-
Notifications
You must be signed in to change notification settings - Fork 8
/
huggingface_mae.py
293 lines (253 loc) · 10.6 KB
/
huggingface_mae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from typing import Dict, Tuple, Union
import torch
import torch.nn as nn
from transformers import PretrainedConfig, PreTrainedModel
from loss import FourierLoss
from normalizer import Normalizer
from mae_modules import CAMAEDecoder, MAEDecoder, MAEEncoder
from mae_utils import flatten_images
from vit import (
generate_2d_sincos_pos_embeddings,
sincos_positional_encoding_vit,
vit_small_patch16_256,
)
TensorDict = Dict[str, torch.Tensor]
class MAEConfig(PretrainedConfig):
model_type = "MAE"
def __init__(
self,
mask_ratio=0.75,
encoder=None,
decoder=None,
loss=None,
optimizer=None,
input_norm=None,
fourier_loss=None,
fourier_loss_weight=0.0,
lr_scheduler=None,
use_MAE_weight_init=False,
crop_size=-1,
mask_fourier_loss=True,
return_channelwise_embeddings=False,
**kwargs,
):
super().__init__(**kwargs)
self.mask_ratio = mask_ratio
self.encoder = encoder
self.decoder = decoder
self.loss = loss
self.optimizer = optimizer
self.input_norm = input_norm
self.fourier_loss = fourier_loss
self.fourier_loss_weight = fourier_loss_weight
self.lr_scheduler = lr_scheduler
self.use_MAE_weight_init = use_MAE_weight_init
self.crop_size = crop_size
self.mask_fourier_loss = mask_fourier_loss
self.return_channelwise_embeddings = return_channelwise_embeddings
class MAEModel(PreTrainedModel):
config_class = MAEConfig
# Loss metrics
TOTAL_LOSS = "loss"
RECON_LOSS = "reconstruction_loss"
FOURIER_LOSS = "fourier_loss"
def __init__(self, config: MAEConfig):
super().__init__(config)
self.mask_ratio = config.mask_ratio
# Could use Hydra to instantiate instead
self.encoder = MAEEncoder(
vit_backbone=sincos_positional_encoding_vit(
vit_backbone=vit_small_patch16_256(global_pool="avg")
),
max_in_chans=11, # upper limit on number of input channels
channel_agnostic=True,
)
self.decoder = CAMAEDecoder(
depth=8,
embed_dim=512,
mlp_ratio=4,
norm_layer=nn.LayerNorm,
num_heads=16,
num_modalities=6,
qkv_bias=True,
tokens_per_modality=256,
)
self.input_norm = torch.nn.Sequential(
Normalizer(),
nn.InstanceNorm2d(None, affine=False, track_running_stats=False),
)
self.fourier_loss_weight = config.fourier_loss_weight
self.mask_fourier_loss = config.mask_fourier_loss
self.return_channelwise_embeddings = config.return_channelwise_embeddings
self.tokens_per_channel = 256 # hardcode the number of tokens per channel since we are patch16 crop 256
# loss stuff
self.loss = torch.nn.MSELoss(reduction="none")
self.fourier_loss = FourierLoss(num_multimodal_modalities=6)
if self.fourier_loss_weight > 0 and self.fourier_loss is None:
raise ValueError(
"FourierLoss weight is activated but no fourier_loss was defined in constructor"
)
elif self.fourier_loss_weight >= 1:
raise ValueError(
"FourierLoss weight is too large to do mixing factor, weight should be < 1"
)
self.patch_size = int(self.encoder.vit_backbone.patch_embed.patch_size[0])
# projection layer between the encoder and decoder
self.encoder_decoder_proj = nn.Linear(
self.encoder.embed_dim, self.decoder.embed_dim, bias=True
)
self.decoder_pred = nn.Linear(
self.decoder.embed_dim,
self.patch_size**2
* (1 if self.encoder.channel_agnostic else self.in_chans),
bias=True,
) # linear layer from decoder embedding to input dims
# overwrite decoder pos embeddings based on encoder params
self.decoder.pos_embeddings = generate_2d_sincos_pos_embeddings( # type: ignore[assignment]
self.decoder.embed_dim,
length=self.encoder.vit_backbone.patch_embed.grid_size[0],
use_class_token=self.encoder.vit_backbone.cls_token is not None,
num_modality=(
self.decoder.num_modalities if self.encoder.channel_agnostic else 1
),
)
if config.use_MAE_weight_init:
w = self.encoder.vit_backbone.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
torch.nn.init.normal_(self.encoder.vit_backbone.cls_token, std=0.02)
torch.nn.init.normal_(self.decoder.mask_token, std=0.02)
self.apply(self._MAE_init_weights)
def setup(self, stage: str) -> None:
super().setup(stage)
def _MAE_init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@staticmethod
def decode_to_reconstruction(
encoder_latent: torch.Tensor,
ind_restore: torch.Tensor,
proj: torch.nn.Module,
decoder: MAEDecoder | CAMAEDecoder,
pred: torch.nn.Module,
) -> torch.Tensor:
"""Feed forward the encoder latent through the decoders necessary projections and transformations."""
decoder_latent_projection = proj(
encoder_latent
) # projection from encoder.embed_dim to decoder.embed_dim
decoder_tokens = decoder.forward_masked(
decoder_latent_projection, ind_restore
) # decoder.embed_dim output
predicted_reconstruction = pred(
decoder_tokens
) # linear projection to input dim
return predicted_reconstruction[:, 1:, :] # drop class token
def forward(
self, imgs: torch.Tensor, constant_noise: Union[torch.Tensor, None] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
imgs = self.input_norm(imgs)
latent, mask, ind_restore = self.encoder.forward_masked(
imgs, self.mask_ratio, constant_noise
) # encoder blocks
reconstruction = self.decode_to_reconstruction(
latent,
ind_restore,
self.encoder_decoder_proj,
self.decoder,
self.decoder_pred,
)
return latent, reconstruction, mask
def compute_MAE_loss(
self,
reconstruction: torch.Tensor,
img: torch.Tensor,
mask: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, float]]:
"""Computes final loss and returns specific values of component losses for metric reporting."""
loss_dict = {}
img = self.input_norm(img)
target_flattened = flatten_images(
img,
patch_size=self.patch_size,
channel_agnostic=self.encoder.channel_agnostic,
)
loss: torch.Tensor = self.loss(
reconstruction, target_flattened
) # should be with MSE or MAE (L1) with reduction='none'
loss = loss.mean(
dim=-1
) # average over embedding dim -> mean loss per patch (N,L)
loss = (loss * mask).sum() / mask.sum() # mean loss on masked patches only
loss_dict[self.RECON_LOSS] = loss.item()
# compute fourier loss
if self.fourier_loss_weight > 0:
floss: torch.Tensor = self.fourier_loss(reconstruction, target_flattened)
if not self.mask_fourier_loss:
floss = floss.mean()
else:
floss = floss.mean(dim=-1)
floss = (floss * mask).sum() / mask.sum()
loss_dict[self.FOURIER_LOSS] = floss.item()
# here we use a mixing factor to keep the loss magnitude appropriate with fourier
if self.fourier_loss_weight > 0:
loss = (1 - self.fourier_loss_weight) * loss + (
self.fourier_loss_weight * floss
)
return loss, loss_dict
def training_step(self, batch: TensorDict, batch_idx: int) -> TensorDict:
img = batch["pixels"]
latent, reconstruction, mask = self(img.clone())
full_loss, loss_dict = self.compute_MAE_loss(reconstruction, img.float(), mask)
return {
"loss": full_loss,
**loss_dict, # type: ignore[dict-item]
}
def validation_step(self, batch: TensorDict, batch_idx: int) -> TensorDict:
return self.training_step(batch, batch_idx)
def update_metrics(self, outputs: TensorDict, batch: TensorDict) -> None:
self.metrics["lr"].update(value=self.lr_scheduler.get_last_lr())
for key, value in outputs.items():
if key.endswith("loss"):
self.metrics[key].update(value)
def on_validation_batch_end( # type: ignore[override]
self,
outputs: TensorDict,
batch: TensorDict,
batch_idx: int,
dataloader_idx: int = 0,
) -> None:
super().on_validation_batch_end(outputs, batch, batch_idx, dataloader_idx)
def predict(self, imgs: torch.Tensor) -> torch.Tensor:
imgs = self.input_norm(imgs)
X = self.encoder.vit_backbone.forward_features(
imgs
) # 3d tensor N x num_tokens x dim
if self.return_channelwise_embeddings:
N, _, d = X.shape
num_channels = imgs.shape[1]
X_reshaped = X[:, 1:, :].view(N, num_channels, self.tokens_per_channel, d)
pooled_segments = X_reshaped.mean(
dim=2
) # Resulting shape: (N, num_channels, d)
latent = pooled_segments.view(N, num_channels * d).contiguous()
else:
latent = X[:, 1:, :].mean(dim=1) # 1 + 256 * C tokens
return latent
def save_pretrained(self, save_directory: str, **kwargs):
filename = kwargs.pop("filename", "model.safetensors")
modelpath = f"{save_directory}/{filename}"
self.config.save_pretrained(save_directory)
torch.save({"state_dict": self.state_dict()}, modelpath)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
filename = kwargs.pop("filename", "model.safetensors")
modelpath = f"{pretrained_model_name_or_path}/{filename}"
config = MAEConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
state_dict = torch.load(modelpath, map_location="cpu")
model = cls(config)
model.load_state_dict(state_dict["state_dict"])
return model