forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
THCTensorMathReduce.cuh
634 lines (553 loc) · 19.9 KB
/
THCTensorMathReduce.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
#ifndef THC_TENSORMATH_REDUCE_CUH
#define THC_TENSORMATH_REDUCE_CUH
#include <THC/THCTensorMath.h>
#include <THC/THCGeneral.h>
#include <THC/THCNumerics.cuh>
#include <THC/THCReduce.cuh>
#include <THC/THCReduceAll.cuh>
#include <THC/THCTensorCopy.hpp>
#include <THC/THCThrustAllocator.cuh>
#include <thrust/functional.h>
#include <thrust/device_ptr.h>
#include <thrust/transform_reduce.h>
#include <thrust/inner_product.h>
#if CUDA_VERSION >= 7000 || defined __HIP_PLATFORM_HCC__
#include <thrust/system/cuda/execution_policy.h>
#endif
/*
Reductions that (only) operate on accumulate types.
*/
template <typename T, typename U>
struct WelfordData {
T mean_;
T m_2_n_;
int count_; // do we need int64_t?
__host__ __device__ WelfordData() {
}
// stripping initialization from default constructor to avoid dynamic
// initialization warning thrown from using this data structure in CUDA kernel
// as static shared memory.
__host__ __device__ void reset() {
mean_ = T(0);
m_2_n_ = T(0);
count_ = 0;
}
__host__ __device__ WelfordData(const U data_) {
mean_ = static_cast<T>(data_);
m_2_n_ = static_cast<T>(0);
count_ = 1;
}
__host__ __device__ WelfordData(const WelfordData &t) :
mean_(t.mean_),
m_2_n_(t.m_2_n_),
count_(t.count_)
{
}
__host__ __device__ WelfordData(const volatile WelfordData &t) :
mean_(t.mean_),
m_2_n_(t.m_2_n_),
count_(t.count_)
{
}
__host__ __device__ volatile WelfordData& operator = (const volatile WelfordData &t) volatile {
mean_ = t.mean_;
m_2_n_ = t.m_2_n_;
count_ = t.count_;
return *this;
}
__host__ __device__ WelfordData& operator = (const WelfordData &t) {
mean_ = t.mean_;
m_2_n_ = t.m_2_n_;
count_ = t.count_;
return *this;
}
};
template <typename T>
struct ModifyWelford {
inline __device__ T operator()(const T &a) const {
return a;
}
};
template <typename T, typename U>
struct ReduceWelford {
inline __device__ WelfordData<T, U> operator()(const WelfordData<T, U> &a, const WelfordData<T, U> &b) const {
WelfordData<T, U> c;
c.count_ = THCNumerics<int>::add(a.count_, b.count_);
T factor = THCNumerics<T>::div(1.0, max(1, c.count_));
c.mean_ = THCNumerics<T>::mul(THCNumerics<T>::add(THCNumerics<T>::mul(a.mean_, a.count_), THCNumerics<T>::mul(b.mean_, b.count_)), factor);
c.m_2_n_ = THCNumerics<T>::add(a.m_2_n_, THCNumerics<T>::add(b.m_2_n_, THCNumerics<T>::mul(factor, THCNumerics<T>::mul(a.count_, THCNumerics<T>::mul(b.count_, THCNumerics<T>::pow(THCNumerics<T>::sub(a.mean_, b.mean_), 2) )))));
return c;
}
};
template <typename T, typename U>
struct VarianceWelford {
VarianceWelford(const int _unbiased, const bool _apply_sqrt): unbiased{_unbiased}, apply_sqrt(_apply_sqrt) {}
inline __device__ T operator()(const WelfordData<T, U> &a) const {
T res = THCNumerics<T>::div(a.m_2_n_, unbiased ? a.count_ : a.count_-1);
if (apply_sqrt) {
return THCNumerics<T>::sqrt(res);
}
return res;
}
const int unbiased;
const bool apply_sqrt;
};
template <typename T>
struct ReduceAdd {
inline __device__ T operator()(const T a, const T b) const {
return THCNumerics<T>::add(a, b);
}
};
template <typename T>
struct ReduceMultiply {
inline __device__ T operator()(const T a, const T b) const {
return THCNumerics<T>::mul(a, b);
}
};
template <typename T>
struct ReduceDivide {
ReduceDivide(const T _divisor): divisor{_divisor} {}
inline __device__ T operator()(const T x) const {
return THCNumerics<T>::div(x, divisor);
}
const T divisor;
};
template <typename T>
struct ReducePow {
ReducePow(const T _exponent): exponent{_exponent} {}
inline __device__ T operator()(const T x) const {
return THCNumerics<T>::pow(x, exponent);
}
const T exponent;
};
template <typename T>
struct SquareFunctor {
SquareFunctor(const T _mean): mean{_mean} {}
inline __device__ T operator()(const T x) const {
return THCNumerics<T>::mul(
THCNumerics<T>::sub(x, mean),
THCNumerics<T>::sub(x, mean)
);
}
const T mean;
};
template <typename T>
struct ReduceMin {
inline __device__ T operator()(T a, T b) const {
return (THCNumerics<T>::lt(a, b) || THCNumerics<T>::isnan(a)) ? a : b;
}
};
template <typename T>
struct ReduceMax {
inline __device__ T operator()(T a, T b) const {
return (THCNumerics<T>::gt(a, b) || THCNumerics<T>::isnan(a)) ? a : b;
}
};
struct LogicalAll {
inline __device__ unsigned char operator()(const unsigned char x,
const unsigned char y) const {
return (x && y);
}
};
struct LogicalAny {
inline __device__ unsigned char operator()(const unsigned char x,
const unsigned char y) const {
return (x || y);
}
};
template<typename T>
inline __device__ T THCMax(const T a, const T b) {
return THCNumerics<T>::gt(a, b) ? a : b;
}
template<typename T, typename AccT>
__global__ void THCTensor_kernel_renorm(T *data,
const AccT value,
const ptrdiff_t size,
const AccT maxnorm) {
__shared__ AccT buffer[32];
int64_t tx = threadIdx.x;
int64_t bx = blockIdx.x;
int64_t step = blockDim.x;
T *row = data + size * bx;
buffer[tx] = scalar_cast<AccT>(0);
AccT norm;
if (THCNumerics<AccT>::eq(value, scalar_cast<AccT, float>(INFINITY))) {
// get norm of axis
for (ptrdiff_t i = tx; i < size; i += step) {
const AccT val = scalar_cast<AccT>(row[i]);
buffer[tx] = THCMax<AccT>(buffer[tx], static_cast<AccT>(std::abs(val)));
}
// add (reduce)
for (unsigned int stride = blockDim.x >> 1; stride > 0; stride >>= 1) {
__syncthreads();
if (tx < stride)
buffer[tx] = THCMax<AccT>(buffer[tx], buffer[tx+stride]);
}
// clip norms
__syncthreads();
norm = buffer[0];
} else {
// get norm of axis
for (ptrdiff_t i = tx; i < size; i += step) {
const AccT val = scalar_cast<AccT>(row[i]);
buffer[tx] = THCNumerics<AccT>::add(
buffer[tx],
THCNumerics<AccT>::pow(static_cast<AccT>(std::abs(val)), value)
);
}
// add (reduce)
for (unsigned int stride = blockDim.x >> 1; stride > 0; stride >>= 1) {
__syncthreads();
if (tx < stride)
buffer[tx] = THCNumerics<AccT>::add(buffer[tx], buffer[tx+stride]);
}
// clip norms
__syncthreads();
norm = THCNumerics<AccT>::pow(buffer[0], static_cast<AccT>(1) / value);
}
if (THCNumerics<AccT>::gt(norm, maxnorm)) {
norm = THCNumerics<AccT>::div(
maxnorm,
THCNumerics<AccT>::add(norm, scalar_cast<AccT>(1e-7))
);
// renormalize
for (ptrdiff_t i = tx; i < size; i += step) {
const AccT val = scalar_cast<AccT>(row[i]);
row[i] = scalar_cast<T>(THCNumerics<AccT>::mul(val, norm));
}
}
}
template <typename T>
struct TensorNonZeroOp {
TensorNonZeroOp() {}
__host__ __device__ T operator()(const T lhs) const {
const T zero = scalar_cast<T>(0);
if (THCNumerics<T>::eq(lhs, zero)) return zero;
return scalar_cast<T>(1);
}
};
/*
Fuses conversions and a TensorDistOp. Needed for Thrust.
*/
template <typename T, typename AccT>
struct ThrustTensorDistOp {
ThrustTensorDistOp(AccT _exponent) : exponent{_exponent} {}
__host__ __device__ AccT operator()(T _x, T _y) const {
const AccT x = scalar_cast<AccT>(_x);
const AccT y = scalar_cast<AccT>(_y);
if (THCNumerics<AccT>::eq(exponent, scalar_cast<AccT, float>(0))) {
const AccT zero = scalar_cast<AccT>(0);
if (THCNumerics<AccT>::eq(THCNumerics<AccT>::sub(x, y), zero))return zero;
return scalar_cast<AccT>(1);
}
if (THCNumerics<AccT>::eq(exponent, scalar_cast<AccT, float>(1))) {
return static_cast<AccT>(std::abs(THCNumerics<AccT>::sub(x, y)));
} else if (THCNumerics<AccT>::eq(exponent, scalar_cast<AccT, float>(2))) {
return THCNumerics<AccT>::pow(
THCNumerics<AccT>::sub(x, y), exponent);
} else {
return THCNumerics<AccT>::pow(
static_cast<AccT>(std::abs(THCNumerics<AccT>::sub(x, y))),
exponent);
}
}
const AccT exponent;
};
#include <thrust/functional.h>
// Given the sum of values and the sum of squares, compute the variance or standard deviation.
template<typename T, bool flag, bool apply_sqrt>
__forceinline__ __device__ T THCTensor_computeVar(
T sum,
T sum2,
const unsigned row_size) {
T rs2 = scalar_cast<T>(row_size);
T rs2m = scalar_cast<T>(row_size - 1);
T zero = scalar_cast<T>(0);
if (flag) {
sum = THCNumerics<T>::div(sum, rs2);
sum2 = THCNumerics<T>::div(sum2, rs2);
sum2 = THCNumerics<T>::sub(sum2, THCNumerics<T>::mul(sum, sum));
sum2 = (THCNumerics<T>::lt(sum2, zero) ? zero : sum2);
} else {
sum = THCNumerics<T>::div(sum, rs2);
sum2 = THCNumerics<T>::div(sum2, rs2m);
sum2 = THCNumerics<T>::sub(sum2,
THCNumerics<T>::mul(
THCNumerics<T>::div(rs2 ,rs2m),
THCNumerics<T>::mul(sum, sum)));
sum2 = (THCNumerics<T>::lt(sum2, zero) ? zero : sum2);
}
if (apply_sqrt)
return THCNumerics<T>::sqrt(sum2);
return sum2;
}
/* A set of reduction kernels that take in binary ops on thrust pairs (of value, index).
These are useful when you not only have to do a reduction, but you might have
to preserve the location of contention (for example min/max operations).
The structure of the kernels follows the structure of the reduction kernels.
*/
template <typename K, typename Index, class BinaryFunction, typename index_t>
__global__ void
kernelTransformReduceOuterDimIndex(K *tgt1,
Index *tgt2,
K *src_,
index_t num_orows,
index_t num_irows,
index_t row_size,
thrust::pair<K, Index> init,
BinaryFunction binary_op) {
for (index_t orow = blockIdx.x; orow < num_orows; orow += gridDim.x) {
for (index_t irow = blockIdx.y * blockDim.x + threadIdx.x;
irow < num_irows;
irow += gridDim.y * blockDim.x) {
K *src = src_ + orow * row_size * num_irows + irow;
thrust::pair<K, Index> acc = init;
for (index_t col = 0; col < row_size; ++col) {
// +1 for Lua index
acc = binary_op(acc,
thrust::make_pair<K, Index>(*src, col));
src += num_irows;
}
tgt1[orow * num_irows + irow] = acc.first;
tgt2[orow * num_irows + irow] = acc.second;
}
}
}
template <typename ScalarTypeK,
typename ScalarTypeIndex,
typename TensorTypeK,
typename TensorTypeIndex,
typename BinaryFunction>
__host__ void
THC_transformReduceOuterDimIndex(THCState *state,
TensorTypeK *tgt1,
TensorTypeIndex *tgt2,
TensorTypeK *src,
int64_t rdim,
const thrust::pair<ScalarTypeK, ScalarTypeIndex>& init,
BinaryFunction binary_op) {
int ndim = THCTensor_nDimensionLegacyAll(state, src);
int64_t num_orows = 1;
for (int dim = 0; dim < rdim; dim++) {
num_orows *= THCTensor_sizeLegacyNoScalars(state, src, dim);
}
int64_t row_size = THCTensor_sizeLegacyNoScalars(state, src, rdim);
int64_t num_irows = 1;
for (int dim = rdim + 1; dim < ndim; dim++) {
num_irows *= THCTensor_sizeLegacyNoScalars(state, src, dim);
}
int64_t num_threads = std::min(int64_t{512}, num_irows);
dim3 threads(num_threads);
int64_t maxGridDim = 1024;
dim3 grid(std::min(maxGridDim, num_orows),
std::min(maxGridDim, THCCeilDiv(num_irows, num_threads)));
auto stream = c10::cuda::getCurrentCUDAStream();
// Use 32-bit indexing if possible
if (THCTensor_canUse32BitIndexMath(state, src)) {
kernelTransformReduceOuterDimIndex
<<<grid, threads, 0, stream>>>(
tgt1->template data<ScalarTypeK>(),
tgt2->template data<ScalarTypeIndex>(),
src->template data<ScalarTypeK>(),
static_cast<unsigned>(num_orows),
static_cast<unsigned>(num_irows),
static_cast<unsigned>(row_size),
init, binary_op);
} else {
kernelTransformReduceOuterDimIndex
<<<grid, threads, 0, stream>>>(
tgt1->template data<ScalarTypeK>(),
tgt2->template data<ScalarTypeIndex>(),
src->template data<ScalarTypeK>(),
num_orows, num_irows, row_size, init, binary_op);
}
THCudaCheck(cudaGetLastError());
}
/* Reduce the innermost dimension of a tensor (on thrust::pair functors which are (value, index))
*
* For an n-d tensor (n <= 4) where the reduction is along the innermost dimension:
*
* - block.x is the innermost dimension, i.e. dimension 0;
* - block.y and grid.y make up dimension 1; and
* - grid.x and grid z are the remaining two outer dimensions (if any)
*
* Reduction along other dimensions is handled in a separate kernel.
*/
template <typename K, typename Index, class BinaryFunction, typename index_t>
__global__ void
kernelTransformReduceInnermostDimIndex(K *tgt1,
Index* tgt2,
K *src_,
index_t num_rows,
index_t row_size,
thrust::pair<K, Index> init,
BinaryFunction binary_op) {
__shared__ K sbuf[32][16 + 1]; // avoid bank conflict
__shared__ Index ibuf[32][16 + 1]; // avoid bank conflict
for (index_t block_row = blockIdx.x * blockDim.y;
block_row < num_rows;
block_row += blockDim.y * gridDim.x) {
index_t row = block_row + threadIdx.y;
thrust::pair<K, Index> acc = init;
if (row < num_rows) {
K *src = src_ + row * row_size;
// Sequential reduction within a thread.
for (index_t col = threadIdx.x; col < row_size; col += blockDim.x) {
acc = binary_op(acc, thrust::make_pair<K, Index>(src[col], col));
}
}
sbuf[threadIdx.y][threadIdx.x] = acc.first;
ibuf[threadIdx.y][threadIdx.x] = acc.second;
__syncthreads();
// Reduce intermediate values to single value.
K* sline = &sbuf[threadIdx.y][0];
Index* iline = &ibuf[threadIdx.y][0];
for (unsigned s = 8; s > 0; s >>= 1) {
if (row < num_rows && threadIdx.x < s) {
thrust::pair<K, Index> arg1 =
thrust::make_pair<K, Index>(sline[threadIdx.x], iline[threadIdx.x]);
thrust::pair<K, Index> arg2 =
thrust::make_pair<K, Index>(sline[threadIdx.x + s], iline[threadIdx.x + s]);
thrust::pair<K, Index> res = binary_op(arg1, arg2);
sline[threadIdx.x] = res.first;
iline[threadIdx.x] = res.second;
}
__syncthreads();
}
if (row < num_rows && threadIdx.x == 0) {
tgt1[row] = sline[0];
tgt2[row] = iline[0];
}
__syncthreads();
}
}
template <typename ScalarTypeK,
typename ScalarTypeIndex,
typename TensorTypeK,
typename TensorTypeIndex,
typename BinaryFunction>
__host__ void
THC_transformReduceInnermostDimIndex(THCState *state,
TensorTypeK *tgt1,
TensorTypeIndex *tgt2,
TensorTypeK *src,
const thrust::pair<ScalarTypeK, ScalarTypeIndex>& init,
BinaryFunction binary_op) {
int ndim = THCTensor_nDimensionLegacyAll(state, src);
int64_t num_rows = 1;
for (int dim = 0; dim < ndim - 1; dim++) {
num_rows *= THCTensor_sizeLegacyNoScalars(state, src, dim);
}
int64_t row_size = THCTensor_sizeLegacyNoScalars(state, src, ndim - 1);
dim3 threads(16, 32);
auto stream = c10::cuda::getCurrentCUDAStream();
dim3 grid(
std::min(int64_t{1024}, THCCeilDiv(num_rows, int64_t{threads.y})));
// Use 32-bit indexing if possible
if (THCTensor_canUse32BitIndexMath(state, src)) {
kernelTransformReduceInnermostDimIndex
<<<grid, threads, 0, stream>>>(
tgt1->template data<ScalarTypeK>(),
tgt2->template data<ScalarTypeIndex>(),
src->template data<ScalarTypeK>(),
static_cast<unsigned>(num_rows),
static_cast<unsigned>(row_size),
init, binary_op);
} else {
kernelTransformReduceInnermostDimIndex
<<<grid, threads, 0, stream>>>(
tgt1->template data<ScalarTypeK>(),
tgt2->template data<ScalarTypeIndex>(),
src->template data<ScalarTypeK>(),
num_rows, row_size, init, binary_op);
}
THCudaCheck(cudaGetLastError());
}
template <typename ScalarTypeK,
typename ScalarTypeIndex,
typename TensorTypeK,
typename TensorTypeIndex,
typename BinaryFunction>
void
THC_reduceDimIndex(THCState *state,
TensorTypeK *tgt1_,
TensorTypeIndex *tgt2_,
TensorTypeK *src,
int64_t dimension,
int keepdim,
const thrust::pair<ScalarTypeK, ScalarTypeIndex>& init,
BinaryFunction binary_op)
{
THArgCheck(dimension >= 0 &&
dimension < THCTensor_nDimensionLegacyAll(state, src),
3, "dimension out of range");
// Unsqueeze tgt1_/tgt_2 if necessary so that their contiguity traits
// are preserved if they are the same size as the correct reduction output.
int src_dims = THCTensor_nDimensionLegacyAll(state, src);
THCTensor_preserveReduceDimSemantics(
state, tgt1_, src_dims, dimension, keepdim);
THCTensor_preserveReduceDimSemantics(
state, tgt2_, src_dims, dimension, keepdim);
std::vector<int64_t> dim = THTensor_sizesLegacyNoScalars(src);
dim[dimension] = 1;
THCTensor_resize(state, tgt1_, dim, {});
THCTensor_resize(state, tgt2_, dim, {});
TensorTypeK *tgt1 = (TensorTypeK*)THCTensor_newContiguous<ScalarTypeK>(state, tgt1_);
TensorTypeIndex *tgt2 = (TensorTypeIndex*)THCTensor_newContiguous<ScalarTypeIndex>(state, tgt2_);
src = (TensorTypeK*)THCTensor_newContiguous<ScalarTypeK>(state, src);
if (dimension == THCTensor_nDimensionLegacyAll(state, src) - 1) {
THC_transformReduceInnermostDimIndex(state, tgt1, tgt2, src, init, binary_op);
} else {
THC_transformReduceOuterDimIndex(state, tgt1, tgt2, src, dimension, init, binary_op);
}
THCTensor_free(state, src);
THCTensor_freeCopyTo<ScalarTypeK>(state, tgt1, tgt1_);
THCTensor_freeCopyTo<ScalarTypeIndex>(state, tgt2, tgt2_);
if (!keepdim) {
THCTensor_squeeze1d(state, tgt1_, tgt1_, dimension);
THCTensor_squeeze1d(state, tgt2_, tgt2_, dimension);
}
}
template <typename T, typename Index>
struct MaxValuePair {
__host__ __device__
thrust::pair<T, Index> operator()(const thrust::pair<T, Index>& a,
const thrust::pair<T, Index>& b) {
return (THCNumerics<T>::ge(a.first, b.first) ||
THCNumerics<T>::isnan(a.first)) ? a : b;
}
};
template <typename T, typename Index>
struct MinValuePair {
__host__ __device__
thrust::pair<T, Index> operator()(const thrust::pair<T, Index>& a,
const thrust::pair<T, Index>& b) {
return (THCNumerics<T>::le(a.first, b.first) ||
THCNumerics<T>::isnan(a.first)) ? a : b;
}
};
template <typename T>
struct AddOp {
__device__ __forceinline__ T operator()(T const &lhs, T const &rhs) {
return THCNumerics<T>::add(lhs, rhs);
}
};
template <typename T>
struct MulOp {
__device__ __forceinline__ T operator()(T const &lhs, T const &rhs) {
return THCNumerics<T>::mul(lhs, rhs);
}
};
template <typename T>
struct MaxOp {
__device__ __forceinline__ T operator()(T const &lhs, T const &rhs) {
return THCNumerics<T>::gt(lhs, rhs) ? lhs : rhs;
}
};
template <typename T>
struct MinOp {
__device__ __forceinline__ T operator()(T const &lhs, T const &rhs) {
return THCNumerics<T>::lt(lhs, rhs) ? lhs : rhs;
}
};
#endif // THC_TENSORMATH_REDUCE_CUH