-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
119 lines (99 loc) · 3.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
from numpy.linalg import norm
from numpy import pi as PI
import sympy as sp
from sympy.utilities.lambdify import lambdify
from matplotlib import pyplot as plt
from visuals import plot_vector_field, plot_trajectory
TAU = 2 * PI
PI2 = PI / 2
print('Initializing system...')
# initialize matrix symbols
a, b, u = sp.symbols('a b u', real=True)
w = sp.sqrt(a**2 + b**2 + u**2)
ww = sp.symbols('w', positive=True)
# system matrices
A = sp.Matrix([[0, a, b], [-a, 0, 0], [-b, 0, 0]])
B = sp.Matrix([[0, 0, 0], [ 0, 0,-1], [ 0, 1, 0]])
M = A + u*B
print('M')
sp.pprint(M)
# inverse of (sI - M) step by step
print("*"*180)
print('Calculating inverse matrix...')
s = sp.symbols('s')
Ms = s * sp.eye(3) - M # sI - M
Ms_det = sp.factor(Ms.det()).subs({w**2:ww**2})
Ms_com = Ms.cofactor_matrix()
Ms_inv = Ms_com.transpose() / Ms_det
print('(sI-M)^-1 =')
# inverse laplace transform
print("*"*180)
print('Calculating inverse laplace transform...')
t, t0 = sp.symbols('t t_0', positive=True)
exp_Mt = sp.inverse_laplace_transform(Ms_inv, s, t)
print('exp(Mt) = L-1((sI-1)^-1)(t) =')
sp.pprint(exp_Mt)
# initial conditions
X0 = sp.Matrix([0, 0, 1])
X1 = sp.Matrix([0, 1/sp.sqrt(2), 1/sp.sqrt(2)])
print("*"*180)
print('X = exp(Mt) * X0 =')
sp.pprint(exp_Mt * X0)
# define trajectory functions
def numpify_x(x0, a_val=1, b_val=0, u_val=1):
# substitute parameters with values
w_val = np.sqrt(a_val**2 + b_val**2 + u_val**2)
exp = exp_Mt.subs({ww:w_val,a:a_val, b:b_val, u:u_val})
if isinstance(x0, np.ndarray):
X, Y, Z = exp * x0.reshape((3,1))
else:
X, Y, Z = exp * x0
# create numpy functions
x = lambdify(t, X, 'numpy')
y = lambdify(t, Y, 'numpy')
z = lambdify(t, Z, 'numpy')
return x, y, z
# check if point is in trajectory
def is_in_trajectory(start, end, u_val=1, a_val=1, b_val=0, N=1000, epsilon=0.1):
w_val = float(w.subs({a:a_val, b:b_val, u:u_val}))
Tmax = TAU / w_val
time = np.linspace(0, Tmax, N)
x, y, z = numpify_x(start, a_val=a_val, b_val=b_val, u_val=u_val)
X = np.array([x(time), y(time), z(time)])
for i in range(N):
if norm(end - X[:,i]) < epsilon:
return time[i], X[:,:(i+1)]
return False, None
def find_optimal(a_val=1, b_val=0, u_first=1, N=1000, epsilon=0.01):
w_val = float(w.subs({a:a_val, b:b_val, u:u_first}))
Tmax = TAU / w_val
time = np.linspace(0, Tmax, N)
x1 = np.array(list(X1), dtype=float)
x, y, z = numpify_x(X0, a_val=a_val, b_val=b_val, u_val=u_first)
X = np.array([x(time), y(time), z(time)])
for i in range(N):
Topt, Xt2 = is_in_trajectory(X[:,i], x1, u_val=-u_first,
a_val=a_val, b_val=b_val, N=N, epsilon=epsilon)
if Topt > 0:
Topt += time[i]
print("Optimal trajectory found!")
print(f"Commutation time: {time[i]}")
print(f"Commutation position: {X[:,i]}")
print(f"Optimal time: {Topt}")
Xt1 = X[:,:(i+1)] # first part of trajectory
return Xt1, Xt2, Topt
print("Optimal trajectory not found, try more points or consider switching fields...like chemistry or something easy")
return False
def plot_optimal(u=[1, -1], a=1, b=0, nb_points=1000, epsilon=0.01, figsize=(12, 12)):
print("*"*180)
print(f'Finding optimal solution for u={u[0]} then u={u[1]} with a={a} b={b}')
Xt1, Xt2, Topt = find_optimal(a_val=a, b_val=b, u_first=u[0], epsilon=epsilon)
fig = plt.figure(figsize=figsize)
ax = fig.gca(projection='3d')
plot_vector_field(M, R=float(X0.norm()), a_val=a, b_val=b, u_val=u, ax=ax, alpha=0.1, plot_sphere=False)
plot_trajectory(Xt1, Xt2, u=u, x0=X0, x1=X1, ax=ax)
if __name__ == '__main__':
plot_optimal(u=[+1, -1])
plot_optimal(u=[-1, +1])
plt.show()