-
Notifications
You must be signed in to change notification settings - Fork 0
/
naming-conventions.tex
606 lines (443 loc) · 22.3 KB
/
naming-conventions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
\documentclass[a4paper]{article}
\usepackage{fullpage}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsfonts}
\parindent=0pt
\parskip=10pt
%%%%%%%%%%%%%
% Macros
\newcommand\itemrule[3]{
\subsubsection{#1}
\begin{quote}
\begin{tt}
#3
\end{tt}
\end{quote}
\begin{quote}
Name: \texttt{#2}
\end{quote}}
\newcommand\formula[1]{\begin{tt}#1\end{tt}}
\newcommand\tactic[1]{\begin{tt}#1\end{tt}}
\newcommand\command[1]{\begin{tt}#1\end{tt}}
\newcommand\term[1]{\begin{tt}#1\end{tt}}
\newcommand\library[1]{\texttt{#1}}
\newcommand\name[1]{\texttt{#1}}
\newcommand\zero{\texttt{zero}}
\newcommand\op{\texttt{op}}
\newcommand\opPrime{\texttt{op'}}
\newcommand\opSecond{\texttt{op''}}
\newcommand\phimapping{\texttt{phi}}
\newcommand\D{\texttt{D}}
\newcommand\elt{\texttt{elt}}
\newcommand\rel{\texttt{rel}}
\newcommand\relp{\texttt{rel'}}
%%%%%%%%%%%%%
\begin{document}
\begin{center}
\begin{huge}
Proposed naming conventions for the Coq standard library
\end{huge}
\end{center}
\bigskip
The following document describes a proposition of canonical naming
schemes for the Coq standard library. Obviously and unfortunately, the
current state of the library is not as homogeneous as it would be if
it would systematically follow such a scheme. To tend in this
direction, we however recommend to follow the following suggestions.
\tableofcontents
\section{General conventions}
\subsection{Variable names}
\begin{itemize}
\item Variables are preferably quantified at the head of the
statement, even if some premisses do not depend of one of them. For
instance, one would state
\begin{quote}
\begin{tt}
{forall x y z:D, x <= y -> x+z <= y+z}
\end{tt}
\end{quote}
and not
\begin{quote}
\begin{tt}
{forall x y:D, x <= y -> forall z:D, x+z <= y+z}
\end{tt}
\end{quote}
\item Variables are preferably quantified (and named) in the order of
``importance'', then of appearance, from left to right, even if
for the purpose of some tactics it would have been more convenient
to have, say, the variables not occurring in the conclusion
first. For instance, one would state
\begin{quote}
\begin{tt}
{forall x y z:D, x+z <= y+z -> x <= y}
\end{tt}
\end{quote}
and not
\begin{quote}
\begin{tt}
{forall z x y:D, x+z <= y+z -> x <= y}
\end{tt}
\end{quote}
nor
\begin{quote}
\begin{tt}
{forall x y z:D, y+x <= z+x -> y <= z}
\end{tt}
\end{quote}
\item Choice of effective names is domain-dependent. For instance, on
natural numbers, the convention is to use the variables $n$, $m$,
$p$, $q$, $r$, $s$ in this order.
On generic domains, the convention is to use the letters $x$, $y$,
$z$, $t$. When more than three variables are needed, indexing variables
It is conventional to use specific names for variables having a
special meaning. For instance, $eps$ or $\epsilon$ can be used to
denote a number intended to be as small as possible. Also, $q$ and
$r$ can be used to denote a quotient and a rest. This is good
practice.
\end{itemize}
\subsection{Disjunctive statements}
A disjunctive statement with a computational content will be suffixed
by \name{\_inf}. For instance, if
\begin{quote}
\begin{tt}
{forall x y, op x y = zero -> x = zero \/ y = zero}
\end{tt}
\end{quote}
has name \texttt{D\_integral}, then
\begin{quote}
\begin{tt}
{forall x y, op x y = zero -> \{x = zero\} + \{y = zero\}}
\end{tt}
\end{quote}
will have name \texttt{D\_integral\_inf}.
As an exception, decidability statements, such as
\begin{quote}
\begin{tt}
{forall x y, \{x = y\} + \{x <> y\}}
\end{tt}
\end{quote}
will have a named ended in \texttt{\_dec}. Idem for cotransitivity
lemmas which are inherently computational that are ended in
\texttt{\_cotrans}.
\subsection{Inductive types constructor names}
As a general rule, constructor names start with the name of the
inductive type being defined as in \texttt{Inductive Z := Z0 : Z |
Zpos : Z -> Z | Zneg : Z -> Z} to the exception of very standard
types like \texttt{bool}, \texttt{nat}, \texttt{list}...
For inductive predicates, constructor names also start with the name
of the notion being defined with one or more suffixes separated with
\texttt{\_} for discriminating the different cases as e.g. in
\begin{verbatim}
Inductive even : nat -> Prop :=
| even_O : even 0
| even_S n : odd n -> even (S n)
with odd : nat -> Prop :=
| odd_S n : even n -> odd (S n).
\end{verbatim}
As a general rule, inductive predicate names should be lowercase (to
the exception of notions referring to a proper name, e.g. \texttt{Bezout})
and multiple words must be separated by ``{\_}''.
As an exception, when extending libraries whose general rule is that
predicates names start with a capital letter, the convention of this
library should be kept and the separation between multiple words is
done by making the initial of each work a capital letter (if one of
these words is a proper name, then a ``{\_}'' is added to emphasize
that the capital letter is proper and not an application of the rule
for marking the change of word).
Inductive predicates that characterize the specification of a function
should be named after the function it specifies followed by
\texttt{\_spec} as in:
\begin{verbatim}
Inductive nth_spec : list A -> nat -> A -> Prop :=
| nth_spec_O a l : nth_spec (a :: l) 0 a
| nth_spec_S n a b l : nth_spec l n a -> nth_spec (b :: l) (S n) a.
\end{verbatim}
\section{Equational properties of operations}
\subsection{General conventions}
If the conclusion is in the other way than listed below, add suffix
\name{\_reverse} to the lemma name.
\subsection{Specific conventions}
\itemrule{Associativity of binary operator {\op} on domain {\D}}{Dop\_assoc}
{forall x y z:D, op x (op y z) = op (op x y) z}
Remark: Symmetric form: \name{Dop\_assoc\_reverse}:
\formula{forall x y z:D, op (op x y) z = op x (op y z)}
\itemrule{Commutativity of binary operator {\op} on domain {\D}}{Dop\_comm}
{forall x y:D, op x y = op y x}
Remark: Avoid \formula{forall x y:D, op y x = op x y}, or at worst, call it
\name{Dop\_comm\_reverse}
\itemrule{Left neutrality of element elt for binary operator {\op}}{Dop\_elt\_l}
{forall x:D, op elt x = x}
Remark: In English, ``{\elt} is an identity for {\op}'' seems to be
a more common terminology.
\itemrule{Right neutrality of element elt for binary operator {\op}}{Dop\_elt\_r}
{forall x:D, op x elt = x}
Remark: By convention, if the identities are reminiscent to zero or one, they
are written 1 and 0 in the name of the property.
\itemrule{Left absorption of element elt for binary operator {\op}}{Dop\_elt\_l}
{forall x:D, op elt x = elt}
Remarks:
\begin{itemize}
\item In French school, this property is named "elt est absorbant pour op"
\item English, the property seems generally named "elt is a zero of op"
\item In the context of lattices, this a boundedness property, it may
be called "elt is a bound on D", or referring to a (possibly
arbitrarily oriented) order "elt is a least element of D" or "elt
is a greatest element of D"
\end{itemize}
\itemrule{Right absorption of element {\elt} for binary operator {\op}}{Dop\_elt\_l [BAD ??]}
{forall x:D, op x elt = elt}
\itemrule{Left distributivity of binary operator {\op} over {\opPrime} on domain {\D}}{Dop\_op'\_distr\_l}
{forall x y z:D, op (op' x y) z = op' (op x z) (op y z)}
Remark: Some authors say ``distribution''.
\itemrule{Right distributivity of binary operator {\op} over {\opPrime} on domain {\D}}{Dop\_op'\_distr\_r}
{forall x y z:D, op z (op' x y) = op' (op z x) (op z y)}
Remark: Note the order of arguments.
\itemrule{Distributivity of unary operator {\op} over binary op' on domain {\D}}{Dop\_op'\_distr}
{forall x y:D, op (op' x y) = op' (op x) (op y)}
\itemrule{Distributivity of unary operator {\op} over binary op' on domain {\D}}{Dop\_op'\_distr}
{forall x y:D, op (op' x y) = op' (op x) (op y)}
Remark: For a non commutative operation with inversion of arguments, as in
\formula{forall x y z:D, op (op' x y) = op' (op y) (op y z)},
we may probably still call the property distributivity since there
is no ambiguity.
Example: \formula{forall n m : Z, -(n+m) = (-n)+(-m)}.
Example: \formula{forall l l' : list A, rev (l++l') = (rev l)++(rev l')}.
\itemrule{Left extrusion of unary operator {\op} over binary op' on domain {\D}}{Dop\_op'\_distr\_l}
{forall x y:D, op (op' x y) = op' (op x) y}
Question: Call it left commutativity ?? left swap ?
\itemrule{Right extrusion of unary operator {\op} over binary op' on domain {\D}}{Dop\_op'\_distr\_r}
{forall x y:D, op (op' x y) = op' x (op y)}
\itemrule{Idempotency of binary operator {\op} on domain {\D}}{Dop\_idempotent}
{forall x:D, op x x = x}
\itemrule{Idempotency of unary operator {\op} on domain {\D}}{Dop\_idempotent}
{forall x:D, op (op x) = op x}
Remark: This is actually idempotency of {\op} wrt to composition and
identity.
\itemrule{Idempotency of element elt for binary operator {\op} on domain {\D}}{Dop\_elt\_idempotent}
{op elt elt = elt}
Remark: Generally useless in CIC for concrete, computable operators
Remark: The general definition is ``exists n, iter n op x = x''.
\itemrule{Nilpotency of element elt wrt a ring D with additive neutral
element {\zero} and multiplicative binary operator
{\op}}{Delt\_nilpotent}
{op elt elt = zero}
Remark: We leave the ring structure of D implicit; the general definition is ``exists n, iter n op elt = zero''.
\itemrule{Zero-product property in a ring D with additive neutral
element {\zero} and multiplicative binary operator
{\op}}{D\_integral}
{forall x y, op x y = zero -> x = zero \/ y = zero}
Remark: We leave the ring structure of D implicit; the Coq library
uses either \texttt{\_is\_O} (for \texttt{nat}), \texttt{\_integral}
(for \texttt{Z}, \texttt{Q} and \texttt{R}), \texttt{eq\_mul\_0} (for
\texttt{NZ}).
Remark: The French school says ``integrité''.
\itemrule{Nilpotency of binary operator {\op} wrt to its absorbing element
zero in D}{Dop\_nilpotent} {forall x, op x x = zero}
Remark: Did not find this definition on the web, but it used in
the Coq library (to characterize \name{xor}).
\itemrule{Involutivity of unary op on D}{Dop\_involutive}
{forall x:D, op (op x) = x}
\itemrule{Absorption law on the left for binary operator {\op} over binary operator {\op}' on the left}{Dop\_op'\_absorption\_l\_l}
{forall x y:D, op x (op' x y) = x}
\itemrule{Absorption law on the left for binary operator {\op} over binary operator {\op}' on the right}{Dop\_op'\_absorption\_l\_r}
{forall x y:D, op x (op' y x) = x}
Remark: Similarly for \name{Dop\_op'\_absorption\_r\_l} and \name{Dop\_op'\_absorption\_r\_r}.
\itemrule{De Morgan law's for binary operators {\opPrime} and {\opSecond} wrt
to unary op on domain {\D}}{Dop'\_op''\_de\_morgan,
Dop''\_op'\_de\_morgan ?? \mbox{leaving the complementing operation
implicit})}
{forall x y:D, op (op' x y) = op'' (op x) (op y)\\
forall x y:D, op (op'' x y) = op' (op x) (op y)}
\itemrule{Left complementation of binary operator {\op} by means of unary {\opPrime} wrt neutral element {\elt} of {\op} on domain {\D}}{Dop\_op'\_opp\_l}
{forall x:D, op (op' x) x = elt}
Remark: If the name of the opposite function is reminiscent of the
notion of complement (e.g. if it is called \texttt{opp}), one can
simply say {Dop\_opp\_l}.
\itemrule{Right complementation of binary operator {\op} by means of unary {\op'} wrt neutral element {\elt} of {\op} on domain {\D}}{Dop\_opp\_r}
{forall x:D, op x (op' x) = elt}
Example: \formula{Radd\_opp\_l: forall r : R, - r + r = 0}
\itemrule{Associativity of binary operators {\op} and {\op'}}{Dop\_op'\_assoc}
{forall x y z, op x (op' y z) = op (op' x y) z}
Example: \formula{forall x y z, x + (y - z) = (x + y) - z}
\itemrule{Right extrusion of binary operator {\opPrime} over binary operator {\op}}{Dop\_op'\_extrusion\_r}
{forall x y z, op x (op' y z) = op' (op x y) z}
Remark: This requires {\op} and {\opPrime} to have their right and left
argument respectively and their return types identical.
Example: \formula{forall x y z, x + (y - z) = (x + y) - z}
Remark: Other less natural combinations are possible, such
as \formula{forall x y z, op x (op' y z) = op' y (op x z)}.
\itemrule{Left extrusion of binary operator {\opPrime} over binary operator {\op}}{Dop\_op'\_extrusion\_l}
{forall x y z, op (op' x y) z = op' x (op y z)}
Remark: Operations are not necessarily internal composition laws. It
is only required that {\op} and {\opPrime} have their right and left
argument respectively and their return type identical.
Remark: When the type are heterogeneous, only one extrusion law is possible and it can simply be named {Dop\_op'\_extrusion}.
Example: \formula{app\_cons\_extrusion : forall a l l', (a :: l) ++ l' = a :: (l ++ l')}.
%======================================================================
%\section{Properties of elements}
%Remark: Not used in current library
%======================================================================
\section{Preservation and compatibility properties of operations}
\subsection{With respect to equality}
\itemrule{Injectivity of unary operator {\op}}{Dop\_inj}
{forall x y:D, op x = op y -> x = y}
\itemrule{Left regularity of binary operator {\op}}{Dop\_reg\_l, Dop\_inj\_l, or Dop\_cancel\_l}
{forall x y z:D, op z x = op z y -> x = y}
Remark: Note the order of arguments.
Remark: The Coq usage is to called it regularity but the English
standard seems to be cancellation. The recommended form is not
decided yet.
Remark: Shall a property like $n^p \leq n^q \rightarrow p \leq q$
(for $n\geq 1$) be called cancellation or should it be reserved for
operators that have an inverse?
\itemrule{Right regularity of binary operator {\op}}{Dop\_reg\_r, Dop\_inj\_r, Dop\_cancel\_r}
{forall x y z:D, op x z = op y z -> x = y}
\subsection{With respect to a relation {\rel}}
\itemrule{Compatibility of unary operator {\op}}{Dop\_rel\_compat}
{forall x y:D, rel x y -> rel (op x) (op y)}
\itemrule{Left compatibility of binary operator {\op}}{Dop\_rel\_compat\_l}
{forall x y z:D, rel x y -> rel (op z x) (op z y)}
\itemrule{Right compatibility of binary operator {\op}}{Dop\_rel\_compat\_r}
{forall x y z:D, rel x y -> rel (op x z) (op y z)}
Remark: For equality, use names of the form \name{Dop\_eq\_compat\_l} or
\name{Dop\_eq\_compat\_r}
(\formula{forall x y z:D, y = x -> op y z = op x z} and
\formula{forall x y z:D, y = x -> op y z = op x z})
Remark: Should we admit (or even prefer) the name
\name{Dop\_rel\_monotone}, \name{Dop\_rel\_monotone\_l},
\name{Dop\_rel\_monotone\_r} when {\rel} is an order ?
\itemrule{Left regularity of binary operator {\op}}{Dop\_rel\_reg\_l}
{forall x y z:D, rel (op z x) (op z y) -> rel x y}
\itemrule{Right regularity of binary operator {\op}}{Dop\_rel\_reg\_r}
{forall x y z:D, rel (op x z) (op y z) -> rel x y}
Question: Would it be better to have \name{z} as first argument, since it
is missing in the conclusion ?? (or admit we shall use the options
``\texttt{with p}''?)
\itemrule{Left distributivity of binary operator {\op} over {\opPrime} along relation {\rel} on domain {\D}}{Dop\_op'\_rel\_distr\_l}
{forall x y z:D, rel (op (op' x y) z) (op' (op x z) (op y z))}
Example: standard property of (not necessarily distributive) lattices
Remark: In a (non distributive) lattice, by swapping join and meet,
one would like also,
\formula{forall x y z:D, rel (op' (op x z) (op y z)) (op (op' x y) z)}.
How to name it with a symmetric name (use
\name{Dop\_op'\_rel\_distr\_mon\_l} and
\name{Dop\_op'\_rel\_distr\_anti\_l})?
\itemrule{Commutativity of binary operator {\op} along (equivalence) relation {\rel} on domain {\D}}{Dop\_op'\_rel\_comm}
{forall x y z:D, rel (op x y) (op y x)}
Example:
\formula{forall l l':list A, Permutation (l++l') (l'++l)}
\itemrule{Irreducibility of binary operator {\op} on domain {\D}}{Dop\_irreducible}
{forall x y z:D, z = op x y -> z = x $\backslash/$ z = y}
Question: What about the constructive version ? Call it \name{Dop\_irreducible\_inf} ?
\formula{forall x y z:D, z = op x y -> \{z = x\} + \{z = y\}}
\itemrule{Primality of binary operator {\op} along relation {\rel} on domain {\D}}{Dop\_rel\_prime}
{forall x y z:D, rel z (op x y) -> rel z x $\backslash/$ rel z y}
%======================================================================
\section{Morphisms}
\itemrule{Morphism between structures {\D} and {\D'}}{\name{D'\_of\_D}}{D -> D'}
Remark: If the domains are one-letter long, one can used \texttt{IDD'} as for
\name{INR} or \name{INZ}.
\itemrule{Morphism {\phimapping} mapping unary operators {\op} to {\op'}}{phi\_op\_op', phi\_op\_op'\_morphism}
{forall x:D, phi (op x) = op' (phi x)}
Remark: If the operators have the same name in both domains, one use
\texttt{D'\_of\_D\_op} or \texttt{IDD'\_op}.
Example: \formula{Z\_of\_nat\_mult: forall n m : nat, Z\_of\_nat (n * m) = (Z\_of\_nat n * Z\_of\_nat m)\%Z}.
Remark: If the operators have different names on distinct domains, one
can use \texttt{op\_op'}.
\itemrule{Morphism {\phimapping} mapping binary operators {\op} to
{\op'}}{phi\_op\_op', phi\_op\_op'\_morphism} {forall
x y:D, phi (op x y) = op' (phi x) (phi y)}
Remark: If the operators have the same name in both domains, one use
\texttt{D'\_of\_D\_op} or \texttt{IDD'\_op}.
Remark: If the operators have different names on distinct domains, one
can use \texttt{op\_op'}.
\itemrule{Morphism {\phimapping} mapping binary operator {\op} to
binary relation {\rel}}{phi\_op\_rel, phi\_op\_rel\_morphism}
{forall x y:D, phi (op x y) <-> rel (phi x) (phi y)}
Remark: If the operator and the relation have similar name, one uses
\texttt{phi\_op}.
Question: How to name each direction? (add \_elim for -> and \_intro
for <- ?? -- as done in Bool.v ??)
Example: \formula{eq\_true\_neg: \~{} eq\_true b <-> eq\_true (negb b)}.
%======================================================================
\section{Preservation and compatibility properties of operations wrt order}
\itemrule{Compatibility of binary operator {\op} wrt (strict order) {\rel} and (large order) {\rel'}}{Dop\_rel\_rel'\_compat}
{forall x y z t:D, rel x y -> rel' z t -> rel (op x z) (op y t)}
\itemrule{Compatibility of binary operator {\op} wrt (large order) {\relp} and (strict order) {\rel}}{Dop\_rel'\_rel\_compat}
{forall x y z t:D, rel' x y -> rel z t -> rel (op x z) (op y t)}
%======================================================================
\section{Properties of relations}
\itemrule{Reflexivity of relation {\rel} on domain {\D}}{Drel\_refl}
{forall x:D, rel x x}
\itemrule{Symmetry of relation {\rel} on domain {\D}}{Drel\_sym}
{forall x y:D, rel x y -> rel y x}
\itemrule{Transitivity of relation {\rel} on domain {\D}}{Drel\_trans}
{forall x y z:D, rel x y -> rel y z -> rel x z}
\itemrule{Antisymmetry of relation {\rel} on domain {\D}}{Drel\_antisym}
{forall x y:D, rel x y -> rel y x -> x = y}
\itemrule{Irreflexivity of relation {\rel} on domain {\D}}{Drel\_irrefl}
{forall x:D, \~{} rel x x}
\itemrule{Asymmetry of relation {\rel} on domain {\D}}{Drel\_asym}
{forall x y:D, rel x y -> \~{} rel y x}
\itemrule{Cotransitivity of relation {\rel} on domain {\D}}{Drel\_cotrans}
{forall x y z:D, rel x y -> \{rel z y\} + \{rel x z\}}
\itemrule{Linearity of relation {\rel} on domain {\D}}{Drel\_trichotomy}
{forall x y:D, \{rel x y\} + \{x = y\} + \{rel y x\}}
Questions: Or call it \name{Drel\_total}, or \name{Drel\_linear}, or
\name{Drel\_connected}? Use
$\backslash/$ ? or use a ternary sumbool, or a ternary disjunction,
for nicer elimination.
\itemrule{Informative decidability of relation {\rel} on domain {\D}}{Drel\_dec (or Drel\_dect, Drel\_dec\_inf ?)}
{forall x y:D, \{rel x y\} + \{\~{} rel x y\}}
Remark: If equality: \name{D\_eq\_dec} or \name{D\_dec} (not like
\name{eq\_nat\_dec})
\itemrule{Non informative decidability of relation {\rel} on domain {\D}}{Drel\_dec\_prop (or Drel\_dec)}
{forall x y:D, rel x y $\backslash/$ \~{} rel x y}
\itemrule{Inclusion of relation {\rel} in relation {\rel}' on domain {\D}}{Drel\_rel'\_incl (or Drel\_incl\_rel')}
{forall x y:D, rel x y -> rel' x y}
Remark: Use \name{Drel\_rel'\_weak} for a strict inclusion ??
%======================================================================
\section{Relations between properties}
\itemrule{Equivalence of properties \texttt{P} and \texttt{Q}}{P\_Q\_iff}
{forall x1 .. xn, P <-> Q}
Remark: Alternatively use \name{P\_iff\_Q} if it is too difficult to
recover what pertains to \texttt{P} and what pertains to \texttt{Q}
in their concatenation (as e.g. in
\texttt{Godel\_Dummett\_iff\_right\_distr\_implication\_over\_disjunction}).
%======================================================================
\section{Arithmetical conventions}
\begin{minipage}{6in}
\renewcommand{\thefootnote}{\thempfootnote} % For footnotes...
\begin{tabular}{lll}
Zero on domain {\D} & D0 & (notation \verb=0=)\\
One on domain {\D} & D1 (if explicitly defined) & (notation \verb=1=)\\
Successor on domain {\D} & Dsucc\\
Predessor on domain {\D} & Dpred\\
Addition on domain {\D} & Dadd/Dplus\footnote{Coq historically uses \texttt{plus} and \texttt{mult} for addition and multiplication which are inconsistent notations, the recommendation is to use \texttt{add} and \texttt{mul} except in existng libraries that already use \texttt{plus} and \texttt{mult}}
& (infix notation \verb=+= [50,L])\\
Multiplication on domain {\D} & Dmul/Dmult\footnotemark[\value{footnote}] & (infix notation \verb=*= [40,L]))\\
Soustraction on domain {\D} & Dminus & (infix notation \verb=-= [50,L])\\
Opposite on domain {\D} & Dopp (if any) & (prefix notation \verb=-= [35,R]))\\
Inverse on domain {\D} & Dinv (if any) & (prefix notation \verb=/= [35,R]))\\
Power on domain {\D} & Dpower & (infix notation \verb=^= [30,R])\\
Minimal element on domain {\D} & Dmin\\
Maximal element on domain {\D} & Dmax\\
Large less than order on {\D} & Dle & (infix notations \verb!<=! and \verb!>=! [70,N]))\\
Strict less than order on {\D} & Dlt & (infix notations \verb=<= and \verb=>= [70,N]))\\
\end{tabular}
\bigskip
\end{minipage}
\bigskip
The status of \verb!>=! and \verb!>! is undecided yet. It will eithet
be accepted only as parsing notations or may also accepted as a {\em
definition} for the \verb!<=! and \verb!<! (like in \texttt{nat}) or
even as a different definition (like it is the case in \texttt{Z}).
\bigskip
Exception: Peano Arithmetic which is used for pedagogical purpose:
\begin{itemize}
\item domain name is implicit
\item \term{0} (digit $0$) is \term{O} (the 15th letter of the alphabet)
\item \term{succ} is \verb!S! (but \term{succ} can be used in theorems)
\end{itemize}
\end{document}