forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layer_norm_kernel.cpp
178 lines (167 loc) · 5.25 KB
/
layer_norm_kernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include <ATen/native/layer_norm.h>
#include <cmath>
#include <ATen/ATen.h>
#include <ATen/CPUApplyUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/cpu/vec256/functional.h>
#include <ATen/cpu/vec256/vec256.h>
namespace at {
namespace native {
namespace {
template <typename T>
void LayerNormKernelImplInternal(
const Tensor& X,
const Tensor& gamma,
const Tensor& beta,
int64_t M,
int64_t N,
T eps,
Tensor* Y,
Tensor* mean,
Tensor* rstd) {
using Vec = vec256::Vec256<T>;
DCHECK_EQ(X.numel(), M * N);
DCHECK(!gamma.defined() || gamma.numel() == N);
DCHECK(!beta.defined() || beta.numel() == N);
T* X_data = X.data_ptr<T>();
const T* gamma_data = gamma.defined() ? gamma.data_ptr<T>() : nullptr;
const T* beta_data = beta.defined() ? beta.data_ptr<T>() : nullptr;
T* Y_data = Y->data_ptr<T>();
T* mean_data = mean->data_ptr<T>();
T* rstd_data = rstd->data_ptr<T>();
const T c = T(1) / static_cast<T>(N);
const bool gamma_null = gamma_data == nullptr;
const bool beta_null = beta_data == nullptr;
at::parallel_for(0, M, 1, [&](int64_t start, int64_t end) {
for (int64_t i = start; i < end; ++i) {
T* X_ptr = X_data + i * N;
T* Y_ptr = Y_data + i * N;
T mean_val = vec256::reduce_all<T>(
[](Vec& x, Vec& y) { return x + y; },
X_ptr,
N);
T rstd_val = vec256::map_reduce_all<T>(
[](Vec x) { return x * x; },
[](Vec x, Vec y) { return x + y; },
X_ptr,
N);
mean_val *= c;
rstd_val = std::max(rstd_val * c - mean_val * mean_val, T(0));
rstd_val = T(1) / std::sqrt(rstd_val + eps);
const T scale = rstd_val;
const T bias = -rstd_val * mean_val;
for (int64_t j = 0; j < N; ++j) {
const T gamma_v = gamma_null ? T(1) : gamma_data[j];
const T beta_v = beta_null ? T(0) : beta_data[j];
Y_ptr[j] = (X_ptr[j] * scale + bias) * gamma_v + beta_v;
}
mean_data[i] = mean_val;
rstd_data[i] = rstd_val;
}
});
}
void LayerNormKernelImpl(
const Tensor& X,
const Tensor& gamma,
const Tensor& beta,
int64_t M,
int64_t N,
double eps,
Tensor* Y,
Tensor* mean,
Tensor* rstd) {
AT_DISPATCH_FLOATING_TYPES(X.scalar_type(), "LayerNormKernelImpl", [&]() {
LayerNormKernelImplInternal<scalar_t>(
X, gamma, beta, M, N, static_cast<scalar_t>(eps), Y, mean, rstd);
});
}
template <typename T>
void LayerNormBackwardKernelImplInternal(
const Tensor& dY,
const Tensor& X,
const Tensor& mean,
const Tensor& rstd,
const Tensor& gamma,
int64_t M,
int64_t N,
Tensor* dX,
Tensor* dgamma,
Tensor* dbeta) {
DCHECK_EQ(dY.numel(), M * N);
DCHECK_EQ(X.numel(), M * N);
DCHECK_EQ(mean.numel(), M);
DCHECK_EQ(rstd.numel(), M);
DCHECK(!gamma.defined() || gamma.numel() == N);
const T* dY_data = dY.template data_ptr<T>();
const T* X_data = X.template data_ptr<T>();
const T* mean_data = mean.template data_ptr<T>();
const T* rstd_data = rstd.template data_ptr<T>();
const T* gamma_data =
gamma.defined() ? gamma.template data_ptr<T>() : nullptr;
T* dX_data = dX->defined() ? dX->template data_ptr<T>() : nullptr;
T* dgamma_data = dgamma->defined() ? dgamma->template data_ptr<T>() : nullptr;
if (dgamma_data != nullptr) {
std::memset(dgamma_data, 0, N * sizeof(T));
}
T* dbeta_data = dbeta->defined() ? dbeta->template data_ptr<T>() : nullptr;
if (dbeta_data != nullptr) {
std::memset(dbeta_data, 0, N * sizeof(T));
}
const T scale = T(1) / static_cast<T>(N);
const bool gamma_null = gamma_data == nullptr;
for (int64_t i = 0; i < M; ++i) {
const T* dY_ptr = dY_data + i * N;
const T* X_ptr = X_data + i * N;
if (dX_data != nullptr) {
T* dX_ptr = dX_data + i * N;
T ds = 0;
T db = 0;
for (int64_t j = 0; j < N; ++j) {
const T gamma_v = gamma_null ? T(1) : gamma_data[j];
ds += dY_ptr[j] * X_ptr[j] * gamma_v;
db += dY_ptr[j] * gamma_v;
}
const T a = rstd_data[i];
const T b = (db * mean_data[i] - ds) * a * a * a * scale;
const T c = -b * mean_data[i] - db * a * scale;
for (int64_t j = 0; j < N; ++j) {
const T gamma_v = gamma_null ? T(1) : gamma_data[j];
dX_ptr[j] = a * dY_ptr[j] * gamma_v + b * X_ptr[j] + c;
}
}
if (dgamma_data != nullptr) {
const T a = rstd_data[i];
const T b = -a * mean_data[i];
for (int64_t j = 0; j < N; ++j) {
dgamma_data[j] += dY_ptr[j] * (a * X_ptr[j] + b);
}
}
if (dbeta_data != nullptr) {
for (int64_t j = 0; j < N; ++j) {
dbeta_data[j] += dY_ptr[j];
}
}
}
}
void LayerNormBackwardKernelImpl(
const Tensor& dY,
const Tensor& X,
const Tensor& mean,
const Tensor& rstd,
const Tensor& gamma,
int64_t M,
int64_t N,
Tensor* dX,
Tensor* dgamma,
Tensor* dbeta) {
AT_DISPATCH_FLOATING_TYPES(
X.scalar_type(), "LayerNormBackwardKernelImpl", [&]() {
LayerNormBackwardKernelImplInternal<scalar_t>(
dY, X, mean, rstd, gamma, M, N, dX, dgamma, dbeta);
});
}
} // namespace
REGISTER_DISPATCH(LayerNormKernel, &LayerNormKernelImpl);
REGISTER_DISPATCH(LayerNormBackwardKernel, &LayerNormBackwardKernelImpl);
} // namespace native
} // namespace at