diff --git a/Df_Trasnplantes_Realizados_RNipynb.ipynb b/Df_Trasnplantes_Realizados_RNipynb.ipynb
new file mode 100644
index 0000000..38c8a5c
--- /dev/null
+++ b/Df_Trasnplantes_Realizados_RNipynb.ipynb
@@ -0,0 +1,2613 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "sU4sSjnQH8Ty"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df=pd.read_csv('/content/Relatório de Transplantes Realizados (Rio Grande do Norte) - Evolução 2001 - 2023 - Table 1.csv')"
+ ],
+ "metadata": {
+ "id": "4lJXA7DSzDqz"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head(22)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 461
+ },
+ "id": "rynY-5PxzaC1",
+ "outputId": "a49ae14a-47ff-48bc-9ae5-8d0d9b5715c5"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Ano Coração Fígado Figado vivo Figado falecido Pancreas Pulmão \\\n",
+ "1 2013 0 3 0 3 0 0 \n",
+ "2 2014 2 2 0 2 0 0 \n",
+ "3 2015 0 0 0 0 0 0 \n",
+ "4 2016 0 0 0 0 0 0 \n",
+ "5 2017 0 0 0 0 0 0 \n",
+ "6 2018 0 0 0 0 0 0 \n",
+ "7 2019 0 0 0 0 0 0 \n",
+ "8 2020 0 0 0 0 0 0 \n",
+ "9 2021 0 0 0 0 0 0 \n",
+ "10 2022 2 0 0 0 0 0 \n",
+ "11 2023 4 0 0 0 0 0 \n",
+ "\n",
+ " Pulmão vivo Pulmão falecido Rim ... Pancreas rim Intestino Isolado \\\n",
+ "1 0 0 60 ... 0 0 \n",
+ "2 0 0 66 ... 0 0 \n",
+ "3 0 0 67 ... 0 0 \n",
+ "4 0 0 67 ... 0 0 \n",
+ "5 0 0 60 ... 0 0 \n",
+ "6 0 0 45 ... 0 0 \n",
+ "7 0 0 76 ... 0 0 \n",
+ "8 0 0 48 ... 0 0 \n",
+ "9 0 0 18 ... 0 0 \n",
+ "10 0 0 48 ... 0 0 \n",
+ "11 0 0 53 ... 0 0 \n",
+ "\n",
+ " Multivisceral Total Orgãos Córnea Médula óssea MO Autólogo Mo Aparentado \\\n",
+ "1 0 63 181 50 21 20 \n",
+ "2 0 70 141 60 31 17 \n",
+ "3 0 67 131 39 20 10 \n",
+ "4 0 67 104 57 24 17 \n",
+ "5 0 60 177 1 1 0 \n",
+ "6 0 45 166 59 42 9 \n",
+ "7 0 76 140 71 49 14 \n",
+ "8 0 48 92 91 63 21 \n",
+ "9 0 18 97 71 40 23 \n",
+ "10 0 50 135 52 27 15 \n",
+ "11 0 57 159 87 62 18 \n",
+ "\n",
+ " Mo Nap Total Geral \n",
+ "1 9 294 \n",
+ "2 12 271 \n",
+ "3 9 237 \n",
+ "4 16 228 \n",
+ "5 0 238 \n",
+ "6 8 270 \n",
+ "7 8 287 \n",
+ "8 7 231 \n",
+ "9 8 186 \n",
+ "10 10 237 \n",
+ "11 7 303 \n",
+ "\n",
+ "[11 rows x 22 columns]"
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Ano | \n",
+ " Coração | \n",
+ " Fígado | \n",
+ " Figado vivo | \n",
+ " Figado falecido | \n",
+ " Pancreas | \n",
+ " Pulmão | \n",
+ " Pulmão vivo | \n",
+ " Pulmão falecido | \n",
+ " Rim | \n",
+ " ... | \n",
+ " Pancreas rim | \n",
+ " Intestino Isolado | \n",
+ " Multivisceral | \n",
+ " Total Orgãos | \n",
+ " Córnea | \n",
+ " Médula óssea | \n",
+ " MO Autólogo | \n",
+ " Mo Aparentado | \n",
+ " Mo Nap | \n",
+ " Total Geral | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 2013 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 60 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 63 | \n",
+ " 181 | \n",
+ " 50 | \n",
+ " 21 | \n",
+ " 20 | \n",
+ " 9 | \n",
+ " 294 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2014 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 66 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 70 | \n",
+ " 141 | \n",
+ " 60 | \n",
+ " 31 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 271 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 2015 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " 131 | \n",
+ " 39 | \n",
+ " 20 | \n",
+ " 10 | \n",
+ " 9 | \n",
+ " 237 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 2016 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " 104 | \n",
+ " 57 | \n",
+ " 24 | \n",
+ " 17 | \n",
+ " 16 | \n",
+ " 228 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 2017 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 60 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 60 | \n",
+ " 177 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 238 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 2018 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45 | \n",
+ " 166 | \n",
+ " 59 | \n",
+ " 42 | \n",
+ " 9 | \n",
+ " 8 | \n",
+ " 270 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 2019 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 76 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 76 | \n",
+ " 140 | \n",
+ " 71 | \n",
+ " 49 | \n",
+ " 14 | \n",
+ " 8 | \n",
+ " 287 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 2020 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 48 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 48 | \n",
+ " 92 | \n",
+ " 91 | \n",
+ " 63 | \n",
+ " 21 | \n",
+ " 7 | \n",
+ " 231 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 2021 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 18 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 18 | \n",
+ " 97 | \n",
+ " 71 | \n",
+ " 40 | \n",
+ " 23 | \n",
+ " 8 | \n",
+ " 186 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 2022 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 48 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 50 | \n",
+ " 135 | \n",
+ " 52 | \n",
+ " 27 | \n",
+ " 15 | \n",
+ " 10 | \n",
+ " 237 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 2023 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 53 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 57 | \n",
+ " 159 | \n",
+ " 87 | \n",
+ " 62 | \n",
+ " 18 | \n",
+ " 7 | \n",
+ " 303 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
11 rows × 22 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df"
+ }
+ },
+ "metadata": {},
+ "execution_count": 33
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#renomear colunas\n",
+ "df.rename(columns={'Unnamed: 0':'Ano'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 1':'Coração'},inplace=True)\n",
+ "#remover colunas\n",
+ "df.drop(columns=['Unnamed: 2'],inplace=True)\n",
+ "#remomer linha\n",
+ "#df.drop(index=0,inplace=True)"
+ ],
+ "metadata": {
+ "id": "MijDSD9s0UZt"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.rename(columns={'Unnamed: 3':'Fígado'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 4':'Figado vivo'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 5':'Figado falecido'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 6':'Pancreas'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 7':'Pulmão'},inplace=True)"
+ ],
+ "metadata": {
+ "id": "KWpUtVqK2S5m"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from os import rename\n",
+ "df.rename(columns={'Unnamed: 8':'Pulmão vivo'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 9':'Pulmão falecido'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 10':'Rim'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 11':'Rim vivo'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 12':'Rim falecido'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 13':'Pancreas rim'},inplace=True)\n",
+ "df.rename(columns={'Unnamed: 14':'Intestino Isolado'},inplace =True)\n",
+ "df.rename(columns={'Unnamed: 15':'Multivisceral'},inplace =True)\n",
+ "df.rename(columns={'Unnamed: 16':'Total Orgãos'},inplace =True)\n",
+ "df.rename(columns={'Unnamed: 17':'Córnea'},inplace =True)\n",
+ "df.rename(columns={'Unnamed: 18':'Médula óssea'},inplace =True)\n",
+ "df.rename(columns={'Unnamed: 19':'MO Autólogo'},inplace =True)\n",
+ "df.rename(columns={'Unnamed: 20':'Mo Aparentado'},inplace =True)\n",
+ "df.rename(columns={'Unnamed: 21':'Mo Nap'},inplace =True)\n",
+ "df.rename(columns={'Unnamed: 22':'Total Geral'},inplace =True)\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "hCbdAEDt243_"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#remover linha\n",
+ "df.drop(index=0,inplace=True)"
+ ],
+ "metadata": {
+ "id": "c6jtHSveEpy6"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#grafico ano rim\n",
+ "sns.lineplot(x='Ano',y='Rim',data=df)\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "id": "MG69Zvf7FWLe"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [],
+ "metadata": {
+ "id": "CSVA8q1gRlyn"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#grafico total orgaos ano\n",
+ "sns.lineplot(x='Ano',y='Total Orgãos',data=df)\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "id": "N6k6jGQYFd1B"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#grafico ano com mais orgaos\n",
+ "sns.barplot(x='Ano',y='Total Orgãos',data=df)\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "id": "OBCZyhgDGI2c"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#grafico todos os orgaos\n",
+ "sns.lineplot(x='Ano',y='Total Geral',data=df)\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "id": "iKLI3284GfNP"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#salvar dataset\n",
+ "df.to_csv('Relatório de Transplantes Realizados (Rio Grande do Norte) - Evolução 2001 - 2023 - Table 1.csv',index=False)"
+ ],
+ "metadata": {
+ "id": "1BAKLyfFGma4"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head(22)\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 461
+ },
+ "id": "hw6aPLhGHFRs",
+ "outputId": "726d3113-c69a-4b56-ced1-625a437c5457"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Ano Coração Fígado Figado vivo Figado falecido Pancreas Pulmão \\\n",
+ "1 2013 0 3 0 3 0 0 \n",
+ "2 2014 2 2 0 2 0 0 \n",
+ "3 2015 0 0 0 0 0 0 \n",
+ "4 2016 0 0 0 0 0 0 \n",
+ "5 2017 0 0 0 0 0 0 \n",
+ "6 2018 0 0 0 0 0 0 \n",
+ "7 2019 0 0 0 0 0 0 \n",
+ "8 2020 0 0 0 0 0 0 \n",
+ "9 2021 0 0 0 0 0 0 \n",
+ "10 2022 2 0 0 0 0 0 \n",
+ "11 2023 4 0 0 0 0 0 \n",
+ "\n",
+ " Pulmão vivo Pulmão falecido Rim ... Pancreas rim Intestino Isolado \\\n",
+ "1 0 0 60 ... 0 0 \n",
+ "2 0 0 66 ... 0 0 \n",
+ "3 0 0 67 ... 0 0 \n",
+ "4 0 0 67 ... 0 0 \n",
+ "5 0 0 60 ... 0 0 \n",
+ "6 0 0 45 ... 0 0 \n",
+ "7 0 0 76 ... 0 0 \n",
+ "8 0 0 48 ... 0 0 \n",
+ "9 0 0 18 ... 0 0 \n",
+ "10 0 0 48 ... 0 0 \n",
+ "11 0 0 53 ... 0 0 \n",
+ "\n",
+ " Multivisceral Total Orgãos Córnea Médula óssea MO Autólogo Mo Aparentado \\\n",
+ "1 0 63 181 50 21 20 \n",
+ "2 0 70 141 60 31 17 \n",
+ "3 0 67 131 39 20 10 \n",
+ "4 0 67 104 57 24 17 \n",
+ "5 0 60 177 1 1 0 \n",
+ "6 0 45 166 59 42 9 \n",
+ "7 0 76 140 71 49 14 \n",
+ "8 0 48 92 91 63 21 \n",
+ "9 0 18 97 71 40 23 \n",
+ "10 0 50 135 52 27 15 \n",
+ "11 0 57 159 87 62 18 \n",
+ "\n",
+ " Mo Nap Total Geral \n",
+ "1 9 294 \n",
+ "2 12 271 \n",
+ "3 9 237 \n",
+ "4 16 228 \n",
+ "5 0 238 \n",
+ "6 8 270 \n",
+ "7 8 287 \n",
+ "8 7 231 \n",
+ "9 8 186 \n",
+ "10 10 237 \n",
+ "11 7 303 \n",
+ "\n",
+ "[11 rows x 22 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Ano | \n",
+ " Coração | \n",
+ " Fígado | \n",
+ " Figado vivo | \n",
+ " Figado falecido | \n",
+ " Pancreas | \n",
+ " Pulmão | \n",
+ " Pulmão vivo | \n",
+ " Pulmão falecido | \n",
+ " Rim | \n",
+ " ... | \n",
+ " Pancreas rim | \n",
+ " Intestino Isolado | \n",
+ " Multivisceral | \n",
+ " Total Orgãos | \n",
+ " Córnea | \n",
+ " Médula óssea | \n",
+ " MO Autólogo | \n",
+ " Mo Aparentado | \n",
+ " Mo Nap | \n",
+ " Total Geral | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 2013 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 60 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 63 | \n",
+ " 181 | \n",
+ " 50 | \n",
+ " 21 | \n",
+ " 20 | \n",
+ " 9 | \n",
+ " 294 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2014 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 66 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 70 | \n",
+ " 141 | \n",
+ " 60 | \n",
+ " 31 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 271 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 2015 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " 131 | \n",
+ " 39 | \n",
+ " 20 | \n",
+ " 10 | \n",
+ " 9 | \n",
+ " 237 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 2016 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " 104 | \n",
+ " 57 | \n",
+ " 24 | \n",
+ " 17 | \n",
+ " 16 | \n",
+ " 228 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 2017 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 60 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 60 | \n",
+ " 177 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 238 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 2018 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45 | \n",
+ " 166 | \n",
+ " 59 | \n",
+ " 42 | \n",
+ " 9 | \n",
+ " 8 | \n",
+ " 270 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 2019 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 76 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 76 | \n",
+ " 140 | \n",
+ " 71 | \n",
+ " 49 | \n",
+ " 14 | \n",
+ " 8 | \n",
+ " 287 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 2020 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 48 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 48 | \n",
+ " 92 | \n",
+ " 91 | \n",
+ " 63 | \n",
+ " 21 | \n",
+ " 7 | \n",
+ " 231 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 2021 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 18 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 18 | \n",
+ " 97 | \n",
+ " 71 | \n",
+ " 40 | \n",
+ " 23 | \n",
+ " 8 | \n",
+ " 186 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 2022 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 48 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 50 | \n",
+ " 135 | \n",
+ " 52 | \n",
+ " 27 | \n",
+ " 15 | \n",
+ " 10 | \n",
+ " 237 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 2023 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 53 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 57 | \n",
+ " 159 | \n",
+ " 87 | \n",
+ " 62 | \n",
+ " 18 | \n",
+ " 7 | \n",
+ " 303 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
11 rows × 22 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df"
+ }
+ },
+ "metadata": {},
+ "execution_count": 37
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from google.colab import files\n",
+ "files.download('Relatório de Transplantes Realizados (Rio Grande do Norte) - Evolução 2001 - 2023 - Table 1.csv')\n"
+ ],
+ "metadata": {
+ "id": "fv4tlXw8IIUL"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df=pd.read_csv('/content/Relatório de Transplantes Realizados (Rio Grande do Norte) - Evolução 2001 - 2023 - Table 1 (1).csv')\n",
+ "df.head(22)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 461
+ },
+ "id": "n7OW3UtHRoHG",
+ "outputId": "47eb2117-d089-41a9-8dfa-9336e60b0a68"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Ano Coração Fígado Figado vivo Figado falecido Pancreas Pulmão \\\n",
+ "0 2013 0 3 0 3 0 0 \n",
+ "1 2014 2 2 0 2 0 0 \n",
+ "2 2015 0 0 0 0 0 0 \n",
+ "3 2016 0 0 0 0 0 0 \n",
+ "4 2017 0 0 0 0 0 0 \n",
+ "5 2018 0 0 0 0 0 0 \n",
+ "6 2019 0 0 0 0 0 0 \n",
+ "7 2020 0 0 0 0 0 0 \n",
+ "8 2021 0 0 0 0 0 0 \n",
+ "9 2022 2 0 0 0 0 0 \n",
+ "10 2023 4 0 0 0 0 0 \n",
+ "\n",
+ " Pulmão vivo Pulmão falecido Rim ... Pancreas rim Intestino Isolado \\\n",
+ "0 0 0 60 ... 0 0 \n",
+ "1 0 0 66 ... 0 0 \n",
+ "2 0 0 67 ... 0 0 \n",
+ "3 0 0 67 ... 0 0 \n",
+ "4 0 0 60 ... 0 0 \n",
+ "5 0 0 45 ... 0 0 \n",
+ "6 0 0 76 ... 0 0 \n",
+ "7 0 0 48 ... 0 0 \n",
+ "8 0 0 18 ... 0 0 \n",
+ "9 0 0 48 ... 0 0 \n",
+ "10 0 0 53 ... 0 0 \n",
+ "\n",
+ " Multivisceral Total Orgãos Córnea Médula óssea MO Autólogo \\\n",
+ "0 0 63 181 50 21 \n",
+ "1 0 70 141 60 31 \n",
+ "2 0 67 131 39 20 \n",
+ "3 0 67 104 57 24 \n",
+ "4 0 60 177 1 1 \n",
+ "5 0 45 166 59 42 \n",
+ "6 0 76 140 71 49 \n",
+ "7 0 48 92 91 63 \n",
+ "8 0 18 97 71 40 \n",
+ "9 0 50 135 52 27 \n",
+ "10 0 57 159 87 62 \n",
+ "\n",
+ " Mo Aparentado Mo Nap Total Geral \n",
+ "0 20 9 294 \n",
+ "1 17 12 271 \n",
+ "2 10 9 237 \n",
+ "3 17 16 228 \n",
+ "4 0 0 238 \n",
+ "5 9 8 270 \n",
+ "6 14 8 287 \n",
+ "7 21 7 231 \n",
+ "8 23 8 186 \n",
+ "9 15 10 237 \n",
+ "10 18 7 303 \n",
+ "\n",
+ "[11 rows x 22 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Ano | \n",
+ " Coração | \n",
+ " Fígado | \n",
+ " Figado vivo | \n",
+ " Figado falecido | \n",
+ " Pancreas | \n",
+ " Pulmão | \n",
+ " Pulmão vivo | \n",
+ " Pulmão falecido | \n",
+ " Rim | \n",
+ " ... | \n",
+ " Pancreas rim | \n",
+ " Intestino Isolado | \n",
+ " Multivisceral | \n",
+ " Total Orgãos | \n",
+ " Córnea | \n",
+ " Médula óssea | \n",
+ " MO Autólogo | \n",
+ " Mo Aparentado | \n",
+ " Mo Nap | \n",
+ " Total Geral | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 2013 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 60 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 63 | \n",
+ " 181 | \n",
+ " 50 | \n",
+ " 21 | \n",
+ " 20 | \n",
+ " 9 | \n",
+ " 294 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2014 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 66 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 70 | \n",
+ " 141 | \n",
+ " 60 | \n",
+ " 31 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 271 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2015 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " 131 | \n",
+ " 39 | \n",
+ " 20 | \n",
+ " 10 | \n",
+ " 9 | \n",
+ " 237 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 2016 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " 104 | \n",
+ " 57 | \n",
+ " 24 | \n",
+ " 17 | \n",
+ " 16 | \n",
+ " 228 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 2017 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 60 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 60 | \n",
+ " 177 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 238 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 2018 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45 | \n",
+ " 166 | \n",
+ " 59 | \n",
+ " 42 | \n",
+ " 9 | \n",
+ " 8 | \n",
+ " 270 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 2019 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 76 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 76 | \n",
+ " 140 | \n",
+ " 71 | \n",
+ " 49 | \n",
+ " 14 | \n",
+ " 8 | \n",
+ " 287 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 2020 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 48 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 48 | \n",
+ " 92 | \n",
+ " 91 | \n",
+ " 63 | \n",
+ " 21 | \n",
+ " 7 | \n",
+ " 231 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 2021 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 18 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 18 | \n",
+ " 97 | \n",
+ " 71 | \n",
+ " 40 | \n",
+ " 23 | \n",
+ " 8 | \n",
+ " 186 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 2022 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 48 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 50 | \n",
+ " 135 | \n",
+ " 52 | \n",
+ " 27 | \n",
+ " 15 | \n",
+ " 10 | \n",
+ " 237 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 2023 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 53 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 57 | \n",
+ " 159 | \n",
+ " 87 | \n",
+ " 62 | \n",
+ " 18 | \n",
+ " 7 | \n",
+ " 303 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
11 rows × 22 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df"
+ }
+ },
+ "metadata": {},
+ "execution_count": 5
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.info()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Boagp9ZRSOvB",
+ "outputId": "d7ca71e5-dce7-457d-df91-35cfb61302d8"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\n",
+ "RangeIndex: 11 entries, 0 to 10\n",
+ "Data columns (total 22 columns):\n",
+ " # Column Non-Null Count Dtype\n",
+ "--- ------ -------------- -----\n",
+ " 0 Ano 11 non-null int64\n",
+ " 1 Coração 11 non-null int64\n",
+ " 2 Fígado 11 non-null int64\n",
+ " 3 Figado vivo 11 non-null int64\n",
+ " 4 Figado falecido 11 non-null int64\n",
+ " 5 Pancreas 11 non-null int64\n",
+ " 6 Pulmão 11 non-null int64\n",
+ " 7 Pulmão vivo 11 non-null int64\n",
+ " 8 Pulmão falecido 11 non-null int64\n",
+ " 9 Rim 11 non-null int64\n",
+ " 10 Rim vivo 11 non-null int64\n",
+ " 11 Rim falecido 11 non-null int64\n",
+ " 12 Pancreas rim 11 non-null int64\n",
+ " 13 Intestino Isolado 11 non-null int64\n",
+ " 14 Multivisceral 11 non-null int64\n",
+ " 15 Total Orgãos 11 non-null int64\n",
+ " 16 Córnea 11 non-null int64\n",
+ " 17 Médula óssea 11 non-null int64\n",
+ " 18 MO Autólogo 11 non-null int64\n",
+ " 19 Mo Aparentado 11 non-null int64\n",
+ " 20 Mo Nap 11 non-null int64\n",
+ " 21 Total Geral 11 non-null int64\n",
+ "dtypes: int64(22)\n",
+ "memory usage: 2.0 KB\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.describe()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 367
+ },
+ "id": "J5c6iLVkST6R",
+ "outputId": "d3dc5d7d-e3eb-468b-b937-ea9d37390858"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Ano Coração Fígado Figado vivo Figado falecido \\\n",
+ "count 11.000000 11.000000 11.000000 11.0 11.000000 \n",
+ "mean 2018.000000 0.727273 0.454545 0.0 0.454545 \n",
+ "std 3.316625 1.348400 1.035725 0.0 1.035725 \n",
+ "min 2013.000000 0.000000 0.000000 0.0 0.000000 \n",
+ "25% 2015.500000 0.000000 0.000000 0.0 0.000000 \n",
+ "50% 2018.000000 0.000000 0.000000 0.0 0.000000 \n",
+ "75% 2020.500000 1.000000 0.000000 0.0 0.000000 \n",
+ "max 2023.000000 4.000000 3.000000 0.0 3.000000 \n",
+ "\n",
+ " Pancreas Pulmão Pulmão vivo Pulmão falecido Rim ... \\\n",
+ "count 11.0 11.0 11.0 11.0 11.000000 ... \n",
+ "mean 0.0 0.0 0.0 0.0 55.272727 ... \n",
+ "std 0.0 0.0 0.0 0.0 15.716812 ... \n",
+ "min 0.0 0.0 0.0 0.0 18.000000 ... \n",
+ "25% 0.0 0.0 0.0 0.0 48.000000 ... \n",
+ "50% 0.0 0.0 0.0 0.0 60.000000 ... \n",
+ "75% 0.0 0.0 0.0 0.0 66.500000 ... \n",
+ "max 0.0 0.0 0.0 0.0 76.000000 ... \n",
+ "\n",
+ " Pancreas rim Intestino Isolado Multivisceral Total Orgãos \\\n",
+ "count 11.0 11.0 11.0 11.000000 \n",
+ "mean 0.0 0.0 0.0 56.454545 \n",
+ "std 0.0 0.0 0.0 16.021009 \n",
+ "min 0.0 0.0 0.0 18.000000 \n",
+ "25% 0.0 0.0 0.0 49.000000 \n",
+ "50% 0.0 0.0 0.0 60.000000 \n",
+ "75% 0.0 0.0 0.0 67.000000 \n",
+ "max 0.0 0.0 0.0 76.000000 \n",
+ "\n",
+ " Córnea Médula óssea MO Autólogo Mo Aparentado Mo Nap \\\n",
+ "count 11.000000 11.000000 11.000000 11.000000 11.000000 \n",
+ "mean 138.454545 58.000000 34.545455 14.909091 8.545455 \n",
+ "std 31.010849 24.462216 18.864589 6.549115 3.856518 \n",
+ "min 92.000000 1.000000 1.000000 0.000000 0.000000 \n",
+ "25% 117.500000 51.000000 22.500000 12.000000 7.500000 \n",
+ "50% 140.000000 59.000000 31.000000 17.000000 8.000000 \n",
+ "75% 162.500000 71.000000 45.500000 19.000000 9.500000 \n",
+ "max 181.000000 91.000000 63.000000 23.000000 16.000000 \n",
+ "\n",
+ " Total Geral \n",
+ "count 11.000000 \n",
+ "mean 252.909091 \n",
+ "std 35.049835 \n",
+ "min 186.000000 \n",
+ "25% 234.000000 \n",
+ "50% 238.000000 \n",
+ "75% 279.000000 \n",
+ "max 303.000000 \n",
+ "\n",
+ "[8 rows x 22 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Ano | \n",
+ " Coração | \n",
+ " Fígado | \n",
+ " Figado vivo | \n",
+ " Figado falecido | \n",
+ " Pancreas | \n",
+ " Pulmão | \n",
+ " Pulmão vivo | \n",
+ " Pulmão falecido | \n",
+ " Rim | \n",
+ " ... | \n",
+ " Pancreas rim | \n",
+ " Intestino Isolado | \n",
+ " Multivisceral | \n",
+ " Total Orgãos | \n",
+ " Córnea | \n",
+ " Médula óssea | \n",
+ " MO Autólogo | \n",
+ " Mo Aparentado | \n",
+ " Mo Nap | \n",
+ " Total Geral | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.0 | \n",
+ " 11.000000 | \n",
+ " 11.0 | \n",
+ " 11.0 | \n",
+ " 11.0 | \n",
+ " 11.0 | \n",
+ " 11.000000 | \n",
+ " ... | \n",
+ " 11.0 | \n",
+ " 11.0 | \n",
+ " 11.0 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 2018.000000 | \n",
+ " 0.727273 | \n",
+ " 0.454545 | \n",
+ " 0.0 | \n",
+ " 0.454545 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 55.272727 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 56.454545 | \n",
+ " 138.454545 | \n",
+ " 58.000000 | \n",
+ " 34.545455 | \n",
+ " 14.909091 | \n",
+ " 8.545455 | \n",
+ " 252.909091 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 3.316625 | \n",
+ " 1.348400 | \n",
+ " 1.035725 | \n",
+ " 0.0 | \n",
+ " 1.035725 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 15.716812 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 16.021009 | \n",
+ " 31.010849 | \n",
+ " 24.462216 | \n",
+ " 18.864589 | \n",
+ " 6.549115 | \n",
+ " 3.856518 | \n",
+ " 35.049835 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 2013.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 18.000000 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 18.000000 | \n",
+ " 92.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 186.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 2015.500000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 48.000000 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 49.000000 | \n",
+ " 117.500000 | \n",
+ " 51.000000 | \n",
+ " 22.500000 | \n",
+ " 12.000000 | \n",
+ " 7.500000 | \n",
+ " 234.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 2018.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 60.000000 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 60.000000 | \n",
+ " 140.000000 | \n",
+ " 59.000000 | \n",
+ " 31.000000 | \n",
+ " 17.000000 | \n",
+ " 8.000000 | \n",
+ " 238.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 2020.500000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 66.500000 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 67.000000 | \n",
+ " 162.500000 | \n",
+ " 71.000000 | \n",
+ " 45.500000 | \n",
+ " 19.000000 | \n",
+ " 9.500000 | \n",
+ " 279.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 2023.000000 | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 0.0 | \n",
+ " 3.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 76.000000 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 76.000000 | \n",
+ " 181.000000 | \n",
+ " 91.000000 | \n",
+ " 63.000000 | \n",
+ " 23.000000 | \n",
+ " 16.000000 | \n",
+ " 303.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
8 rows × 22 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe"
+ }
+ },
+ "metadata": {},
+ "execution_count": 7
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [],
+ "metadata": {
+ "id": "vdDXfn-3SYei"
+ },
+ "execution_count": null,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file
diff --git "a/Doa\303\247oes.ipynb" "b/Doa\303\247oes.ipynb"
new file mode 100644
index 0000000..c753806
--- /dev/null
+++ "b/Doa\303\247oes.ipynb"
@@ -0,0 +1,1464 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ukiFtFseRcr8"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df=pd.read_csv('/content/Relatório de Doação (Rio Grande do Norte) - Evolução 2001 - 2023 - Table 1 (2).csv')\n",
+ "df.head()"
+ ],
+ "metadata": {
+ "id": "fuVHKgthR-an"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#remover linha 0\n",
+ "df=df.drop(0)"
+ ],
+ "metadata": {
+ "id": "U582018WSGaq"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head(15)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 429
+ },
+ "id": "ZTwK0rcJSREd",
+ "outputId": "a48bb9fe-6caa-4512-b3bc-6a117317fb7a"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Ano Potencial Doador Potencial Doador (PMP) Doador Efetivo \\\n",
+ "2 2013 177 55,9 44 \n",
+ "3 2014 175 55,2 44 \n",
+ "4 2015 157 46,1 36 \n",
+ "5 2016 152 44,2 39 \n",
+ "6 2017 173 49,8 47 \n",
+ "7 2018 159 45,3 32 \n",
+ "8 2019 217 62,4 52 \n",
+ "9 2020 188 53,6 24 \n",
+ "10 2021 207 58,6 19 \n",
+ "11 2022 231 64,9 36 \n",
+ "12 2023 223 67,5 32 \n",
+ "\n",
+ " Doador Efetivo (PMP) Percentual de Efetivação Entrevista Familiar \\\n",
+ "2 13,9 24,9% 279 \n",
+ "3 13,9 25,1% 233 \n",
+ "4 10,6 22,9% 144 \n",
+ "5 11,3 25,7% 97 \n",
+ "6 13,5 27,2% 124 \n",
+ "7 9,1 20,1% 101 \n",
+ "8 14,9 24,0% 126 \n",
+ "9 6,8 12,8% 100 \n",
+ "10 5,4 9,2% 107 \n",
+ "11 10,1 15,6% 131 \n",
+ "12 9,7 14,3% 134 \n",
+ "\n",
+ " Negativa Familiar Negativa Familiar (%) \n",
+ "2 146 52,3% \n",
+ "3 105 45,1% \n",
+ "4 79 54,9% \n",
+ "5 53 54,6% \n",
+ "6 66 53,2% \n",
+ "7 71 70,3% \n",
+ "8 71 56,3% \n",
+ "9 64 64,0% \n",
+ "10 67 62,6% \n",
+ "11 88 67,2% \n",
+ "12 89 66,4% "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Ano | \n",
+ " Potencial Doador | \n",
+ " Potencial Doador (PMP) | \n",
+ " Doador Efetivo | \n",
+ " Doador Efetivo (PMP) | \n",
+ " Percentual de Efetivação | \n",
+ " Entrevista Familiar | \n",
+ " Negativa Familiar | \n",
+ " Negativa Familiar (%) | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 | \n",
+ " 2013 | \n",
+ " 177 | \n",
+ " 55,9 | \n",
+ " 44 | \n",
+ " 13,9 | \n",
+ " 24,9% | \n",
+ " 279 | \n",
+ " 146 | \n",
+ " 52,3% | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 2014 | \n",
+ " 175 | \n",
+ " 55,2 | \n",
+ " 44 | \n",
+ " 13,9 | \n",
+ " 25,1% | \n",
+ " 233 | \n",
+ " 105 | \n",
+ " 45,1% | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 2015 | \n",
+ " 157 | \n",
+ " 46,1 | \n",
+ " 36 | \n",
+ " 10,6 | \n",
+ " 22,9% | \n",
+ " 144 | \n",
+ " 79 | \n",
+ " 54,9% | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 2016 | \n",
+ " 152 | \n",
+ " 44,2 | \n",
+ " 39 | \n",
+ " 11,3 | \n",
+ " 25,7% | \n",
+ " 97 | \n",
+ " 53 | \n",
+ " 54,6% | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 2017 | \n",
+ " 173 | \n",
+ " 49,8 | \n",
+ " 47 | \n",
+ " 13,5 | \n",
+ " 27,2% | \n",
+ " 124 | \n",
+ " 66 | \n",
+ " 53,2% | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 2018 | \n",
+ " 159 | \n",
+ " 45,3 | \n",
+ " 32 | \n",
+ " 9,1 | \n",
+ " 20,1% | \n",
+ " 101 | \n",
+ " 71 | \n",
+ " 70,3% | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 2019 | \n",
+ " 217 | \n",
+ " 62,4 | \n",
+ " 52 | \n",
+ " 14,9 | \n",
+ " 24,0% | \n",
+ " 126 | \n",
+ " 71 | \n",
+ " 56,3% | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 2020 | \n",
+ " 188 | \n",
+ " 53,6 | \n",
+ " 24 | \n",
+ " 6,8 | \n",
+ " 12,8% | \n",
+ " 100 | \n",
+ " 64 | \n",
+ " 64,0% | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 2021 | \n",
+ " 207 | \n",
+ " 58,6 | \n",
+ " 19 | \n",
+ " 5,4 | \n",
+ " 9,2% | \n",
+ " 107 | \n",
+ " 67 | \n",
+ " 62,6% | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 2022 | \n",
+ " 231 | \n",
+ " 64,9 | \n",
+ " 36 | \n",
+ " 10,1 | \n",
+ " 15,6% | \n",
+ " 131 | \n",
+ " 88 | \n",
+ " 67,2% | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 2023 | \n",
+ " 223 | \n",
+ " 67,5 | \n",
+ " 32 | \n",
+ " 9,7 | \n",
+ " 14,3% | \n",
+ " 134 | \n",
+ " 89 | \n",
+ " 66,4% | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "repr_error": "0"
+ }
+ },
+ "metadata": {},
+ "execution_count": 13
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#renomer linhas\n",
+ "df=df.rename(columns={'Unnamed: 0':'Ano'})\n",
+ "df=df.rename(columns={'Unnamed: 1':'Potencial Doador'})\n",
+ "df=df.rename(columns={'Unnamed: 2':'Potencial Doador (PMP)'})\n",
+ "df=df.rename(columns={'Unnamed: 3':'Doador Efetivo'})\n",
+ "df=df.rename(columns={'Unnamed: 4':'Doador Efetivo (PMP)'})\n",
+ "df=df.rename(columns={'Unnamed: 5':'Percentual de Efetivação'})\n",
+ "df=df.rename(columns={'Unnamed: 6':'Entrevista Familiar'})\n",
+ "df=df.rename(columns={'Unnamed: 7':'Negativa Familiar'})\n",
+ "df=df.rename(columns={'Unnamed: 8':'Negativa Familiar (%)'})"
+ ],
+ "metadata": {
+ "id": "3QmX1pA5Sfw3"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#remover linha 1\n",
+ "df=df.drop(1)"
+ ],
+ "metadata": {
+ "id": "BsXDFw2GT54w"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.info()\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "UotjM4nMUNK0",
+ "outputId": "8bb09680-58b8-4f36-ade0-52e3344050e5"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\n",
+ "RangeIndex: 11 entries, 2 to 12\n",
+ "Data columns (total 9 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 Ano 11 non-null object\n",
+ " 1 Potencial Doador 11 non-null object\n",
+ " 2 Potencial Doador (PMP) 11 non-null object\n",
+ " 3 Doador Efetivo 11 non-null object\n",
+ " 4 Doador Efetivo (PMP) 11 non-null object\n",
+ " 5 Percentual de Efetivação 11 non-null object\n",
+ " 6 Entrevista Familiar 11 non-null object\n",
+ " 7 Negativa Familiar 11 non-null object\n",
+ " 8 Negativa Familiar (%) 11 non-null object\n",
+ "dtypes: object(9)\n",
+ "memory usage: 924.0+ bytes\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.describe()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 210
+ },
+ "id": "IEIQ05TvUUZ0",
+ "outputId": "246617e9-32bc-4e57-dbc2-26747e1f2c3f"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Ano Potencial Doador Potencial Doador (PMP) Doador Efetivo \\\n",
+ "count 11 11 11 11 \n",
+ "unique 11 11 11 8 \n",
+ "top 2013 177 55,9 44 \n",
+ "freq 1 1 1 2 \n",
+ "\n",
+ " Doador Efetivo (PMP) Percentual de Efetivação Entrevista Familiar \\\n",
+ "count 11 11 11 \n",
+ "unique 10 11 11 \n",
+ "top 13,9 24,9% 279 \n",
+ "freq 2 1 1 \n",
+ "\n",
+ " Negativa Familiar Negativa Familiar (%) \n",
+ "count 11 11 \n",
+ "unique 10 11 \n",
+ "top 71 52,3% \n",
+ "freq 2 1 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Ano | \n",
+ " Potencial Doador | \n",
+ " Potencial Doador (PMP) | \n",
+ " Doador Efetivo | \n",
+ " Doador Efetivo (PMP) | \n",
+ " Percentual de Efetivação | \n",
+ " Entrevista Familiar | \n",
+ " Negativa Familiar | \n",
+ " Negativa Familiar (%) | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 11 | \n",
+ "
\n",
+ " \n",
+ " unique | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 8 | \n",
+ " 10 | \n",
+ " 11 | \n",
+ " 11 | \n",
+ " 10 | \n",
+ " 11 | \n",
+ "
\n",
+ " \n",
+ " top | \n",
+ " 2013 | \n",
+ " 177 | \n",
+ " 55,9 | \n",
+ " 44 | \n",
+ " 13,9 | \n",
+ " 24,9% | \n",
+ " 279 | \n",
+ " 71 | \n",
+ " 52,3% | \n",
+ "
\n",
+ " \n",
+ " freq | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"Ano\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"1970-01-01 00:00:00.000000001\",\n \"max\": \"2013-01-01 00:00:00\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"11\",\n \"2013\",\n \"1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Potencial Doador\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"11\",\n \"177\",\n \"1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Potencial Doador (PMP)\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"1970-01-01 00:00:00.000000001\",\n \"max\": \"2055-01-01 00:00:00\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"11\",\n \"55,9\",\n \"1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Doador Efetivo\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n 8,\n \"2\",\n \"11\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Doador Efetivo (PMP)\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n 10,\n \"2\",\n \"11\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Percentual de Efetiva\\u00e7\\u00e3o\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"11\",\n \"24,9%\",\n \"1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Entrevista Familiar\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"11\",\n \"279\",\n \"1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Negativa Familiar\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n 10,\n \"2\",\n \"11\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Negativa Familiar (%)\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"11\",\n \"52,3%\",\n \"1\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 15
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#salvar dataset\n",
+ "df.to_csv('Relatório de Doação (Rio Grande do Norte) - Evolução 2001 - 2023 - Table 1 (2).csv', index=False)"
+ ],
+ "metadata": {
+ "id": "NgW2sVSlUeN1"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#fazer dowload\n",
+ "from google.colab import files\n",
+ "files.download('Relatório de Doação (Rio Grande do Norte) - Evolução 2001 - 2023 - Table 1 (2).csv')"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 17
+ },
+ "id": "SgU4a3shU4iD",
+ "outputId": "b7c9982a-3152-4d5f-c9f4-63c72a411581"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "application/javascript": [
+ "\n",
+ " async function download(id, filename, size) {\n",
+ " if (!google.colab.kernel.accessAllowed) {\n",
+ " return;\n",
+ " }\n",
+ " const div = document.createElement('div');\n",
+ " const label = document.createElement('label');\n",
+ " label.textContent = `Downloading \"${filename}\": `;\n",
+ " div.appendChild(label);\n",
+ " const progress = document.createElement('progress');\n",
+ " progress.max = size;\n",
+ " div.appendChild(progress);\n",
+ " document.body.appendChild(div);\n",
+ "\n",
+ " const buffers = [];\n",
+ " let downloaded = 0;\n",
+ "\n",
+ " const channel = await google.colab.kernel.comms.open(id);\n",
+ " // Send a message to notify the kernel that we're ready.\n",
+ " channel.send({})\n",
+ "\n",
+ " for await (const message of channel.messages) {\n",
+ " // Send a message to notify the kernel that we're ready.\n",
+ " channel.send({})\n",
+ " if (message.buffers) {\n",
+ " for (const buffer of message.buffers) {\n",
+ " buffers.push(buffer);\n",
+ " downloaded += buffer.byteLength;\n",
+ " progress.value = downloaded;\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " const blob = new Blob(buffers, {type: 'application/binary'});\n",
+ " const a = document.createElement('a');\n",
+ " a.href = window.URL.createObjectURL(blob);\n",
+ " a.download = filename;\n",
+ " div.appendChild(a);\n",
+ " a.click();\n",
+ " div.remove();\n",
+ " }\n",
+ " "
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "application/javascript": [
+ "download(\"download_f916373f-8b6d-46f5-b457-bbe87c562717\", \"Relat\\u00f3rio de Doa\\u00e7\\u00e3o (Rio Grande do Norte) - Evolu\\u00e7\\u00e3o 2001 - 2023 - Table 1 (2).csv\", 702)"
+ ]
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head(15)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 429
+ },
+ "id": "uDmry0DDVZZ1",
+ "outputId": "41ae621d-5f03-42f2-8b90-558342dd741d"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Ano Potencial Doador Potencial Doador (PMP) Doador Efetivo \\\n",
+ "2 2013 177 55,9 44 \n",
+ "3 2014 175 55,2 44 \n",
+ "4 2015 157 46,1 36 \n",
+ "5 2016 152 44,2 39 \n",
+ "6 2017 173 49,8 47 \n",
+ "7 2018 159 45,3 32 \n",
+ "8 2019 217 62,4 52 \n",
+ "9 2020 188 53,6 24 \n",
+ "10 2021 207 58,6 19 \n",
+ "11 2022 231 64,9 36 \n",
+ "12 2023 223 67,5 32 \n",
+ "\n",
+ " Doador Efetivo (PMP) Percentual de Efetivação Entrevista Familiar \\\n",
+ "2 13,9 24,9% 279 \n",
+ "3 13,9 25,1% 233 \n",
+ "4 10,6 22,9% 144 \n",
+ "5 11,3 25,7% 97 \n",
+ "6 13,5 27,2% 124 \n",
+ "7 9,1 20,1% 101 \n",
+ "8 14,9 24,0% 126 \n",
+ "9 6,8 12,8% 100 \n",
+ "10 5,4 9,2% 107 \n",
+ "11 10,1 15,6% 131 \n",
+ "12 9,7 14,3% 134 \n",
+ "\n",
+ " Negativa Familiar Negativa Familiar (%) \n",
+ "2 146 52,3% \n",
+ "3 105 45,1% \n",
+ "4 79 54,9% \n",
+ "5 53 54,6% \n",
+ "6 66 53,2% \n",
+ "7 71 70,3% \n",
+ "8 71 56,3% \n",
+ "9 64 64,0% \n",
+ "10 67 62,6% \n",
+ "11 88 67,2% \n",
+ "12 89 66,4% "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Ano | \n",
+ " Potencial Doador | \n",
+ " Potencial Doador (PMP) | \n",
+ " Doador Efetivo | \n",
+ " Doador Efetivo (PMP) | \n",
+ " Percentual de Efetivação | \n",
+ " Entrevista Familiar | \n",
+ " Negativa Familiar | \n",
+ " Negativa Familiar (%) | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 | \n",
+ " 2013 | \n",
+ " 177 | \n",
+ " 55,9 | \n",
+ " 44 | \n",
+ " 13,9 | \n",
+ " 24,9% | \n",
+ " 279 | \n",
+ " 146 | \n",
+ " 52,3% | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 2014 | \n",
+ " 175 | \n",
+ " 55,2 | \n",
+ " 44 | \n",
+ " 13,9 | \n",
+ " 25,1% | \n",
+ " 233 | \n",
+ " 105 | \n",
+ " 45,1% | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 2015 | \n",
+ " 157 | \n",
+ " 46,1 | \n",
+ " 36 | \n",
+ " 10,6 | \n",
+ " 22,9% | \n",
+ " 144 | \n",
+ " 79 | \n",
+ " 54,9% | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 2016 | \n",
+ " 152 | \n",
+ " 44,2 | \n",
+ " 39 | \n",
+ " 11,3 | \n",
+ " 25,7% | \n",
+ " 97 | \n",
+ " 53 | \n",
+ " 54,6% | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 2017 | \n",
+ " 173 | \n",
+ " 49,8 | \n",
+ " 47 | \n",
+ " 13,5 | \n",
+ " 27,2% | \n",
+ " 124 | \n",
+ " 66 | \n",
+ " 53,2% | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 2018 | \n",
+ " 159 | \n",
+ " 45,3 | \n",
+ " 32 | \n",
+ " 9,1 | \n",
+ " 20,1% | \n",
+ " 101 | \n",
+ " 71 | \n",
+ " 70,3% | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 2019 | \n",
+ " 217 | \n",
+ " 62,4 | \n",
+ " 52 | \n",
+ " 14,9 | \n",
+ " 24,0% | \n",
+ " 126 | \n",
+ " 71 | \n",
+ " 56,3% | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 2020 | \n",
+ " 188 | \n",
+ " 53,6 | \n",
+ " 24 | \n",
+ " 6,8 | \n",
+ " 12,8% | \n",
+ " 100 | \n",
+ " 64 | \n",
+ " 64,0% | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 2021 | \n",
+ " 207 | \n",
+ " 58,6 | \n",
+ " 19 | \n",
+ " 5,4 | \n",
+ " 9,2% | \n",
+ " 107 | \n",
+ " 67 | \n",
+ " 62,6% | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 2022 | \n",
+ " 231 | \n",
+ " 64,9 | \n",
+ " 36 | \n",
+ " 10,1 | \n",
+ " 15,6% | \n",
+ " 131 | \n",
+ " 88 | \n",
+ " 67,2% | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 2023 | \n",
+ " 223 | \n",
+ " 67,5 | \n",
+ " 32 | \n",
+ " 9,7 | \n",
+ " 14,3% | \n",
+ " 134 | \n",
+ " 89 | \n",
+ " 66,4% | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "repr_error": "0"
+ }
+ },
+ "metadata": {},
+ "execution_count": 18
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [],
+ "metadata": {
+ "id": "jHI-k503S9KP"
+ },
+ "execution_count": null,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file
diff --git a/ListadeEspera.ipynb b/ListadeEspera.ipynb
new file mode 100644
index 0000000..3a57ccf
--- /dev/null
+++ b/ListadeEspera.ipynb
@@ -0,0 +1,1082 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "SYnuQq8zY86k"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df=pd.read_csv('/content/Relatório de lista de espera por um transplante de órgão ou córnea (Rio Grande do Norte) - Série histórica 2008-2023 - Table 1.csv')\n"
+ ],
+ "metadata": {
+ "id": "sG7Rs6IaZUaN"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head(10)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 363
+ },
+ "id": "1dD_TBYnZpew",
+ "outputId": "dd26b436-c017-4520-b348-726b7fe830a0"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Ano Coração Fígado Pulmão Rim Pâncreas Pâncreas Rim Intestino \\\n",
+ "0 2013 0 5 0 61 0 0 0 \n",
+ "1 2014 0 0 0 153 0 0 0 \n",
+ "2 2015 0 0 0 180 0 0 0 \n",
+ "3 2016 0 0 0 162 0 0 0 \n",
+ "4 2017 0 0 0 165 0 0 0 \n",
+ "5 2018 0 0 0 299 0 0 0 \n",
+ "6 2019 0 0 0 306 0 0 0 \n",
+ "7 2020 0 0 0 278 0 0 0 \n",
+ "8 2021 1 0 0 301 0 0 0 \n",
+ "9 2022 3 0 0 307 0 0 0 \n",
+ "\n",
+ " Multivisceral SubTotal Córnea Total \n",
+ "0 0 66 73 139 \n",
+ "1 0 153 55 208 \n",
+ "2 0 180 66 246 \n",
+ "3 0 162 149 311 \n",
+ "4 0 165 180 345 \n",
+ "5 0 299 201 500 \n",
+ "6 0 306 296 602 \n",
+ "7 0 278 378 656 \n",
+ "8 0 302 479 781 \n",
+ "9 0 310 541 851 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Ano | \n",
+ " Coração | \n",
+ " Fígado | \n",
+ " Pulmão | \n",
+ " Rim | \n",
+ " Pâncreas | \n",
+ " Pâncreas Rim | \n",
+ " Intestino | \n",
+ " Multivisceral | \n",
+ " SubTotal | \n",
+ " Córnea | \n",
+ " Total | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 2013 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 61 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 66 | \n",
+ " 73 | \n",
+ " 139 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2014 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 153 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 153 | \n",
+ " 55 | \n",
+ " 208 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2015 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 180 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 180 | \n",
+ " 66 | \n",
+ " 246 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 2016 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 162 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 162 | \n",
+ " 149 | \n",
+ " 311 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 2017 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 165 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 165 | \n",
+ " 180 | \n",
+ " 345 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 2018 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 299 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 299 | \n",
+ " 201 | \n",
+ " 500 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 2019 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 306 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 306 | \n",
+ " 296 | \n",
+ " 602 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 2020 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 278 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 278 | \n",
+ " 378 | \n",
+ " 656 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 2021 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 301 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 302 | \n",
+ " 479 | \n",
+ " 781 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 2022 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 307 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 310 | \n",
+ " 541 | \n",
+ " 851 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 11,\n \"fields\": [\n {\n \"column\": \"Ano\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 2013,\n \"max\": 2023,\n \"num_unique_values\": 11,\n \"samples\": [\n 2018,\n 2013,\n 2022\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cora\\u00e7\\u00e3o\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 0,\n 1,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\\u00edgado\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 5,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Pulm\\u00e3o\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Rim\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 89,\n \"min\": 61,\n \"max\": 330,\n \"num_unique_values\": 11,\n \"samples\": [\n 299\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"P\\u00e2ncreas\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"P\\u00e2ncreas Rim\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Intestino\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Multivisceral\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SubTotal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 88,\n \"min\": 66,\n \"max\": 331,\n \"num_unique_values\": 11,\n \"samples\": [\n 299\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\\u00f3rnea\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 195,\n \"min\": 55,\n \"max\": 584,\n \"num_unique_values\": 11,\n \"samples\": [\n 201\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 273,\n \"min\": 139,\n \"max\": 915,\n \"num_unique_values\": 11,\n \"samples\": [\n 500\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 6
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.info()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "CzE0vFSCZyla",
+ "outputId": "4eec21a2-bc8b-4a3a-a4d8-cc45a45a5ae4"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\n",
+ "RangeIndex: 11 entries, 0 to 10\n",
+ "Data columns (total 12 columns):\n",
+ " # Column Non-Null Count Dtype\n",
+ "--- ------ -------------- -----\n",
+ " 0 Ano 11 non-null int64\n",
+ " 1 Coração 11 non-null int64\n",
+ " 2 Fígado 11 non-null int64\n",
+ " 3 Pulmão 11 non-null int64\n",
+ " 4 Rim 11 non-null int64\n",
+ " 5 Pâncreas 11 non-null int64\n",
+ " 6 Pâncreas Rim 11 non-null int64\n",
+ " 7 Intestino 11 non-null int64\n",
+ " 8 Multivisceral 11 non-null int64\n",
+ " 9 SubTotal 11 non-null int64\n",
+ " 10 Córnea 11 non-null int64\n",
+ " 11 Total 11 non-null int64\n",
+ "dtypes: int64(12)\n",
+ "memory usage: 1.2 KB\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.describe()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 338
+ },
+ "id": "J3AdSjjeZ1Ra",
+ "outputId": "074cd8f0-7802-40d2-8ae1-e2a5dae1c4ea"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " Ano Coração Fígado Pulmão Rim Pâncreas \\\n",
+ "count 11.000000 11.000000 11.000000 11.0 11.000000 11.0 \n",
+ "mean 2018.000000 0.454545 0.454545 0.0 231.090909 0.0 \n",
+ "std 3.316625 0.934199 1.507557 0.0 89.239514 0.0 \n",
+ "min 2013.000000 0.000000 0.000000 0.0 61.000000 0.0 \n",
+ "25% 2015.500000 0.000000 0.000000 0.0 163.500000 0.0 \n",
+ "50% 2018.000000 0.000000 0.000000 0.0 278.000000 0.0 \n",
+ "75% 2020.500000 0.500000 0.000000 0.0 303.500000 0.0 \n",
+ "max 2023.000000 3.000000 5.000000 0.0 330.000000 0.0 \n",
+ "\n",
+ " Pâncreas Rim Intestino Multivisceral SubTotal Córnea \\\n",
+ "count 11.0 11.0 11.0 11.000000 11.000000 \n",
+ "mean 0.0 0.0 0.0 232.000000 272.909091 \n",
+ "std 0.0 0.0 0.0 88.744577 195.478109 \n",
+ "min 0.0 0.0 0.0 66.000000 55.000000 \n",
+ "25% 0.0 0.0 0.0 163.500000 111.000000 \n",
+ "50% 0.0 0.0 0.0 278.000000 201.000000 \n",
+ "75% 0.0 0.0 0.0 304.000000 428.500000 \n",
+ "max 0.0 0.0 0.0 331.000000 584.000000 \n",
+ "\n",
+ " Total \n",
+ "count 11.000000 \n",
+ "mean 504.909091 \n",
+ "std 273.625457 \n",
+ "min 139.000000 \n",
+ "25% 278.500000 \n",
+ "50% 500.000000 \n",
+ "75% 718.500000 \n",
+ "max 915.000000 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Ano | \n",
+ " Coração | \n",
+ " Fígado | \n",
+ " Pulmão | \n",
+ " Rim | \n",
+ " Pâncreas | \n",
+ " Pâncreas Rim | \n",
+ " Intestino | \n",
+ " Multivisceral | \n",
+ " SubTotal | \n",
+ " Córnea | \n",
+ " Total | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.0 | \n",
+ " 11.000000 | \n",
+ " 11.0 | \n",
+ " 11.0 | \n",
+ " 11.0 | \n",
+ " 11.0 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 2018.000000 | \n",
+ " 0.454545 | \n",
+ " 0.454545 | \n",
+ " 0.0 | \n",
+ " 231.090909 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 232.000000 | \n",
+ " 272.909091 | \n",
+ " 504.909091 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 3.316625 | \n",
+ " 0.934199 | \n",
+ " 1.507557 | \n",
+ " 0.0 | \n",
+ " 89.239514 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 88.744577 | \n",
+ " 195.478109 | \n",
+ " 273.625457 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 2013.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 61.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 66.000000 | \n",
+ " 55.000000 | \n",
+ " 139.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 2015.500000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 163.500000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 163.500000 | \n",
+ " 111.000000 | \n",
+ " 278.500000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 2018.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 278.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 278.000000 | \n",
+ " 201.000000 | \n",
+ " 500.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 2020.500000 | \n",
+ " 0.500000 | \n",
+ " 0.000000 | \n",
+ " 0.0 | \n",
+ " 303.500000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 304.000000 | \n",
+ " 428.500000 | \n",
+ " 718.500000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 2023.000000 | \n",
+ " 3.000000 | \n",
+ " 5.000000 | \n",
+ " 0.0 | \n",
+ " 330.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 331.000000 | \n",
+ " 584.000000 | \n",
+ " 915.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"Ano\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 930.8458868946966,\n \"min\": 3.3166247903554,\n \"max\": 2023.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 11.0,\n 2018.0,\n 2020.5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cora\\u00e7\\u00e3o\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.7753488932593515,\n \"min\": 0.0,\n \"max\": 11.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 11.0,\n 0.45454545454545453,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"F\\u00edgado\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.9306433409067414,\n \"min\": 0.0,\n \"max\": 11.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.45454545454545453,\n 5.0,\n 1.507556722888818\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Pulm\\u00e3o\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.8890872965260113,\n \"min\": 0.0,\n \"max\": 11.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.0,\n 11.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Rim\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 120.1813378396474,\n \"min\": 11.0,\n \"max\": 330.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 231.0909090909091,\n 278.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"P\\u00e2ncreas\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.8890872965260113,\n \"min\": 0.0,\n \"max\": 11.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.0,\n 11.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"P\\u00e2ncreas Rim\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.8890872965260113,\n \"min\": 0.0,\n \"max\": 11.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.0,\n 11.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Intestino\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.8890872965260113,\n \"min\": 0.0,\n \"max\": 11.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.0,\n 11.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Multivisceral\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.8890872965260113,\n \"min\": 0.0,\n \"max\": 11.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.0,\n 11.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SubTotal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 119.81844348132738,\n \"min\": 11.0,\n \"max\": 331.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 232.0,\n 278.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C\\u00f3rnea\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 193.20404102787063,\n \"min\": 11.0,\n \"max\": 584.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 272.90909090909093,\n 201.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 301.2780389983992,\n \"min\": 11.0,\n \"max\": 915.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 504.90909090909093,\n 500.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 5
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#salvar dataset\n",
+ "df.to_csv('dataset.csv', index=False)\n"
+ ],
+ "metadata": {
+ "id": "7gEPE87-aBGc"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#fazer dowload\n",
+ "from google.colab import files\n",
+ "files.download('dataset.csv')"
+ ],
+ "metadata": {
+ "id": "MgWXsfDEaZn-",
+ "outputId": "245feceb-d600-42ca-af7a-9860fb0a83e3",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 17
+ }
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "application/javascript": [
+ "\n",
+ " async function download(id, filename, size) {\n",
+ " if (!google.colab.kernel.accessAllowed) {\n",
+ " return;\n",
+ " }\n",
+ " const div = document.createElement('div');\n",
+ " const label = document.createElement('label');\n",
+ " label.textContent = `Downloading \"${filename}\": `;\n",
+ " div.appendChild(label);\n",
+ " const progress = document.createElement('progress');\n",
+ " progress.max = size;\n",
+ " div.appendChild(progress);\n",
+ " document.body.appendChild(div);\n",
+ "\n",
+ " const buffers = [];\n",
+ " let downloaded = 0;\n",
+ "\n",
+ " const channel = await google.colab.kernel.comms.open(id);\n",
+ " // Send a message to notify the kernel that we're ready.\n",
+ " channel.send({})\n",
+ "\n",
+ " for await (const message of channel.messages) {\n",
+ " // Send a message to notify the kernel that we're ready.\n",
+ " channel.send({})\n",
+ " if (message.buffers) {\n",
+ " for (const buffer of message.buffers) {\n",
+ " buffers.push(buffer);\n",
+ " downloaded += buffer.byteLength;\n",
+ " progress.value = downloaded;\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " const blob = new Blob(buffers, {type: 'application/binary'});\n",
+ " const a = document.createElement('a');\n",
+ " a.href = window.URL.createObjectURL(blob);\n",
+ " a.download = filename;\n",
+ " div.appendChild(a);\n",
+ " a.click();\n",
+ " div.remove();\n",
+ " }\n",
+ " "
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "application/javascript": [
+ "download(\"download_ca4f65ad-e133-4659-9467-9807a3014b74\", \"dataset.csv\", 485)"
+ ]
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df=pd.read_csv('/content/dataset.csv')\n",
+ "df.head(10)"
+ ],
+ "metadata": {
+ "id": "wpiupbNOWtlh"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#grafico ano\n"
+ ],
+ "metadata": {
+ "id": "8bDdilS4XU33"
+ },
+ "execution_count": null,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file
diff --git a/README.md b/README.md
index 6f06bd0..8a9dbf3 100644
--- a/README.md
+++ b/README.md
@@ -1,104 +1,104 @@
-
-
-
-
-# Tema da Aula
-
-Turma Online 34 | Python | Semanas 17 e 18 | 2024 | [Daniele Junior](https://travatech.com.br?router=danijr)
-
-### Instruções
-Antes de começar, vamos organizar nosso setup.
-* Fork esse repositório
-* Clone o fork na sua máquina (Para isso basta abrir o seu terminal e digitar `git clone url-do-seu-repositorio-forkado`)
-* Entre na pasta do seu repositório (Para isso basta abrir o seu terminal e digitar `cd nome-do-seu-repositorio-forkado`)
-* [Add outras instruções caso necessário]
-
-### Resumo
-O que veremos na aula de hoje?
-* [Slide Semana 17](https://docs.google.com/presentation/d/1axo2Dlm0Hx35ahKdZW6s-UAdG61L41QXdete8ZcQV0w/edit?usp=sharing)
-* Slide Semana 18
-
-* [Escolhendo uma fonte de dados](#Escolhendoumafontededados)
-* Análise exploratória
-* Criando uma história com dados
-
-## Conteúdo
-
-### O que é um projeto de análise de dados?
-Nesse ponto vocês já aprenderam que ter dados não é a mesma coisa que ter informação.
-**Dados:** são elementos brutos e não processados, como números, palavras, ou símbolos que precisam ser interpretados para se tornarem úteis.
-**Informação:** é o resultado do processamento, organização e interpretação dos dados, fornecendo significado e contexto para tomar decisões ou entender situações.
-Assim, dados são a matéria-prima da informação, que é o produto final após análise e interpretação dos dados.
-
-Por isso a importância de nós contarmos uma história estruturada a partir dos dados que conseguimos coletar. E é exatamente sobre isso, que se trata um projeto de análise de dados: **gerar informação útil a partir da construção de uma perspectiva contextualizada!**
-
-Então aqui vão algumas perguntas gerais que devemos nos fazer ao iniciar um projeto como esse:
-
-- **Conteúdo**
- - O que eu quero informar?
-- **Público**
- - Para quem eu estou contanto essa história? Com quem vou compartilhar essa informação?
-- **Transformação**
- - Por que essa informação é relevante?
-
-Ok, as perguntas são importantes,
-
-MAS POR ONDE COMEÇAR?!
-
-### Escolhendo uma fonte de dados
-
-#### O caminho comum
-Se você já fez algum tipo de pesquisa acadêmica (TCC, Iniciação Científica, etc) você certamente está familiarizado com esse processo, pois tudo começa com a escolha de um TEMA, seguindo para a definição do PROBLEMA, que em seguida é desdobrado em PERGUNTAS, que irão guiar a COLETA DE DADOS.
-
-1. Delimitação do Tema
-2. Definição do Problema
-3. Desenvolvimento de Perguntas
-4. Coleta de Dados
-
-#### O caminho que iremos seguir
-Porque esse projeto é um exercício e encontrar os dados ideais para responder às nossas perguntas pode se tornar um trabalho extremamente complexo...
-
-Nós iremos fazer um caminho um pouco diferente e a partir de um tema de interesse, escolher uma base e então pensar quais perguntas podem ser respondidas a partir dela.
-
-O QUE TAMBÉM É SUPER VÁLIDO! E PODE RENDER DESCOBERTAS INCRÍVEIS!
-
- * **Escolha do tema**
-
- No primeiro momento você deve escolher qual assunto gostaria de abordar. Pense em um tema atual, relevante e até onde você vai aprofundar a análise. Lembre-se, não adianta abraçar o mundo sozinho, você precisa focar e entregar o melhor resultado possível, então trabalhe na delimitação do Tema! Quais são os recortes possíveis dentro do universo escolhido?
-
- #Dica: Dê prioridade para algo que você goste, se interesse, tenha afinidade ou conhecimento na área.
-
- * **Escolha da Base de Dados**
-
- [Algumas opções de Bases de Dados](#base-de-dados)
-
-* **Definindo nossas perguntas**
-
- O que eu quero tentar responder? VAMOS AO [BRAINSTORM](#material-da-aula)!
-
-***
-
-### Material da aula
-
-* [Slides](https://docs.google.com/presentation/d/1axo2Dlm0Hx35ahKdZW6s-UAdG61L41QXdete8ZcQV0w/edit?usp=sharing)
-
-### Links Úteis
-- [Documentação Pandas](https://pandas.pydata.org/docs/user_guide/index.html#user-guide)
-- [Introdução ao Pandas](https://medium.com/tech-grupozap/introdu%C3%A7%C3%A3o-a-biblioteca-pandas-89fa8ed4fa38)
-- [Análise Exploratória de Dados I](https://escoladedados.org/tutoriais/analise-exploratoria-de-dados/)
-- [Análise Exploratória de Dados II](https://www.alura.com.br/artigos/analise-exploratoria)
-- [Storytelling com Dados](https://medium.com/resumos-resenhas/storytelling-com-dados-resumo-fd63ebe4f704)
-- [Markdown Cheastsheet](https://www.ibm.com/docs/en/watson-studio-local/1.2.3?topic=notebooks-markdown-jupyter-cheatsheet)
-
- #### Base de Dados
-- [Kaggle](https://www.kaggle.com/datasets)
-- [IBGE](https://ces.ibge.gov.br/base-de-dados/links-base-de-dados.html)
-- [Brasil.io](https://brasil.io/datasets/)
-- [Gov.br](https://dados.gov.br/dados/conjuntos-dados)
-- [Nosso Mundo em Dados](https://ourworldindata.org/charts)
-
-
-Desenvolvido com :purple_heart:
-
-
-
+
+
+
+
+# Tema da Aula
+
+Turma Online 34 | Python | Semanas 17 e 18 | 2024 | [Daniele Junior](https://travatech.com.br?router=danijr)
+
+### Instruções
+Antes de começar, vamos organizar nosso setup.
+* Fork esse repositório
+* Clone o fork na sua máquina (Para isso basta abrir o seu terminal e digitar `git clone url-do-seu-repositorio-forkado`)
+* Entre na pasta do seu repositório (Para isso basta abrir o seu terminal e digitar `cd nome-do-seu-repositorio-forkado`)
+* [Add outras instruções caso necessário]
+
+### Resumo
+O que veremos na aula de hoje?
+* [Slide Semana 17](https://docs.google.com/presentation/d/1axo2Dlm0Hx35ahKdZW6s-UAdG61L41QXdete8ZcQV0w/edit?usp=sharing)
+* Slide Semana 18
+
+* [Escolhendo uma fonte de dados](#Escolhendoumafontededados)
+* Análise exploratória
+* Criando uma história com dados
+
+## Conteúdo
+
+### O que é um projeto de análise de dados?
+Nesse ponto vocês já aprenderam que ter dados não é a mesma coisa que ter informação.
+**Dados:** são elementos brutos e não processados, como números, palavras, ou símbolos que precisam ser interpretados para se tornarem úteis.
+**Informação:** é o resultado do processamento, organização e interpretação dos dados, fornecendo significado e contexto para tomar decisões ou entender situações.
+Assim, dados são a matéria-prima da informação, que é o produto final após análise e interpretação dos dados.
+
+Por isso a importância de nós contarmos uma história estruturada a partir dos dados que conseguimos coletar. E é exatamente sobre isso, que se trata um projeto de análise de dados: **gerar informação útil a partir da construção de uma perspectiva contextualizada!**
+
+Então aqui vão algumas perguntas gerais que devemos nos fazer ao iniciar um projeto como esse:
+
+- **Conteúdo**
+ - O que eu quero informar?
+- **Público**
+ - Para quem eu estou contanto essa história? Com quem vou compartilhar essa informação?
+- **Transformação**
+ - Por que essa informação é relevante?
+
+Ok, as perguntas são importantes,
+
+MAS POR ONDE COMEÇAR?!
+
+### Escolhendo uma fonte de dados
+
+#### O caminho comum
+Se você já fez algum tipo de pesquisa acadêmica (TCC, Iniciação Científica, etc) você certamente está familiarizado com esse processo, pois tudo começa com a escolha de um TEMA, seguindo para a definição do PROBLEMA, que em seguida é desdobrado em PERGUNTAS, que irão guiar a COLETA DE DADOS.
+
+1. Delimitação do Tema
+2. Definição do Problema
+3. Desenvolvimento de Perguntas
+4. Coleta de Dados
+
+#### O caminho que iremos seguir
+Porque esse projeto é um exercício e encontrar os dados ideais para responder às nossas perguntas pode se tornar um trabalho extremamente complexo...
+
+Nós iremos fazer um caminho um pouco diferente e a partir de um tema de interesse, escolher uma base e então pensar quais perguntas podem ser respondidas a partir dela.
+
+O QUE TAMBÉM É SUPER VÁLIDO! E PODE RENDER DESCOBERTAS INCRÍVEIS!
+
+ * **Escolha do tema**
+
+ No primeiro momento você deve escolher qual assunto gostaria de abordar. Pense em um tema atual, relevante e até onde você vai aprofundar a análise. Lembre-se, não adianta abraçar o mundo sozinho, você precisa focar e entregar o melhor resultado possível, então trabalhe na delimitação do Tema! Quais são os recortes possíveis dentro do universo escolhido?
+
+ #Dica: Dê prioridade para algo que você goste, se interesse, tenha afinidade ou conhecimento na área.
+
+ * **Escolha da Base de Dados**
+
+ [Algumas opções de Bases de Dados](#base-de-dados)
+
+* **Definindo nossas perguntas**
+
+ O que eu quero tentar responder? VAMOS AO [BRAINSTORM](#material-da-aula)!
+
+***
+
+### Material da aula
+
+* [Slides](https://docs.google.com/presentation/d/1axo2Dlm0Hx35ahKdZW6s-UAdG61L41QXdete8ZcQV0w/edit?usp=sharing)
+
+### Links Úteis
+- [Documentação Pandas](https://pandas.pydata.org/docs/user_guide/index.html#user-guide)
+- [Introdução ao Pandas](https://medium.com/tech-grupozap/introdu%C3%A7%C3%A3o-a-biblioteca-pandas-89fa8ed4fa38)
+- [Análise Exploratória de Dados I](https://escoladedados.org/tutoriais/analise-exploratoria-de-dados/)
+- [Análise Exploratória de Dados II](https://www.alura.com.br/artigos/analise-exploratoria)
+- [Storytelling com Dados](https://medium.com/resumos-resenhas/storytelling-com-dados-resumo-fd63ebe4f704)
+- [Markdown Cheastsheet](https://www.ibm.com/docs/en/watson-studio-local/1.2.3?topic=notebooks-markdown-jupyter-cheatsheet)
+
+ #### Base de Dados
+- [Kaggle](https://www.kaggle.com/datasets)
+- [IBGE](https://ces.ibge.gov.br/base-de-dados/links-base-de-dados.html)
+- [Brasil.io](https://brasil.io/datasets/)
+- [Gov.br](https://dados.gov.br/dados/conjuntos-dados)
+- [Nosso Mundo em Dados](https://ourworldindata.org/charts)
+
+
+Desenvolvido com :purple_heart:
+
+
+
diff --git "a/Relat\303\263rio de Doa\303\247\303\243o (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023 - Table 1 (2).csv" "b/Relat\303\263rio de Doa\303\247\303\243o (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023 - Table 1 (2).csv"
new file mode 100644
index 0000000..38171ee
--- /dev/null
+++ "b/Relat\303\263rio de Doa\303\247\303\243o (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023 - Table 1 (2).csv"
@@ -0,0 +1,12 @@
+Ano,Potencial Doador,Potencial Doador (PMP),Doador Efetivo,Doador Efetivo (PMP),Percentual de Efetivação,Entrevista Familiar,Negativa Familiar,Negativa Familiar (%)
+2013,177,"55,9",44,"13,9","24,9%",279,146,"52,3%"
+2014,175,"55,2",44,"13,9","25,1%",233,105,"45,1%"
+2015,157,"46,1",36,"10,6","22,9%",144,79,"54,9%"
+2016,152,"44,2",39,"11,3","25,7%",97,53,"54,6%"
+2017,173,"49,8",47,"13,5","27,2%",124,66,"53,2%"
+2018,159,"45,3",32,"9,1","20,1%",101,71,"70,3%"
+2019,217,"62,4",52,"14,9","24,0%",126,71,"56,3%"
+2020,188,"53,6",24,"6,8","12,8%",100,64,"64,0%"
+2021,207,"58,6",19,"5,4","9,2%",107,67,"62,6%"
+2022,231,"64,9",36,"10,1","15,6%",131,88,"67,2%"
+2023,223,"67,5",32,"9,7","14,3%",134,89,"66,4%"
diff --git "a/Relat\303\263rio de Doa\303\247\303\243o (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023.pdf" "b/Relat\303\263rio de Doa\303\247\303\243o (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023.pdf"
new file mode 100644
index 0000000..82e4d37
Binary files /dev/null and "b/Relat\303\263rio de Doa\303\247\303\243o (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023.pdf" differ
diff --git "a/Relat\303\263rio de Transplantes Realizados (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023 - Table 1 (1).csv" "b/Relat\303\263rio de Transplantes Realizados (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023 - Table 1 (1).csv"
new file mode 100644
index 0000000..f4479c0
--- /dev/null
+++ "b/Relat\303\263rio de Transplantes Realizados (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023 - Table 1 (1).csv"
@@ -0,0 +1,12 @@
+Ano,Coração,Fígado,Figado vivo,Figado falecido,Pancreas,Pulmão,Pulmão vivo,Pulmão falecido,Rim,Rim vivo,Rim falecido,Pancreas rim,Intestino Isolado,Multivisceral,Total Orgãos,Córnea,Médula óssea,MO Autólogo,Mo Aparentado,Mo Nap,Total Geral
+2013,0,3,0,3,0,0,0,0,60,5,55,0,0,0,63,181,50,21,20,9,294
+2014,2,2,0,2,0,0,0,0,66,7,59,0,0,0,70,141,60,31,17,12,271
+2015,0,0,0,0,0,0,0,0,67,7,60,0,0,0,67,131,39,20,10,9,237
+2016,0,0,0,0,0,0,0,0,67,11,56,0,0,0,67,104,57,24,17,16,228
+2017,0,0,0,0,0,0,0,0,60,12,48,0,0,0,60,177,1,1,0,0,238
+2018,0,0,0,0,0,0,0,0,45,6,39,0,0,0,45,166,59,42,9,8,270
+2019,0,0,0,0,0,0,0,0,76,9,67,0,0,0,76,140,71,49,14,8,287
+2020,0,0,0,0,0,0,0,0,48,7,41,0,0,0,48,92,91,63,21,7,231
+2021,0,0,0,0,0,0,0,0,18,3,15,0,0,0,18,97,71,40,23,8,186
+2022,2,0,0,0,0,0,0,0,48,9,39,0,0,0,50,135,52,27,15,10,237
+2023,4,0,0,0,0,0,0,0,53,7,46,0,0,0,57,159,87,62,18,7,303
diff --git "a/Relat\303\263rio de Transplantes Realizados (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023.pdf" "b/Relat\303\263rio de Transplantes Realizados (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023.pdf"
new file mode 100644
index 0000000..5a805b2
Binary files /dev/null and "b/Relat\303\263rio de Transplantes Realizados (Rio Grande do Norte) - Evolu\303\247\303\243o 2001 - 2023.pdf" differ
diff --git "a/Relat\303\263rio de lista de espera por um transplante de \303\263rg\303\243o ou c\303\263rnea (Rio Grande do Norte) - S\303\251rie hist\303\263rica 2008-2023.pdf" "b/Relat\303\263rio de lista de espera por um transplante de \303\263rg\303\243o ou c\303\263rnea (Rio Grande do Norte) - S\303\251rie hist\303\263rica 2008-2023.pdf"
new file mode 100644
index 0000000..2c386a6
Binary files /dev/null and "b/Relat\303\263rio de lista de espera por um transplante de \303\263rg\303\243o ou c\303\263rnea (Rio Grande do Norte) - S\303\251rie hist\303\263rica 2008-2023.pdf" differ
diff --git a/S7.SAYONARA_TEMP b/S7.SAYONARA_TEMP
new file mode 160000
index 0000000..9e5aa8c
--- /dev/null
+++ b/S7.SAYONARA_TEMP
@@ -0,0 +1 @@
+Subproject commit 9e5aa8c916f8dc17b7c2db8c19d76a3c540e5fe5
diff --git a/dados.csv b/dados.csv
new file mode 100644
index 0000000..805921d
--- /dev/null
+++ b/dados.csv
@@ -0,0 +1,12 @@
+Ano,Potencial Doador,Potencial Doador (PMP),Doador Efetivo,Doador Efetivo (PMP),Percentual de Efetivação,Entrevista Familiar,Negativa Familiar,Negativa Familiar (%),Coração_x,Fígado_x,Figado vivo,Figado falecido,Pancreas,Pulmão_x,Pulmão vivo,Pulmão falecido,Rim_x,Rim vivo,Rim falecido,Pancreas rim,Intestino Isolado,Multivisceral_x,Total Orgãos,Córnea_x,Médula óssea,MO Autólogo,Mo Aparentado,Mo Nap,Total Geral,Coração_y,Fígado_y,Pulmão_y,Rim_y,Pâncreas,Pâncreas Rim,Intestino,Multivisceral_y,SubTotal,Córnea_y,Total
+2013,177,"55,9",44,"13,9","24,9%",279,146,"52,3%",0,3,0,3,0,0,0,0,60,5,55,0,0,0,63,181,50,21,20,9,294,0,5,0,61,0,0,0,0,66,73,139
+2014,175,"55,2",44,"13,9","25,1%",233,105,"45,1%",2,2,0,2,0,0,0,0,66,7,59,0,0,0,70,141,60,31,17,12,271,0,0,0,153,0,0,0,0,153,55,208
+2015,157,"46,1",36,"10,6","22,9%",144,79,"54,9%",0,0,0,0,0,0,0,0,67,7,60,0,0,0,67,131,39,20,10,9,237,0,0,0,180,0,0,0,0,180,66,246
+2016,152,"44,2",39,"11,3","25,7%",97,53,"54,6%",0,0,0,0,0,0,0,0,67,11,56,0,0,0,67,104,57,24,17,16,228,0,0,0,162,0,0,0,0,162,149,311
+2017,173,"49,8",47,"13,5","27,2%",124,66,"53,2%",0,0,0,0,0,0,0,0,60,12,48,0,0,0,60,177,1,1,0,0,238,0,0,0,165,0,0,0,0,165,180,345
+2018,159,"45,3",32,"9,1","20,1%",101,71,"70,3%",0,0,0,0,0,0,0,0,45,6,39,0,0,0,45,166,59,42,9,8,270,0,0,0,299,0,0,0,0,299,201,500
+2019,217,"62,4",52,"14,9","24,0%",126,71,"56,3%",0,0,0,0,0,0,0,0,76,9,67,0,0,0,76,140,71,49,14,8,287,0,0,0,306,0,0,0,0,306,296,602
+2020,188,"53,6",24,"6,8","12,8%",100,64,"64,0%",0,0,0,0,0,0,0,0,48,7,41,0,0,0,48,92,91,63,21,7,231,0,0,0,278,0,0,0,0,278,378,656
+2021,207,"58,6",19,"5,4","9,2%",107,67,"62,6%",0,0,0,0,0,0,0,0,18,3,15,0,0,0,18,97,71,40,23,8,186,1,0,0,301,0,0,0,0,302,479,781
+2022,231,"64,9",36,"10,1","15,6%",131,88,"67,2%",2,0,0,0,0,0,0,0,48,9,39,0,0,0,50,135,52,27,15,10,237,3,0,0,307,0,0,0,0,310,541,851
+2023,223,"67,5",32,"9,7","14,3%",134,89,"66,4%",4,0,0,0,0,0,0,0,53,7,46,0,0,0,57,159,87,62,18,7,303,1,0,0,330,0,0,0,0,331,584,915
diff --git a/dataset.csv b/dataset.csv
new file mode 100644
index 0000000..1737ff5
--- /dev/null
+++ b/dataset.csv
@@ -0,0 +1,12 @@
+Ano,Coração,Fígado,Pulmão,Rim,Pâncreas,Pâncreas Rim,Intestino,Multivisceral,SubTotal,Córnea,Total
+2013,0,5,0,61,0,0,0,0,66,73,139
+2014,0,0,0,153,0,0,0,0,153,55,208
+2015,0,0,0,180,0,0,0,0,180,66,246
+2016,0,0,0,162,0,0,0,0,162,149,311
+2017,0,0,0,165,0,0,0,0,165,180,345
+2018,0,0,0,299,0,0,0,0,299,201,500
+2019,0,0,0,306,0,0,0,0,306,296,602
+2020,0,0,0,278,0,0,0,0,278,378,656
+2021,1,0,0,301,0,0,0,0,302,479,781
+2022,3,0,0,307,0,0,0,0,310,541,851
+2023,1,0,0,330,0,0,0,0,331,584,915
diff --git a/material/analise-exploratoria/analise.ipynb b/material/analise-exploratoria/analise.ipynb
index 1cce302..b491a17 100644
--- a/material/analise-exploratoria/analise.ipynb
+++ b/material/analise-exploratoria/analise.ipynb
@@ -1,22 +1,22 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#Utilizar as bibliotecas de Python aprendidas em aula (pandas, matplotlib, seaborn, etc);\n",
- "#Trazer um notebook estruturado e organizado com o uso de Markdown. O uso de textos no notebook é altamente incentivado);\n",
- "#Mínimo de 3 visualizações que ajudem a sumarizar os resultados da sua análise."
- ]
- }
- ],
- "metadata": {
- "language_info": {
- "name": "python"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Utilizar as bibliotecas de Python aprendidas em aula (pandas, matplotlib, seaborn, etc);\n",
+ "#Trazer um notebook estruturado e organizado com o uso de Markdown. O uso de textos no notebook é altamente incentivado);\n",
+ "#Mínimo de 3 visualizações que ajudem a sumarizar os resultados da sua análise."
+ ]
+ }
+ ],
+ "metadata": {
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/material/nome-projeto.md b/material/nome-projeto.md
index 55c478b..c755f7a 100644
--- a/material/nome-projeto.md
+++ b/material/nome-projeto.md
@@ -1,12 +1,12 @@
-## Contexto
-Esse projeto consiste na análise de xxxxxx. O objetivo desse projeto é xxxxxxxxx.
-Para desenvolver esse projeto, desenvolvemos uma análise exploratória de dados xxxxxxx e utilizamos o Tableau para gerar a visualização das nossas análises.
-
-### Objetivos gerais e específicos do projeto
-
-### Bases escolhidas
-
-- Base 1 (fonte)
-- Base 2 (fonte)
-
+## Contexto
+Esse projeto consiste na análise de xxxxxx. O objetivo desse projeto é xxxxxxxxx.
+Para desenvolver esse projeto, desenvolvemos uma análise exploratória de dados xxxxxxx e utilizamos o Tableau para gerar a visualização das nossas análises.
+
+### Objetivos gerais e específicos do projeto
+
+### Bases escolhidas
+
+- Base 1 (fonte)
+- Base 2 (fonte)
+
## Ferramentas utilizadas
\ No newline at end of file