-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
429 lines (356 loc) · 17.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import tensorflow as tf
import numpy as np
import cv2
from sklearn.cluster import spectral_clustering
from sklearn.feature_extraction import image
import pydensecrf.densecrf as dcrf
from pydensecrf.utils import compute_unary, create_pairwise_gaussian, unary_from_softmax, create_pairwise_bilateral, unary_from_labels
from skimage.segmentation import relabel_sequential
from sklearn.neighbors import NearestNeighbors
from scipy.spatial.distance import pdist, squareform, cdist
from scipy.sparse import csr_matrix
import time
def root_min_square_loss(y_pred, y_true):
return tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(y_true, y_pred))))
def distance(pos_i, pos_j):
return np.sum(np.square(np.subtract(pos_i, pos_j)))
def min_square_error(y_pred, y_true):
return tf.reduce_sum(tf.square(tf.subtract(y_true, y_pred)))
def ReconstructionLoss(reconstructed_img, real_img):
return min_square_error(reconstructed_img, real_img)
#E(X) = unary + gaussian_pairwise, CRF
def CRF(img, probabilities, K):
#print("Probabilities shape : " , probabilities.shape)
processed_probabilities = probabilities.squeeze()
#print("Processed : " , processed_probabilities.shape)
softmax = processed_probabilities.transpose((2, 0, 1))
#print(softmax.shape)
unary = unary_from_softmax(softmax)
#print(unary.shape)
unary = np.ascontiguousarray(unary)
#print(unary.shape)
d = dcrf.DenseCRF(img.shape[0] * img.shape[1], K)
d.setUnaryEnergy(unary)
#d.addPairwiseGaussian(sxy=3, compat=3)
feats = create_pairwise_gaussian(sdims=(3, 3), shape=(img.shape[1], img.shape[0]))
#feats = create_pairwise_bilateral(sdims=(5, 5), schan=(10, 10, 10), img=img.reshape(img.shape[1], img.shape[0], 3), chdim=2)
#print("Feats : \n", feats)
d.addPairwiseEnergy(feats, compat=5, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
Q = d.inference(5)
res = np.argmax(Q, axis=0).reshape(img.shape[1], img.shape[0]).astype('float32')
res *= (255. / res.max())
res.reshape(img.shape[:2])
#print("Res \n", res)
return res
def CRF_N(img, gt_image):
labels = relabel_sequential(gt_image)[0].flatten()
#print(labels)
M = labels.max() + 1
d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], M)
GT_PROB = 0.5
u_energy = -np.log(1.0 / M)
n_energy = -np.log((1.0 - GT_PROB) / (M - 1))
#print(n_energy.shape)
p_energy = -np.log(GT_PROB)
U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32')
#print(U[:, labels > 0].shape)
U[:, labels > 0] = n_energy
U[labels, np.arange(U.shape[1])] = p_energy
U[:, labels == 0] = u_energy
d.setUnaryEnergy(U)
#d.addPairwiseGaussian(sxy=3, compat=3)
d.addPairwiseBilateral(sxy=80, srgb=13, rgbim=img, compat=10)
res = np.argmax(d.inference(5), axis=0).astype('float32')
res *= 255 / res.max()
res = res.reshape(img.shape[:2])
return res.astype(np.uint8)
def CRF_MASTER(img, anno_rgb):
anno_lbl = anno_rgb[:,:,0] + (anno_rgb[:,:,1] << 8) + (anno_rgb[:,:,2] << 16)
colors, labels = np.unique(anno_lbl, return_inverse=True)
HAS_UNK = 0 in colors
if HAS_UNK:
print("Found a full-black pixel in annotation image, assuming it means 'unknown' label, and will thus not be present in the output!")
print("If 0 is an actual label for you, consider writing your own code, or simply giving your labels only non-zero values.")
colors = colors[1:]
colorize = np.empty((len(colors), 3), np.uint8)
colorize[:,0] = (colors & 0x0000FF)
colorize[:,1] = (colors & 0x00FF00) >> 8
colorize[:,2] = (colors & 0xFF0000) >> 16
n_labels = len(set(labels.flat)) - int(HAS_UNK)
print(n_labels, " labels", (" plus \"unknown\" 0: " if HAS_UNK else ""), set(labels.flat))
print("Using 2D specialized functions")
d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], n_labels)
U = unary_from_labels(labels, n_labels, gt_prob=0.7, zero_unsure=HAS_UNK)
d.setUnaryEnergy(U)
#d.addPairwiseGaussian(sxy=(3, 3), compat=3, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
d.addPairwiseBilateral(sxy=(5, 5), srgb=(3, 3, 3), rgbim=img, compat=10, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
Q = d.inference(5)
MAP = np.argmax(Q, axis=0)
MAP = colorize[MAP,:]
return MAP.reshape(img.shape)
#TODO OWT-HC
def H_Clustering():
pass
#TODO gPb
def Probability_Boundary(edged_X_prime):
pass
def compute_dissimilarity(img, x, y, n_x, n_y, ro_I_2, ro_X_2):
pixel_distance = distance(img[x, y], img[n_x, n_y])
position_distance = distance(np.array([x, y]), np.array([n_x, n_y]))
return np.exp(-pixel_distance / ro_I_2) * np.exp(-position_distance / ro_X_2)
#Creation of Dissimilarity Matrix(Tensor Representation)
def create_dissimilarity_matrix(img, r=5, ro_I=10, ro_X=4):
shape = img.shape
dissim_matrix = np.zeros((shape[1], shape[2], shape[1], shape[2]))
ro_I_2 = ro_I * ro_I
ro_X_2 = ro_X * ro_X
for i in range(shape[1]):
for j in range(shape[2]):
for off_i in range(-r, r + 1, 1):
for off_j in range(-r, r + 1, 1):
n_i = i + off_i
n_j = j + off_j
if n_j >= 0 and n_j < shape[1] and n_i >= 0 and n_i < shape[2]:
dissim_matrix[i, j, n_i, n_j] = compute_dissimilarity(img[0], i, j, n_i, n_j, ro_I_2, ro_X_2)
return dissim_matrix
#Creation of Dissimilarity Matrix(Sparse Matrix Graph Representation)
def create_sparse_dissimilary_matrix(img, r=5, ro_I=10, ro_X=4):
shape = img.shape
indices = []
values = []
for i in range(shape[1]):
for j in range(shape[2]):
for off_i in range(-r, r + 1, 1):
for off_j in range(-r, r + 1, 1):
n_i = i + off_i
n_j = j + off_j
if n_j >= 0 and n_j < shape[1] and n_i >= 0 and n_i < shape[2]:
main_pixel_index = i * shape[2] + j
neig_pixel_index = n_i * shape[2] + n_j
dissimilarty_val = compute_dissimilarity(img[0], i, j, n_i, n_j, ro_I, ro_X)
indices.append([main_pixel_index, neig_pixel_index])
values.append(dissimilarty_val)
return indices, values
#Normal and memory safe version of soft normalized cut loss but it is slow
def compute_loss(raw_data, volume, K, ro_I = 10, ro_X = 4, r = 5):
shape = raw_data.shape
v_shape = volume.shape
total = 0
for k in range(K):
assoc_A = 0
assoc_V = 0
for i in range(shape[1]):
for j in range(shape[2]):
partial_assoc_A = 0
partial_assoc_V = 0
for off_i in range(-r, r + 1, 1):
for off_j in range(-r, r + 1, 1):
n_i = i + off_i
n_j = j + off_j
if n_j >= 0 and n_j < shape[1] and n_i >= 0 and n_i < shape[2]:
dissim = compute_dissimilarity(raw_data[0], i, j, n_i, n_j, ro_I, ro_X)
partial_assoc_A += (dissim * volume[n_i, n_j, k])
partial_assoc_V += dissim
assoc_A += (volume[i, j, k] * partial_assoc_A)
assoc_V += (volume[i, j, k] * partial_assoc_V)
total += (assoc_A / assoc_V)
return K - total
#TODO : Tensorflow Speed Up Version of N-Cut Loss
def n_cut_loss(volume, dissim_matrix, K):
total = tf.cast(tf.Variable(0), dtype=tf.float32)
k_tensor = tf.cast(tf.Variable(K), dtype=tf.float32)
for step in range(K):
total = tf.add(total,
tf.div(tf.reduce_sum(
tf.multiply(volume[0, :, :, step], tf.reduce_sum(
tf.multiply(dissim_matrix, volume[0, :, :, step]), [0,1]))),
tf.reduce_sum(
tf.multiply(volume[0, :, :, step], tf.reduce_sum(dissim_matrix, [0,1])))))
return tf.subtract(k_tensor, total)
def n_cut_loss_sp(volume, dissim_matrix, K):
total = tf.cast(tf.Variable(0), dtype=tf.float32)
k_tensor = tf.cast(tf.Variable(K), dtype=tf.float32)
for step in range(K):
w_mult_pv = tf.sparse_tensor_dense_matmul(dissim_matrix, tf.reshape(volume[0, :, :, step], [-1]))
total = tf.add(total, tf.reduce_sum(tf.multiply(volume[0, :, :, step], w_mult_pv)))
return tf.subtract(k_tensor, total)
def PostProcess(U_Enc_x):
x_1 = CRF(U_Enc_x)
x_2 = Probability_Boundary(x_1)
S = H_Clustering(x_2)
return S
def pairwise_dist_image(A, B):
with tf.variable_scope('pairwise_dist'):
# squared norms of each row in A and B
na = tf.reduce_sum(tf.square(A), 1)
nb = tf.reduce_sum(tf.square(B), 1)
# na as a row and nb as a co"lumn vectors
na = tf.reshape(na, [-1, 1])
nb = tf.reshape(nb, [1, -1])
# return pairwise euclidead difference matrix
D = tf.sqrt(tf.maximum(na - 2*tf.matmul(A, B, False, True) + nb, 0.0))
return D
def positional_sparse_matrix(row_size, col_size, radius):
#p2 means euclidean distance
nn = NearestNeighbors(radius=radius, p=2)
rows = np.arange(row_size)
cols = np.arange(col_size)
mesh_grid = np.empty((row_size, row_size, 2), dtype=np.intp)
mesh_grid[..., 0] = rows[:, None]
mesh_grid[..., 1] = cols
#print("MESH_GRID : \n", mesh_grid)
mesh_grid = mesh_grid.reshape(-1, 2)
#print("MESH_GRID_RESHAPE : \n", mesh_grid)
nn.fit(mesh_grid)
pos_sparse_matrix = nn.radius_neighbors_graph(mesh_grid, radius=radius, mode='distance')
return pos_sparse_matrix
def dissim_matrix_values(A, positions, pos_distances, ro_I_2=100, ro_X_2=16, shape=(224*224, 224*224)):
vap_i = A[positions[... , 0]]
#print("vap_i : \n", vap_i)
vap_j = A[positions[... , 1]]
#print("vap_j : \n", vap_j)
#dissimilarity_values = np.exp(-np.sum(np.square(np.subtract(vap_i, vap_j))) / ro_I_2) * np.exp(-np.sum(np.square(pos_distances)) / ro_X_2).astype(np.float32)
'''IMAGE VALUES'''
diff = np.subtract(vap_i, vap_j)
#print("diff : \n", diff)
sq_diff = np.square(diff)
#print("sq_diff : \n", sq_diff)
sum_sq_diff = np.sum(sq_diff, axis=1)
#print("Sum sq diff : \n", sum_sq_diff)
neg_sum_sq_diff = np.negative(sum_sq_diff)
#print("neg_sum_sq_diff : \n", neg_sum_sq_diff)
div_neg_sum_sq_diff = np.divide(neg_sum_sq_diff, ro_I_2)
#print("div_neg_sum_sq_diff : \n", div_neg_sum_sq_diff)
exp_div_neg_sum_sq_diff = np.exp(div_neg_sum_sq_diff)
#print("exp_neg_sum_sq_diff : \n", exp_div_neg_sum_sq_diff)
'''SPATIAL POSITION VALUES'''
sq_pos = np.square(pos_distances).astype(np.float32)
#print("Sq POs : \n", sq_pos)
sum_sq_pos = np.sum(sq_pos, 1)
#print("sum_Sq POs : \n", sum_sq_pos)
neg_sum_sq_pos = np.negative(sum_sq_pos)
#print("neg_sum_sq_pos : \n", neg_sum_sq_pos)
div_neg_sum_sq_pos = np.divide(neg_sum_sq_pos, ro_X_2)
#print("div_neg_sum_sq_pos : \n", div_neg_sum_sq_pos)
exp_div_neg_sum_sq_pos = np.exp(div_neg_sum_sq_pos)
#print("exp_div_neg_sum_sq_pos : \n", exp_div_neg_sum_sq_pos)
'''DISSIMILARITY'''
dissimilarity_values_tensor = np.multiply(exp_div_neg_sum_sq_diff, exp_div_neg_sum_sq_pos)
#print("dissim : \n", dissimilarity_values_tensor)
#input()
sparse_matrix = csr_matrix((dissimilarity_values_tensor, (positions[..., 0], positions[..., 1])), shape)
sparse_matrix.setdiag(np.ones((224 * 224)))
return dissimilarity_values_tensor, sparse_matrix
def ncut_loss_np(volume_tensors, images, positions, pos_distances, K, batch_size):
total_loss = 0
for m in range(batch_size):
total = 0
curr = np.reshape(images[m], [-1, 3])
#print("CUR : \n", curr.shape)
_, dissim_sparse_tensor = dissim_matrix_values(curr, positions, pos_distances)
#print("sparse : \n", dissim_sparse_tensor.shape)
for i in range(K):
vol_tensor = np.reshape(volume_tensors[m, :, :, i], [-1, 1])
spvm = dissim_sparse_tensor * vol_tensor
print("SPVM : ", spvm.T.shape)
#mult = np.multiply(vol_tensor, spvm)
mult = np.matmul(spvm.T, vol_tensor)
print("MULT : ", mult.shape)
assoc_A = np.sum(mult)
#sum_sparse = np.sum(dissim_sparse_tensor, axis=1)
#mult_sparse = np.multiply(vol_tensor, sum_sparse)
#print("Vol : \n", vol_tensor.shape)
mult_sparse = dissim_sparse_tensor * vol_tensor
#print(mult_sparse.shape)
assoc_V = np.sum(mult_sparse)
#print("Assoc_A : {} assoc_V : {}".format(assoc_A, assoc_V))
total = np.add(total, np.divide(assoc_A, assoc_V))
loss_per_image = np.subtract(K, total)
print("Loss : ", loss_per_image)
total_loss = np.add(total_loss, loss_per_image)
print(total_loss)
return total_loss
def dissim_matrix_values_tf(image, positions, pos_distances, ro_I_2=100, ro_X_2=16, shape=(224*224, 224*224)):
vap_i = tf.gather(image, positions[... , 0])
vap_j = tf.gather(image, positions[... , 1])
'''IMAGE VALUES'''
diff = tf.subtract(vap_i, vap_j)
sq_diff = tf.square(diff)
sum_sq_diff = tf.reduce_sum(sq_diff, 1)
neg_sum_sq_diff = tf.negative(sum_sq_diff)
div_neg_sum_sq_diff = tf.div(neg_sum_sq_diff, ro_I_2)
exp_div_neg_sum_sq_diff = tf.exp(div_neg_sum_sq_diff)
'''SPATIAL POSITION VALUES'''
sq_pos = tf.cast(tf.square(pos_distances), dtype=tf.float32)
sum_sq_pos = tf.reduce_sum(sq_pos, 1)
neg_sum_sq_pos = tf.negative(sum_sq_pos)
div_neg_sum_sq_pos = tf.div(neg_sum_sq_pos, ro_X_2)
exp_div_neg_sum_sq_pos = tf.exp(div_neg_sum_sq_pos)
'''DISSIMILARITY'''
dissimilarity_values_tensor = tf.multiply(exp_div_neg_sum_sq_diff, exp_div_neg_sum_sq_pos)
return tf.SparseTensor(positions, dissimilarity_values_tensor, shape)
def ncut_loss_tf(volume_tensors, images, positions, pos_distances, K, batch_size, total_loss, total):
#total_loss = tf.Variable(0, dtype=tf.float32)
tf.assign(total_loss, 0)
for m in range(batch_size):
#total = tf.Variable(0, dtype=tf.float32)
total = tf.assign(tota, 0.)
curr = tf.reshape(images[m], [-1, 3])
dissim_sparse_tensor = dissim_matrix_values_tf(curr, positions, pos_distances)
for i in range(K):
vol_tensor = tf.reshape(volume_tensors[m, :, :, i], [-1, 1])
spvm = tf.sparse_tensor_dense_matmul(dissim_sparse_tensor, vol_tensor)
#assoc_A = tf.reduce_sum(tf.multiply(vol_tensor, spvm))
assoc_A = tf.multiply(tf.transpose(vol_tensor), spvm)
#print(assoc_A.get_shape())
sum_sparse = tf.sparse_reduce_sum(dissim_sparse_tensor, 1, keep_dims=True)
#print(sum_sparse.get_shape())
mult_sparse = tf.multiply(vol_tensor, sum_sparse)
#print(mult_sparse.get_shape())
assoc_V = tf.reduce_sum(mult_sparse)
#print(assoc_V.get_shape())
total = tf.add(total, tf.div(assoc_A, assoc_V))
loss_per_image = tf.subtract(K, total)
total_loss = tf.add(total_loss, loss_per_image)
return tf.div(total_loss, batch_size)
def weight_matrix(images, radius, ro_I_2=100, ro_X_2=16, shape=(224*224, 224*224)):
shape = images.shape
images = images.reshape([shape[0], shape[3], shape[1], shape[2]])
print(images)
shape = images.shape
dissim = np.zeros((shape[0], shape[1], shape[2], shape[3], (radius - 1) * 2 + 1, (radius - 1) * 2 + 1))
print(dissim.shape)
padded = np.pad(images, ((0, 0), (0, 0), (radius - 1, radius - 1), (radius - 1, radius - 1), ), 'constant')
print("pad : \n", padded)
print(padded.shape)
for m in range(2 * (radius - 1) + 1):
for n in range(2 * (radius - 1) + 1):
dissim[:, :, :, :, m, n] = np.subtract(images, padded[:, :, m:shape[2] + m, n:shape[3] + n])
print("m : {} n : {}".format(m,n))
print("img : \n", images)
print("pad : \n", padded[:, :, m:shape[2] + m, n:shape[3] + n])
print("Dissim : \n", dissim[:, :, :, :, m, n])
input()
#print(padded[:, :, m:shape[2] + m, n:shape[3] + n].shape)
#print( dissim[0, 0, 0, 0, 0, 0])
print(dissim)
dissim = np.exp(-np.power(dissim,2).sum(1, keepdims = True) / ro_I_2)
dist = np.zeros((2 * (radius - 1) + 1, 2 * (radius - 1) + 1))
for m in range(1-radius, radius):
for n in range(1-radius,radius):
if m**2 + n**2 < radius**2:
dist[m + radius - 1,n + radius - 1] = np.exp(-( m**2 + n**2) / ro_X_2**2)
res = np.multiply(dissim, dist)
return res
def ncut_loss_non_sparse_tf(volume_tensors, weights, radius, batch_size):
volume_tensors = tf.reshape(volume_tensors, [batch_size, volume_tensors.get_shape()[3], volume_tensors.get_shape()[1], volume_tensors.get_shape()[2]])
K = tf.constant(volume_tensors.get_shape()[1], dtype=tf.float32)
cropped_seg = tf.zeros(volume_tensors.get_shape()[0], volume_tensors.get_shape()[1], volume_tensors.get_shape()[2], volume_tensors.get_shape()[3], (radius - 1) * 2 + 1, (radius - 1) * 2 + 1)
paddings = tf.constant((radius - 1, radius - 1), (radius - 1, radius - 1))
padded = tf.pad(volume_tensors, paddings, "CONSTANT")
for m in range(2 * (radius - 1) + 1):
for n in range(2 * (radius - 1) + 1):
cropped_seg[:, :, :, :, m, n].copy_(padded_seg[:,:,m:m+volume_tensors.get_shape()[2],n:n+volume_tensors.get_shape()[3]])
mult_1 = tf.multiply(cropped_seg, weights)
print(mult_1.shape)
pass