title | summary |
---|---|
Explain Statements in the MPP Mode |
Learn about the execution plan information returned by the EXPLAIN statement in TiDB. |
TiDB supports using the MPP mode to execute queries. In the MPP mode, the TiDB optimizer generates execution plans for MPP. Note that the MPP mode is only available for tables that have replicas on TiFlash.
The examples in this document are based on the following sample data:
{{< copyable "sql" >}}
CREATE TABLE t1 (id int, value int);
INSERT INTO t1 values(1,2),(2,3),(1,3);
ALTER TABLE t1 set tiflash replica 1;
ANALYZE TABLE t1;
SET tidb_allow_mpp = 1;
In the MPP mode, a query is logically sliced into multiple query fragments. Take the following statement as an example:
{{< copyable "sql" >}}
EXPLAIN SELECT COUNT(*) FROM t1 GROUP BY id;
This query is divided into two fragments in the MPP mode. One for the first-stage aggregation and the other for the second-stage aggregation, also the final aggregation. When this query is executed, each query fragment is instantiated into one or more MPP tasks.
ExchangeReceiver
and ExchangeSender
are two exchange operators specific for MPP execution plans. The ExchangeReceiver
operator reads data from downstream query fragments and the ExchangeSender
operator sends data from downstream query fragments to upstream query fragments. In the MPP mode, the root operator of each MPP query fragment is ExchangeSender
, meaning that query fragments are delimited by the ExchangeSender
operator.
The following is a simple MPP execution plan:
{{< copyable "sql" >}}
EXPLAIN SELECT COUNT(*) FROM t1 GROUP BY id;
+------------------------------------+---------+-------------------+---------------+----------------------------------------------------+
| id | estRows | task | access object | operator info |
+------------------------------------+---------+-------------------+---------------+----------------------------------------------------+
| TableReader_31 | 2.00 | root | | data:ExchangeSender_30 |
| └─ExchangeSender_30 | 2.00 | batchCop[tiflash] | | ExchangeType: PassThrough |
| └─Projection_26 | 2.00 | batchCop[tiflash] | | Column#4 |
| └─HashAgg_27 | 2.00 | batchCop[tiflash] | | group by:test.t1.id, funcs:sum(Column#7)->Column#4 |
| └─ExchangeReceiver_29 | 2.00 | batchCop[tiflash] | | |
| └─ExchangeSender_28 | 2.00 | batchCop[tiflash] | | ExchangeType: HashPartition, Hash Cols: test.t1.id |
| └─HashAgg_9 | 2.00 | batchCop[tiflash] | | group by:test.t1.id, funcs:count(1)->Column#7 |
| └─TableFullScan_25 | 3.00 | batchCop[tiflash] | table:t1 | keep order:false |
+------------------------------------+---------+-------------------+---------------+----------------------------------------------------+
The above execution plan contains two query fragments:
- The first is
[TableFullScan_25, HashAgg_9, ExchangeSender_28]
, which is mainly responsible for the first-stage aggregation. - The second is
[ExchangeReceiver_29, HashAgg_27, Projection_26, ExchangeSender_30]
, which is mainly responsible for the second-stage aggregation.
The operator info
column of the ExchangeSender
operator shows the exchange type information. Currently, there are three exchange types. See the following:
- HashPartition: The
ExchangeSender
operator firstly partitions data according to the Hash values and then distributes data to theExchangeReceiver
operator of upstream MPP tasks. This exchange type is often used for Hash Aggregation and Shuffle Hash Join algorithms. - Broadcast: The
ExchangeSender
operator distributes data to upstream MPP tasks through broadcast. This exchange type is often used for Broadcast Join. - PassThrough: The
ExchangeSender
operator sends data to the only upstream MPP task, which is different from the Broadcast type. This exchange type is often used when returning data to TiDB.
In the example execution plan, the exchange type of the operator ExchangeSender_28
is HashPartition, meaning that it performs the Hash Aggregation algorithm. The exchange type of the operator ExchangeSender_30
is PassThrough, meaning that it is used to return data to TiDB.
MPP is also often applied to join operations. The MPP mode in TiDB supports the following two join algorithms:
- Shuffle Hash Join: Shuffle the data input from the join operation using the HashPartition exchange type. Then, upstream MPP tasks join data within the same partition.
- Broadcast Join: Broadcast data of the small table in the join operation to each node, after which each node joins the data separately.
The following is a typical execution plan for Shuffle Hash Join:
{{< copyable "sql" >}}
SET tidb_broadcast_join_threshold_count=0;
SET tidb_broadcast_join_threshold_size=0;
EXPLAIN SELECT COUNT(*) FROM t1 a JOIN t1 b ON a.id = b.id;
+----------------------------------------+---------+--------------+---------------+----------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------------+---------+--------------+---------------+----------------------------------------------------+
| StreamAgg_14 | 1.00 | root | | funcs:count(1)->Column#7 |
| └─TableReader_48 | 9.00 | root | | data:ExchangeSender_47 |
| └─ExchangeSender_47 | 9.00 | cop[tiflash] | | ExchangeType: PassThrough |
| └─HashJoin_44 | 9.00 | cop[tiflash] | | inner join, equal:[eq(test.t1.id, test.t1.id)] |
| ├─ExchangeReceiver_19(Build) | 6.00 | cop[tiflash] | | |
| │ └─ExchangeSender_18 | 6.00 | cop[tiflash] | | ExchangeType: HashPartition, Hash Cols: test.t1.id |
| │ └─Selection_17 | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) |
| │ └─TableFullScan_16 | 6.00 | cop[tiflash] | table:a | keep order:false |
| └─ExchangeReceiver_23(Probe) | 6.00 | cop[tiflash] | | |
| └─ExchangeSender_22 | 6.00 | cop[tiflash] | | ExchangeType: HashPartition, Hash Cols: test.t1.id |
| └─Selection_21 | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) |
| └─TableFullScan_20 | 6.00 | cop[tiflash] | table:b | keep order:false |
+----------------------------------------+---------+--------------+---------------+----------------------------------------------------+
12 rows in set (0.00 sec)
In the above execution plan:
- The query fragment
[TableFullScan_20, Selection_21, ExchangeSender_22]
reads data from table b and shuffles data to upstream MPP tasks. - The query fragment
[TableFullScan_16, Selection_17, ExchangeSender_18]
reads data from table a and shuffles data to upstream MPP tasks. - The query fragment
[ExchangeReceiver_19, ExchangeReceiver_23, HashJoin_44, ExchangeSender_47]
joins all data and returns it to TiDB.
A typical execution plan for Broadcast Join is as follows:
{{< copyable "sql" >}}
EXPLAIN SELECT COUNT(*) FROM t1 a JOIN t1 b ON a.id = b.id;
+----------------------------------------+---------+--------------+---------------+------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------------+---------+--------------+---------------+------------------------------------------------+
| StreamAgg_15 | 1.00 | root | | funcs:count(1)->Column#7 |
| └─TableReader_47 | 9.00 | root | | data:ExchangeSender_46 |
| └─ExchangeSender_46 | 9.00 | cop[tiflash] | | ExchangeType: PassThrough |
| └─HashJoin_43 | 9.00 | cop[tiflash] | | inner join, equal:[eq(test.t1.id, test.t1.id)] |
| ├─ExchangeReceiver_20(Build) | 6.00 | cop[tiflash] | | |
| │ └─ExchangeSender_19 | 6.00 | cop[tiflash] | | ExchangeType: Broadcast |
| │ └─Selection_18 | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) |
| │ └─TableFullScan_17 | 6.00 | cop[tiflash] | table:a | keep order:false |
| └─Selection_22(Probe) | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) |
| └─TableFullScan_21 | 6.00 | cop[tiflash] | table:b | keep order:false |
+----------------------------------------+---------+--------------+---------------+------------------------------------------------+
In the above execution plan:
- The query fragment
[TableFullScan_17, Selection_18, ExchangeSender_19]
reads data from the small table (table a) and broadcasts the data to each node that contains data from the large table (table b). - The query fragment
[TableFullScan_21, Selection_22, ExchangeReceiver_20, HashJoin_43, ExchangeSender_46]
joins all data and returns it to TiDB.
The EXPLAIN ANALYZE
statement is similar to EXPLAIN
, but it also outputs some runtime information.
The following is the output of a simple EXPLAIN ANALYZE
example:
{{< copyable "sql" >}}
EXPLAIN ANALYZE SELECT COUNT(*) FROM t1 GROUP BY id;
+------------------------------------+---------+---------+-------------------+---------------+---------------------------------------------------------------------------------------------------+----------------------------------------------------------------+--------+------+
| id | estRows | actRows | task | access object | execution info | operator info | memory | disk |
+------------------------------------+---------+---------+-------------------+---------------+---------------------------------------------------------------------------------------------------+----------------------------------------------------------------+--------+------+
| TableReader_31 | 4.00 | 2 | root | | time:44.5ms, loops:2, cop_task: {num: 1, max: 0s, proc_keys: 0, copr_cache_hit_ratio: 0.00} | data:ExchangeSender_30 | N/A | N/A |
| └─ExchangeSender_30 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:16.5ms, loops:1, threads:1} | ExchangeType: PassThrough, tasks: [2, 3, 4] | N/A | N/A |
| └─Projection_26 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:16.5ms, loops:1, threads:1} | Column#4 | N/A | N/A |
| └─HashAgg_27 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:16.5ms, loops:1, threads:1} | group by:test.t1.id, funcs:sum(Column#7)->Column#4 | N/A | N/A |
| └─ExchangeReceiver_29 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:14.5ms, loops:1, threads:20} | | N/A | N/A |
| └─ExchangeSender_28 | 4.00 | 0 | batchCop[tiflash] | | tiflash_task:{time:9.49ms, loops:0, threads:0} | ExchangeType: HashPartition, Hash Cols: test.t1.id, tasks: [1] | N/A | N/A |
| └─HashAgg_9 | 4.00 | 0 | batchCop[tiflash] | | tiflash_task:{time:9.49ms, loops:0, threads:0} | group by:test.t1.id, funcs:count(1)->Column#7 | N/A | N/A |
| └─TableFullScan_25 | 6.00 | 0 | batchCop[tiflash] | table:t1 | tiflash_task:{time:9.49ms, loops:0, threads:0}, tiflash_scan:{dtfile:{total_scanned_packs:1,...}} | keep order:false | N/A | N/A |
+------------------------------------+---------+---------+-------------------+---------------+---------------------------------------------------------------------------------------------------+----------------------------------------------------------------+--------+------+
Compared to the output of EXPLAIN
, the operator info
column of the operator ExchangeSender
also shows tasks
, which records the id of the MPP task that the query fragment instantiates into. In addition, each MPP operator has a threads
field in the execution info
column, which records the concurrency of operations when TiDB executes this operator. If the cluster consists of multiple nodes, this concurrency is the result of adding up the concurrency of all nodes.
Starting from v6.6.6, the new fields MPPVersion
and Compression
are added to the MPP execution plan.
MppVersion
: The version number of the MPP execution plan, which can be set through the system variablempp_version
.Compression
: The data compression mode of theExchange
operator, which can be set through the system variablempp_exchange_compression_mode
. If data compression is not enabled, this field is not displayed in the execution plan.
See the following example:
mysql > EXPLAIN SELECT COUNT(*) AS count_order FROM lineitem GROUP BY l_returnflag, l_linestatus ORDER BY l_returnflag, l_linestatus;
+----------------------------------------+--------------+--------------+----------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------------+--------------+--------------+----------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Projection_6 | 3.00 | root | | Column#18 |
| └─Sort_8 | 3.00 | root | | tpch100.lineitem.l_returnflag, tpch100.lineitem.l_linestatus |
| └─TableReader_36 | 3.00 | root | | MppVersion: 1, data:ExchangeSender_35 |
| └─ExchangeSender_35 | 3.00 | mpp[tiflash] | | ExchangeType: PassThrough |
| └─Projection_31 | 3.00 | mpp[tiflash] | | Column#18, tpch100.lineitem.l_returnflag, tpch100.lineitem.l_linestatus |
| └─HashAgg_32 | 3.00 | mpp[tiflash] | | group by:tpch100.lineitem.l_linestatus, tpch100.lineitem.l_returnflag, funcs:sum(Column#23)->Column#18, funcs:firstrow(tpch100.lineitem.l_returnflag)->tpch100.lineitem.l_returnflag, funcs:firstrow(tpch100.lineitem.l_linestatus)->tpch100.lineitem.l_linestatus, stream_count: 20 |
| └─ExchangeReceiver_34 | 3.00 | mpp[tiflash] | | stream_count: 20 |
| └─ExchangeSender_33 | 3.00 | mpp[tiflash] | | ExchangeType: HashPartition, Compression: FAST, Hash Cols: [name: tpch100.lineitem.l_returnflag, collate: utf8mb4_bin], [name: tpch100.lineitem.l_linestatus, collate: utf8mb4_bin], stream_count: 20 |
| └─HashAgg_14 | 3.00 | mpp[tiflash] | | group by:tpch100.lineitem.l_linestatus, tpch100.lineitem.l_returnflag, funcs:count(1)->Column#23 |
| └─TableFullScan_30 | 600037902.00 | mpp[tiflash] | table:lineitem | keep order:false |
+----------------------------------------+--------------+--------------+----------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
In the preceding execution plan result, TiDB uses an MPP execution plan of version 1
to build TableReader
. The ExchangeSender
operator of the HashPartition
type uses the FAST
data compression mode. Data compression is not enabled for the ExchangeSender
operator of the PassThrough
type.