samples[:, 1], n_levels=30, ax=ax2) ax2.set(xlim=[-3, 3], ylim=[-3, 3], - xlabel='x0', ylabel='x1', title='Posterior using AutoIAFNormal guide') + xlabel='x0', ylabel='x1', title='Posterior using AutoBNAFNormal guide') - sns.scatterplot(iaf_base_samples[:, 0], iaf_base_samples[:, 1], ax=ax3, hue=iaf_trans_samples[:, 0] < 0.) + sns.scatterplot(bnaf_base_samples[:, 0], bnaf_base_samples[:, 1], ax=ax3, hue=bnaf_trans_samples[:, 0] < 0.) ax3.set(xlim=[-3, 3], ylim=[-3, 3], - xlabel='x0', ylabel='x1', title='AutoIAFNormal base samples (True=left moon; False=right moon)') + xlabel='x0', ylabel='x1', title='AutoBNAFNormal base samples (True=left moon; False=right moon)') ax4.contourf(X1, X2, P, cmap='OrRd') - sns.kdeplot(vanilla_samples[:, 0].copy(), vanilla_samples[:, 1].copy(), n_levels=30, ax=ax4) + sns.kdeplot(vanilla_samples[:, 0], vanilla_samples[:, 1], n_levels=30, ax=ax4) ax4.plot(vanilla_samples[-50:, 0], vanilla_samples[-50:, 1], 'bo-', alpha=0.5) ax4.set(xlim=[-3, 3], ylim=[-3, 3], xlabel='x0', ylabel='x1', title='Posterior using vanilla HMC sampler') - sns.scatterplot(zs[:, 0], zs[:, 1], ax=ax5, hue=samples['x'][:, 0] < 0., + sns.scatterplot(zs[:, 0], zs[:, 1], ax=ax5, hue=samples[:, 0] < 0., s=30, alpha=0.5, edgecolor="none") ax5.set(xlim=[-5, 5], ylim=[-5, 5], xlabel='x0', ylabel='x1', title='Samples from the warped posterior - p(z)') ax6.contourf(X1, X2, P, cmap='OrRd') - sns.kdeplot(samples['x'][:, 0].copy(), samples['x'][:, 1].copy(), n_levels=30, ax=ax6) - ax6.plot(samples['x'][-50:, 0], samples['x'][-50:, 1], 'bo-', alpha=0.2) + sns.kdeplot(samples[:, 0], samples[:, 1], n_levels=30, ax=ax6) + ax6.plot(samples[-50:, 0], samples[-50:, 1], 'bo-', alpha=0.2) ax6.set(xlim=[-3, 3], ylim=[-3, 3], xlabel='x0', ylabel='x1', title='Posterior using NeuTra HMC sampler') @@ -153,9 +145,9 @@ def main(args): if __name__ == "__main__": assert numpyro.__version__.startswith('0.2.0') parser = argparse.ArgumentParser(description="NeuTra HMC") - parser.add_argument('-n', '--num-samples', nargs='?', default=5000, type=int) - parser.add_argument('--num-warmup', nargs='?', default=5000, type=int) - parser.add_argument('--num-hidden', nargs='?', default=20, type=int) + parser.add_argument('-n', '--num-samples', nargs='?', default=10000, type=int) + parser.add_argument('--num-warmup', nargs='?', default=1000, type=int) + parser.add_argument('--hidden-factor', nargs='?', default=50, type=int) parser.add_argument('--num-iters', nargs='?', default=20000, type=int) parser.add_argument('--device', default='cpu', type=str, help='use "cpu" or "gpu".') args = parser.parse_args() diff --git a/numpyro/contrib/autoguide/__init__.py b/numpyro/contrib/autoguide/__init__.py index ff0a7ccfd..8957654e5 100644 --- a/numpyro/contrib/autoguide/__init__.py +++ b/numpyro/contrib/autoguide/__init__.py @@ -392,7 +392,7 @@ class AutoBNAFNormal(AutoContinuous): The elements of hidden_factors must be integers. """ def __init__(self, model, prefix="auto", init_strategy=init_to_median, num_flows=1, - hidden_factors=[8, 8]): + hidden_factors=[50, 50]): self.num_flows = num_flows self._hidden_factors = hidden_factors super(AutoBNAFNormal, self).__init__(model, prefix=prefix, init_strategy=init_strategy) From 866ce179dcc2201aef3fe384b6fe2356e02a6fa8 Mon Sep 17 00:00:00 2001 From: fehiepsi Date: Wed, 25 Sep 2019 23:42:07 -0400 Subject: [PATCH 35/35] fix typo --- examples/neutra.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/neutra.py b/examples/neutra.py index dbf37868e..803a0d19c 100644 --- a/examples/neutra.py +++ b/examples/neutra.py @@ -87,7 +87,7 @@ def main(args): mcmc.print_summary() zs = mcmc.get_samples() print("Transform samples into unwarped space...") - samples = vmap(transformed_constrain_fn)(zs)['x'].copy() + samples = vmap(transformed_constrain_fn)(zs) summary(tree_map(lambda x: x[None, ...], samples)) samples = samples['x'].copy()