Skip to content

Latest commit

 

History

History
94 lines (51 loc) · 4.69 KB

贪心算法理论基础.md

File metadata and controls

94 lines (51 loc) · 4.69 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

关于贪心算法,你该了解这些!

题目分类大纲如下:

贪心算法大纲

什么是贪心

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

这么说有点抽象,来举一个例子:

例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?

指定每次拿最大的,最终结果就是拿走最大数额的钱。

每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。

再举一个例子如果是 有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。动态规划的问题在下一个系列会详细讲解。

贪心的套路(什么时候用贪心)

很多同学做贪心的题目的时候,想不出来是贪心,想知道有没有什么套路可以一看就看出来是贪心。

说实话贪心算法并没有固定的套路

所以唯一的难点就是如何通过局部最优,推出整体最优。

那么如何能看出局部最优是否能推出整体最优呢?有没有什么固定策略或者套路呢?

不好意思,也没有! 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。

有同学问了如何验证可不可以用贪心算法呢?

最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧

可有有同学认为手动模拟,举例子得出的结论不靠谱,想要严格的数学证明。

一般数学证明有如下两种方法:

  • 数学归纳法
  • 反证法

看教课书上讲解贪心可以是一堆公式,估计大家连看都不想看,所以数学证明就不在我要讲解的范围内了,大家感兴趣可以自行查找资料。

面试中基本不会让面试者现场证明贪心的合理性,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了

举一个不太恰当的例子:我要用一下1+1 = 2,但我要先证明1+1 为什么等于2。严谨是严谨了,但没必要。

虽然这个例子很极端,但可以表达这么个意思:刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心

例如刚刚举的拿钞票的例子,就是模拟一下每次拿做大的,最后就能拿到最多的钱,这还要数学证明的话,其实就不在算法面试的范围内了,可以看看专业的数学书籍!

所以这也是为什么很多同学通过(accept)了贪心的题目,但都不知道自己用了贪心算法,因为贪心有时候就是常识性的推导,所以会认为本应该就这么做!

那么刷题的时候什么时候真的需要数学推导呢?

例如这道题目:链表:环找到了,那入口呢?,这道题不用数学推导一下,就找不出环的起始位置,想试一下就不知道怎么试,这种题目确实需要数学简单推导一下。

贪心一般解题步骤

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

其实这个分的有点细了,真正做题的时候很难分出这么详细的解题步骤,可能就是因为贪心的题目往往还和其他方面的知识混在一起。

总结

本篇给出了什么是贪心以及大家关心的贪心算法固定套路。

不好意思了,贪心没有套路,说白了就是常识性推导加上举反例

最后给出贪心的一般解题步骤,大家可以发现这个解题步骤也是比较抽象的,不像是二叉树,回溯算法,给出了那么具体的解题套路和模板。

本篇没有配图,其实可以找一些动漫周边或者搞笑的图配一配(符合大多数公众号文章的作风),但这不是我的风格,所以本篇文字描述足以!