diff --git a/doc/source/api-reference/qibo.rst b/doc/source/api-reference/qibo.rst index 3457ad0c0c..4fcd781a94 100644 --- a/doc/source/api-reference/qibo.rst +++ b/doc/source/api-reference/qibo.rst @@ -2269,6 +2269,12 @@ Hellinger fidelity .. autofunction:: qibo.quantum_info.hellinger_fidelity +Hellinger shot error +"""""""""""""""""""" + +.. autofunction:: qibo.quantum_info.hellinger_fidelity + + Haar integral """"""""""""" diff --git a/src/qibo/noise_model.py b/src/qibo/noise_model.py index 44311c2661..b3be7e84b8 100644 --- a/src/qibo/noise_model.py +++ b/src/qibo/noise_model.py @@ -1,7 +1,7 @@ import numpy as np from qibo import gates, models -from qibo.quantum_info import hellinger_fidelity +from qibo.quantum_info.utils import hellinger_fidelity, hellinger_shot_error def noisy_circuit(circuit, params): @@ -200,28 +200,6 @@ def freq_to_prob(freq): return prob -def hellinger_shot_error(p, q, nshots): - """Hellinger fidelity error caused by using two probability distributions estimated using a finite number of shots. - It is calculated propagating the probability error of each state of the system. The complete formula is: - :math:`(1 - H^{2}(p, q))/\\sqrt{nshots} * \\sum_{i=1}^{n}(\\sqrt{p_i(1-q_i)}+\\sqrt{q_i(1-p_i)})` - where the sum is made all over the possible states and :math:`H(p, q)` is the Hellinger distance. - - Args: - p (numpy.ndarray): (discrete) probability distribution :math:`p`. - q (numpy.ndarray): (discrete) probability distribution :math:`q`. - nshots (int): the number of shots we used to run the circuit to obtain :math:`p` and :math:`q`. - - Returns: - (float): The Hellinger fidelity error. - - """ - hellinger_fid = hellinger_fidelity(p, q) - hellinger_fid_e = np.sqrt(hellinger_fid / nshots) * np.sum( - np.sqrt(q * (1 - p)) + np.sqrt(p * (1 - q)) - ) - return hellinger_fid_e - - def loss(parameters, *args): """The loss function used to be maximized in the fit method of the :class:`qibo.noise_model.CompositeNoiseModel`. It is the hellinger fidelity calculated between the probability distribution of the noise model and the experimental target distribution using the :func:`qibo.quantum_info.hellinger_fidelity`. diff --git a/src/qibo/quantum_info/utils.py b/src/qibo/quantum_info/utils.py index ec772168e0..a162561fd2 100644 --- a/src/qibo/quantum_info/utils.py +++ b/src/qibo/quantum_info/utils.py @@ -258,14 +258,13 @@ def hellinger_fidelity(prob_dist_p, prob_dist_q, validate: bool = False, backend .. math:: (1 - H^{2}(p, q))^{2} \\, , - where :math:`H(p, q)` is the Hellinger distance - (:func:`qibo.quantum_info.utils.hellinger_distance`). + where :math:`H(p, q)` is the :func:`qibo.quantum_info.utils.hellinger_distance`. Args: prob_dist_p (ndarray or list): discrete probability distribution :math:`p`. prob_dist_q (ndarray or list): discrete probability distribution :math:`q`. - validate (bool, optional): if True, checks if :math:`p` and :math:`q` are proper - probability distributions. Default: False. + validate (bool, optional): if ``True``, checks if :math:`p` and :math:`q` are proper + probability distributions. Defaults to ``False``. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used in the execution. If ``None``, it uses :class:`qibo.backends.GlobalBackend`. Defaults to ``None``. @@ -274,11 +273,62 @@ def hellinger_fidelity(prob_dist_p, prob_dist_q, validate: bool = False, backend (float): Hellinger fidelity. """ + backend = _check_backend(backend) + distance = hellinger_distance(prob_dist_p, prob_dist_q, validate, backend=backend) return (1 - distance**2) ** 2 +def hellinger_shot_error( + prob_dist_p, prob_dist_q, nshots: int, validate: bool = False, backend=None +): + """Calculates the Hellinger fidelity error between two discrete probability distributions estimated from finite statistics. + + It is calculated propagating the probability error of each state of the system. + The complete formula is: + + .. math:: + \\frac{1 - H^{2}(p, q)}{\\sqrt{nshots}} \\, \\sum_{k} \\, + \\left(\\sqrt{p_{k} \\, (1 - q_{k})} + \\sqrt{q_{k} \\, (1 - p_{k})}\\right) + + where :math:`H(p, q)` is the :func:`qibo.quantum_info.utils.hellinger_distance`, + and :math:`1 - H^{2}(p, q)` is the square root of the + :func:`qibo.quantum_info.utils.hellinger_fidelity`. + + Args: + prob_dist_p (ndarray or list): discrete probability distribution :math:`p`. + prob_dist_q (ndarray or list): discrete probability distribution :math:`q`. + nshots (int): number of shots we used to run the circuit to obtain :math:`p` and :math:`q`. + validate (bool, optional): if ``True``, checks if :math:`p` and :math:`q` are proper + probability distributions. Defaults to ``False``. + backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be + used in the execution. If ``None``, it uses + :class:`qibo.backends.GlobalBackend`. Defaults to ``None``. + + Returns: + (float): Hellinger fidelity error. + + """ + backend = _check_backend(backend) + + if isinstance(prob_dist_p, list): + prob_dist_p = backend.cast(prob_dist_p, dtype=np.float64) + + if isinstance(prob_dist_q, list): + prob_dist_q = backend.cast(prob_dist_q, dtype=np.float64) + + hellinger_error = hellinger_fidelity( + prob_dist_p, prob_dist_q, validate=validate, backend=backend + ) + hellinger_error = np.sqrt(hellinger_error / nshots) * np.sum( + np.sqrt(prob_dist_q * (1 - prob_dist_p)) + + np.sqrt(prob_dist_p * (1 - prob_dist_q)) + ) + + return hellinger_error + + def haar_integral( nqubits: int, power_t: int, diff --git a/tests/test_quantum_info_utils.py b/tests/test_quantum_info_utils.py index 049f800275..0d845cf2f3 100644 --- a/tests/test_quantum_info_utils.py +++ b/tests/test_quantum_info_utils.py @@ -4,9 +4,10 @@ import numpy as np import pytest -from qibo import Circuit, matrices +from qibo import Circuit, gates, matrices from qibo.config import PRECISION_TOL from qibo.quantum_info.metrics import fidelity +from qibo.quantum_info.random_ensembles import random_clifford from qibo.quantum_info.utils import ( haar_integral, hadamard_transform, @@ -14,6 +15,7 @@ hamming_weight, hellinger_distance, hellinger_fidelity, + hellinger_shot_error, pqc_integral, ) @@ -175,6 +177,34 @@ def test_hellinger(backend, validate, kind): assert fidelity == (1 - target**2) ** 2 +@pytest.mark.parametrize("kind", [None, list]) +@pytest.mark.parametrize("validate", [False, True]) +def test_hellinger_shot_error(backend, validate, kind): + nqubits, nshots = 5, 1000 + + circuit = random_clifford(nqubits, seed=1, backend=backend) + circuit.add(gates.M(qubit) for qubit in range(nqubits)) + + circuit_2 = random_clifford(nqubits, seed=2, backend=backend) + circuit_2.add(gates.M(qubit) for qubit in range(nqubits)) + + prob_dist_p = backend.execute_circuit(circuit, nshots=nshots).probabilities() + prob_dist_q = backend.execute_circuit(circuit_2, nshots=nshots).probabilities() + + if kind is not None: + prob_dist_p = kind(prob_dist_p) + prob_dist_q = kind(prob_dist_q) + + hellinger_error = hellinger_shot_error( + prob_dist_p, prob_dist_q, nshots, validate=validate, backend=backend + ) + hellinger_fid = hellinger_fidelity( + prob_dist_p, prob_dist_q, validate=validate, backend=backend + ) + + assert 2 * hellinger_error < hellinger_fid + + def test_haar_integral_errors(backend): with pytest.raises(TypeError): nqubits, power_t, samples = 0.5, 2, 10