-
Notifications
You must be signed in to change notification settings - Fork 3
/
EX5112.m
177 lines (145 loc) · 7.27 KB
/
EX5112.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
%----------------------------------------------------------------------------
% EX5.11.2.m
% to solve the transient two-dimensional Laplace's equation
% u,t = u,xx + u,yy , 0 < x < 5, 0 < y < 2
% boundary conditions:
% u(0,y,t) = 100, u(5,y,t) = 100,
% u,y(x,0,t) = 0, u,y(x,2,t) = 0
% initial condition:
% u(x,y,0) = 0 over the domain
% using bilinear rectangular elements and forward difference method
%(see Fig. 5.11.1 for the finite element mesh except for
% 8 rectangular elements instead of 16 triangular elements)
%
% Variable descriptions
% k = element matrix for time-independent term (u,xx + u,yy)
% m = element matrix for time-dependent term (u,t)
% f = element vector
% kk = system matrix of k
% mm = system matrix of m
% ff = system vector
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in 'bcdof'
%----------------------------------------------------------------------------
clear
%------------------------------------
% input data for control parameters
%------------------------------------
nel=8; % number of elements
nnel=4; % number of nodes per element
ndof=1; % number of dofs per node
nnode=15; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
deltt=0.1; % time step size for transient analysis
stime=0.0; % initial time
ftime=10; % termination time
ntime=fix((ftime-stime)/deltt); % number of time increment
%---------------------------------------------
% input data for nodal coordinate values
% gcoord(i,j) where i->node no. and j->x or y
%---------------------------------------------
gcoord(1,1)=0.0; gcoord(1,2)=0.0; gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gcoord(3,2)=0.0; gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0; gcoord(6,1)=0.0; gcoord(6,2)=1.0;
gcoord(7,1)=1.25; gcoord(7,2)=1.0; gcoord(8,1)=2.5; gcoord(8,2)=1.0;
gcoord(9,1)=3.75; gcoord(9,2)=1.0; gcoord(10,1)=5.0; gcoord(10,2)=1.0;
gcoord(11,1)=0.0; gcoord(11,2)=2.0; gcoord(12,1)=1.25; gcoord(12,2)=2.0;
gcoord(13,1)=2.5; gcoord(13,2)=2.0; gcoord(14,1)=3.75; gcoord(14,2)=2.0;
gcoord(15,1)=5.0; gcoord(15,2)=2.0;
%---------------------------------------------------------
% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes
%---------------------------------------------------------
nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=7; nodes(1,4)=6;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=7;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;
nodes(4,1)=4; nodes(4,2)=5; nodes(4,3)=10; nodes(4,4)=9;
nodes(5,1)=6; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=11;
nodes(6,1)=7; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,1)=8; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,1)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
%-------------------------------------
% input data for boundary conditions
%-------------------------------------
bcdof(1)=1; % first node is constrained
bcval(1)=100; % whose described value is 0
bcdof(2)=5; % second node is constrained
bcval(2)=100; % whose described value is 0
bcdof(3)=6; % third node is constrained
bcval(3)=100; % whose described value is 0
bcdof(4)=10; % 4th node is constrained
bcval(4)=100; % whose described value is 0
bcdof(5)=11; % 5th node is constrained
bcval(5)=100; % whose described value is 0
bcdof(6)=15; % 6th node is constrained
bcval(6)=100; % whose described value is 0
%-----------------------------------------
% initialization of matrices and vectors
%-----------------------------------------
ff=zeros(sdof,1); % initialization of system vector
fn=zeros(sdof,1); % initialization of effective system vector
fsol=zeros(sdof,1); % solution vector
sol=zeros(2,ntime+1); % vector containing time history solution
kk=zeros(sdof,sdof); % initialization of system matrix
mm=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%-----------------------------------------------------------------
% computation of element matrices and vectors and their assembly
%-----------------------------------------------------------------
for iel=1:nel % loop for the total number of elements
nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
nd(4)=nodes(iel,3); % 4th connected node for (iel)-th element
x1=gcoord(nd(1),1); y1=gcoord(nd(1),2);% coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2);% coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2);% coord values of 3rd node
x4=gcoord(nd(4),1); y4=gcoord(nd(4),2);% coord values of 4th node
xleng=x2-x1; % element size in x-axis
yleng=y4-y1; % element size in y-axis
index=feeldof(nd,nnel,ndof);% extract system dofs associated with element
k=felp2dr4(xleng,yleng); % compute element matrix (time-independent term)
m=felpt2r4(xleng,yleng); % compute element matrix (time-dependent term)
kk=feasmbl1(kk,k,index); % assemble element matrices
mm=feasmbl1(mm,m,index); % assemble element matrices
end
%-----------------------------
% loop for time integration
%-----------------------------
for in=1:sdof
fsol(in)=0.0; % initial condition
end
sol(1,1)=fsol(8); % store time history solution for node no. 8
sol(2,1)=fsol(9); % store time history solution for node no. 9
for it=1:ntime % start loop for time integration
fn=deltt*ff+(mm-deltt*kk)*fsol; % compute effective column vector
[mm,fn]=feaplyc2(mm,fn,bcdof,bcval); % apply boundary condition
fsol=mm\fn; % solve the matrix equation
sol(1,it+1)=fsol(8); % store time history solution for node no. 8
sol(2,it+1)=fsol(9); % store time history solution for node no. 9
end
%-----------------------------------
% analytical solution at node 8
%-----------------------------------
pi=4*atan(1);
esol=zeros(1,ntime+1);
ii=0;
for ti=0:deltt:ntime*deltt;
ii=ii+1;
for i=1:2:100
esol(ii)=esol(ii)+(1/i)*exp(-i*i*pi*pi*ti/25)*sin(i*pi/2);
end
end
esol=100-(100*4/pi)*esol;
%------------------------------------
% plot the solution at nodes 8 and 9
%------------------------------------
time=0:deltt:ntime*deltt;
plot(time,sol(1,:),'*',time,esol,'-');
xlabel('Time')
ylabel('Solution at nodes')
%---------------------------------------------------------------