forked from maladeep/sms-spam-ham-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
executable file
·52 lines (38 loc) · 1.62 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from flask import Flask,render_template,url_for,request
import pandas as pd
import pickle
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
# from sklearn.externals import joblib
app = Flask(__name__)
@app.route('/')
def home():
return render_template('home.html')
@app.route('/predict',methods=['POST'])
def predict():
df= pd.read_csv("spam.csv", encoding="latin-1")
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
# Features and Labels
df['label'] = df['type'].map({'ham': 0, 'spam': 1})
X = df['text']
y = df['label']
# Extract Feature With CountVectorizer
# Extract Feature With CountVectorizer :cleaning involved converting all of our data to lower case and removing all punctuation marks.
cv = CountVectorizer()
X = cv.fit_transform(X) # Fit the Data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
#Naive Bayes Classifier
from sklearn.naive_bayes import MultinomialNB
#particular classifier is suitable for classification with discrete features ( word counts for text classification). It takes in integer word counts as its input.
clf = MultinomialNB() #NAIVE BAYES
clf.fit(X_train,y_train)
clf.score(X_test,y_test)
if request.method == 'POST':
message = request.form['message']
data = [message]
vect = cv.transform(data).toarray()
my_prediction = clf.predict(vect)
return render_template('result.html',prediction = my_prediction)
if __name__ == '__main__':
app.run(debug=True)