Skip to content

Latest commit

 

History

History
94 lines (62 loc) · 4.15 KB

2.3.5-gong-ju-2018isee-dan-xi-bao-shu-ju-ke-shi-hua-fu-zhu-wang-ye-gong-ju.md

File metadata and controls

94 lines (62 loc) · 4.15 KB
description
刘小泽写于2021.10.27

2.3.5 工具 | 2018-iSEE:单细胞数据可视化辅助网页工具

前言

题目:iSEE: Interactive SummarizedExperiment Explorer

日期:2018-06-14

期刊:F1000Research

链接:https://f1000research.com/articles/7-741

GitHub:https://github.com/iSEE/iSEE

这篇文章虽然发表的比较早,但最近看到其中一个作者Federico Marini和大佬们交流hdf5数据支持的问题,所以还是简单了解一下这个工具吧

image-20211027125344809

他们讨论的结果是

library(zellkonverter)
sce_h5ad <- readH5AD("file_as_anndata.h5ad")
assayNames(sce_h5ad) <- "logcounts" 
HDF5Array::saveHDF5SummarizedExperiment(sce_Bcells_h5ad, dir = "see_as_hdf5")
#And to read that in -> 
sce_read_in_again <- HDF5Array::loadHDF5SummarizedExperiment("see_as_hdf5")

library(iSEE)
iSEE(sce_read_in_again)

设计初衷

重在数据展示,而非数据分析

它不是单纯为某一个课题设计的网页工具,而只要是SummarizedExperiment它就可以支持可视化,而我们知道单细胞数据不仅仅是seurat格式,还有很大部分是SummarizedExperiment 。当然,除了单细胞,SummarizedExperiment 在其他领域(比如甲基化)也有涉及,因此这个工具可以无缝衔接支持此格式的R包下游,用来展示rowdata、metadata等。可以说,它最大的亮点就是兼容性和可拓展性

那么它为何对SummarizedExperiment格式这么偏爱呢?

就像我之前在公众号里介绍的,这个对象可以整合 基因组信息(行)以及样本信息(列),并且可以容纳多种表达量类型(比如raw count、normalized count),甚至后期分析的结果也可以存储(比如降维结果)

image-20211027130031898

工具结构

image-20211027130553046

  • Column data plots, for visualising sample metadata stored in the colData slot of the SummarizedExperiment object.
  • Feature assay plots, for visualising experimental observations for a particular feature (e.g. gene) across samples from any assay in the SummarizedExperiment object.
  • Row statistics tables, to present the contents of the rowData slot of the SummarizedExperiment object.
  • Row data plots, for visualising feature metadata stored in the rowData slot of the SummarizedExperiment object.
  • Heatmaps, to visualise assay data for multiple features where samples are ordered by one or more colData fields.
  • Reduced dimension plots, which display any two dimensions from pre-computed dimensionality reduction results (e.g., from PCA or t-SNE). These results are taken from the reducedDim slot if this is available in the object supplied to iSEE.

还设置了大量的参数调节,比如可以对这个数据的列数据进行选取:

image-20211027130653904

目前提供了一些数据作为示例:

还支持TCGA数据的可视化

image-20211027133643944

至于怎么实现的可视化

作者提供了一些rmd作为参考:https://github.com/iSEE/iSEE\_instances

image-20211027134159378

# 上游分析得到sce对象
# Once the processing steps above are done, we can call `iSEE` with the subsampled `SingleCellExperiment` object. 
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("iSEE")
# or also...
BiocManager::install("iSEE", dependencies = TRUE)

if (require(iSEE)) {
  iSEE(sce)
}