diff --git a/Content/20241031150229-data_science_hierarchy_of_needs.org b/Content/20241031150229-data_science_hierarchy_of_needs.org index 0fee614..7606517 100644 --- a/Content/20241031150229-data_science_hierarchy_of_needs.org +++ b/Content/20241031150229-data_science_hierarchy_of_needs.org @@ -7,25 +7,25 @@ From Upstream (root initiatives) to Downstream (consequent initiatives) * collect ** instrumentation -** logging -** sensors +** [[id:665e997a-5628-4481-902c-47af4ba30336][logging]] +** [[id:0bb707ba-24a5-44b3-8e23-45ade88f605c][sensors]] ** external data ** user generated content * move/store ** reliable data flow -** infrastructure +** [[id:54b9dd70-6104-4f01-8007-967b16f8e010][infrastructure]] ** pipelines -** ETL -** structured data storage -** unstructured data storage +** [[id:1656ed9e-9ed0-4ddb-9953-98189f6bb42e][ETL]] +** [[id:a0cb423e-4e39-4b7c-886d-57d9796f35ed][structured data storage]] +** [[id:64b40352-30c9-4b16-80df-2de3dd36d451][unstructured data storage]] * explore/transform ** cleaning -** anomaly detection +** [[id:a9f08fcf-c62d-40c0-a7fb-53d7f827b5ea][anomaly detection]] ** prepprocessing/preparation * aggregate/label -** A/B testing +** [[id:85ff1796-5245-4b42-8f97-64b1fc9487e0][A/B testing]] ** Experimentation ** simpler ML algorithms * learn/optimize -** AI -** Deep Learning +** [[id:db649cb6-047e-426e-8cdc-774586ef30a0][AI]] +** [[id:20230713T110040.814546][Deep Learning]] diff --git a/Content/20241031165027-sensor.org b/Content/20241031165027-sensor.org new file mode 100644 index 0000000..ab214b0 --- /dev/null +++ b/Content/20241031165027-sensor.org @@ -0,0 +1,5 @@ +:PROPERTIES: +:ID: 0bb707ba-24a5-44b3-8e23-45ade88f605c +:END: +#+title: Sensor +#+filetags: :electronics: diff --git a/Content/20241031165114-structured_data_storage.org b/Content/20241031165114-structured_data_storage.org new file mode 100644 index 0000000..aeeab04 --- /dev/null +++ b/Content/20241031165114-structured_data_storage.org @@ -0,0 +1,5 @@ +:PROPERTIES: +:ID: a0cb423e-4e39-4b7c-886d-57d9796f35ed +:END: +#+title: Structured data storage +#+filetags: :data: diff --git a/Content/20241031165127-unstructured_data_storage.org b/Content/20241031165127-unstructured_data_storage.org new file mode 100644 index 0000000..3692688 --- /dev/null +++ b/Content/20241031165127-unstructured_data_storage.org @@ -0,0 +1,5 @@ +:PROPERTIES: +:ID: 64b40352-30c9-4b16-80df-2de3dd36d451 +:END: +#+title: Unstructured data storage +#+filetags: :data: diff --git a/Content/20241031165152-a_b_testing.org b/Content/20241031165152-a_b_testing.org new file mode 100644 index 0000000..bb97b99 --- /dev/null +++ b/Content/20241031165152-a_b_testing.org @@ -0,0 +1,40 @@ +:PROPERTIES: +:ID: 85ff1796-5245-4b42-8f97-64b1fc9487e0 +:END: +#+title: A/B testing +#+filetags: :cs: + +* Overview +** *Definition*: + - A/B testing, also known as split testing, is a method of comparing two versions of a web page, application, or product feature to determine which one performs better in achieving a specific goal. + +** *Components*: + - *Control Group (A)*: The original version being tested. + - *Variant Group (B)*: The modified version where some changes have been made. + - *Metrics*: Quantifiable data points used to evaluate the performance, such as conversion rates, click-through rates, or user engagement metrics. + +** *Process*: + - *Hypothesis Formation*: Define what change you believe will improve the outcome. + - *Design*: Create alternate versions (A and B) of the element to be tested. + - *Randomization*: Users are randomly assigned to either version A or B to ensure fairness and reliability of the test results. + - *Data Collection*: Gather data on how users interact with both versions. + - *Analysis*: Use statistical methods to determine if the observed differences are significant. + +** *Statistical Significance*: + - This refers to the likelihood that the results of the test are not due to random chance. P-values and confidence intervals are often used to assess this. + +** *Tools and Software*: + - Common tools include Google Optimize, Optimizely, and Adobe Target, among others, which facilitate the execution and analysis of A/B tests. + +** *Applications*: + - Used extensively in web design, marketing campaigns, product development, and UX/UI design. + +** *Limitations*: + - *Sample Size Constraints*: Too small sample sizes may not yield significant results. + - *Time and Resources*: Testing can be time-consuming and require substantial resources. + - *External Validity*: Results may not always generalize beyond the specific setting or population tested. + +** Connections: +- The success of A/B testing largely depends on correctly identifying impactful changes. +- It requires a balanced approach to data collection and analysis, ensuring that randomization and statistical interpretations are executed properly. +- Tools are integral for managing the complexity and scale of A/B tests, especially as the number of tests or user groups increases.