forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
serialize.cpp
928 lines (796 loc) · 32.6 KB
/
serialize.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
#include <gtest/gtest.h>
#include <c10/util/tempfile.h>
#include <c10/util/flat_hash_map.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <cstdio>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
using namespace torch::test;
using namespace torch::nn;
using namespace torch::optim;
namespace {
Sequential xor_model() {
return Sequential(
Linear(2, 8),
Functional(at::sigmoid),
Linear(8, 1),
Functional(at::sigmoid));
}
torch::Tensor save_and_load(torch::Tensor input) {
std::stringstream stream;
torch::save(input, stream);
torch::Tensor tensor;
torch::load(tensor, stream);
return tensor;
}
} // namespace
template <typename DerivedOptions>
void is_optimizer_param_group_equal(const OptimizerParamGroup& lhs, const OptimizerParamGroup& rhs) {
const auto& lhs_params = lhs.params();
const auto& rhs_params = rhs.params();
ASSERT_TRUE(lhs_params.size() == rhs_params.size());
for (size_t j = 0; j < lhs_params.size(); j++) {
ASSERT_TRUE(torch::equal(lhs_params[j], rhs_params[j]));
}
ASSERT_TRUE(static_cast<const DerivedOptions&>(lhs.options()) == static_cast<const DerivedOptions&>(rhs.options()));
}
template <typename DerivedOptimizerParamState>
void is_optimizer_state_equal(
const ska::flat_hash_map<std::string, std::unique_ptr<OptimizerParamState>>& lhs_state,
const ska::flat_hash_map<std::string, std::unique_ptr<OptimizerParamState>>& rhs_state) {
ASSERT_TRUE(lhs_state.size() == rhs_state.size());
for (const auto& value : lhs_state) {
auto found = rhs_state.find(value.first);
ASSERT_TRUE(found != rhs_state.end());
const DerivedOptimizerParamState& lhs_curr_state = static_cast<const DerivedOptimizerParamState&>(*(value.second.get()));
const DerivedOptimizerParamState& rhs_curr_state = static_cast<const DerivedOptimizerParamState&>(*(found->second.get()));
ASSERT_TRUE(lhs_curr_state == rhs_curr_state);
}
}
template <typename OptimizerClass, typename DerivedOptimizerOptions, typename DerivedOptimizerParamState>
void test_serialize_optimizer(DerivedOptimizerOptions options, bool only_has_global_state = false) {
auto model1 = Linear(5, 2);
auto model2 = Linear(5, 2);
auto model3 = Linear(5, 2);
// Models 1, 2, 3 will have the same parameters.
auto model_tempfile = c10::make_tempfile();
torch::save(model1, model_tempfile.name);
torch::load(model2, model_tempfile.name);
torch::load(model3, model_tempfile.name);
auto param1 = model1->named_parameters();
auto param2 = model2->named_parameters();
auto param3 = model3->named_parameters();
for (const auto& p : param1) {
ASSERT_TRUE(p->allclose(param2[p.key()]));
ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()]));
}
// Make some optimizers
auto optim1 = OptimizerClass(
{torch::optim::OptimizerParamGroup(model1->parameters())}, options);
auto optim2 = OptimizerClass(
model2->parameters(), options);
auto optim2_2 = OptimizerClass(
model2->parameters(), options);
auto optim3 = OptimizerClass(
model3->parameters(), options);
auto optim3_2 = OptimizerClass(
model3->parameters(), options);
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
auto closure = []() { return torch::tensor({10}); };
optimizer.step(closure);
};
// Do 2 steps of model1
step(optim1, model1);
step(optim1, model1);
// Do 2 steps of model 2 without saving the optimizer
step(optim2, model2);
step(optim2_2, model2);
// Do 1 step of model 3
step(optim3, model3);
// save the optimizer
auto optim_tempfile = c10::make_tempfile();
torch::save(optim3, optim_tempfile.name);
torch::load(optim3_2, optim_tempfile.name);
auto& optim3_2_param_groups = optim3_2.param_groups();
auto& optim3_param_groups = optim3.param_groups();
auto& optim3_2_state = optim3_2.state();
auto& optim3_state = optim3.state();
// optim3_2 and optim1 should have param_groups and state of size 1 and state_size respectively
ASSERT_TRUE(optim3_2_param_groups.size() == 1);
// state_size = 2 for all optimizers except LBFGS as LBFGS only maintains one global state
int state_size = only_has_global_state ? 1 : 2;
ASSERT_TRUE(optim3_2_state.size() == state_size);
// optim3_2 and optim1 should have param_groups and state of same size
ASSERT_TRUE(optim3_2_param_groups.size() == optim3_param_groups.size());
ASSERT_TRUE(optim3_2_state.size() == optim3_state.size());
// checking correctness of serialization logic for optimizer.param_groups_ and optimizer.state_
for (int i = 0; i < optim3_2_param_groups.size(); i++) {
is_optimizer_param_group_equal<DerivedOptimizerOptions>(
optim3_2_param_groups[i], optim3_param_groups[i]);
is_optimizer_state_equal<DerivedOptimizerParamState>(optim3_2_state, optim3_state);
}
// Do step2 for model 3
step(optim3_2, model3);
param1 = model1->named_parameters();
param2 = model2->named_parameters();
param3 = model3->named_parameters();
for (const auto& p : param1) {
const auto& name = p.key();
// Model 1 and 3 should be the same
ASSERT_TRUE(
param1[name].norm().item<float>() == param3[name].norm().item<float>());
ASSERT_TRUE(
param1[name].norm().item<float>() != param2[name].norm().item<float>());
}
}
/// Utility function to save a value of `int64_t` type.
void write_int_value(
torch::serialize::OutputArchive& archive,
const std::string& key,
const int64_t& value) {
archive.write(key, c10::IValue(value));
}
// Utility function to save a vector of buffers.
template <typename BufferContainer>
void write_tensors_to_archive(
torch::serialize::OutputArchive& archive,
const std::string& key,
const BufferContainer& buffers) {
archive.write(
key + "/size", torch::tensor(static_cast<int64_t>(buffers.size())));
for (size_t index = 0; index < buffers.size(); ++index) {
archive.write(
key + "/" + c10::to_string(index), buffers[index], /*is_buffer=*/true);
}
}
// Utility function to save a vector of step buffers.
void write_step_buffers(
torch::serialize::OutputArchive& archive,
const std::string& key,
const std::vector<int64_t>& steps) {
std::vector<torch::Tensor> tensors;
tensors.reserve(steps.size());
for (const auto& step : steps) {
tensors.push_back(torch::tensor(static_cast<int64_t>(step)));
}
write_tensors_to_archive(archive, key, tensors);
}
#define OLD_SERIALIZATION_LOGIC_WARNING_CHECK(funcname, optimizer, filename) \
{ \
WarningCapture warnings; \
funcname(optimizer, filename); \
ASSERT_EQ( \
count_substr_occurrences(warnings.str(), "old serialization"), 1); \
}
TEST(SerializeTest, KeysFunc) {
auto tempfile = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
for (size_t i = 0; i < 3; i++) {
output_archive.write("element/" + c10::to_string(i), c10::IValue(static_cast<int64_t>(i)));
}
output_archive.save_to(tempfile.name);
torch::serialize::InputArchive input_archive;
input_archive.load_from(tempfile.name);
std::vector<std::string> keys = input_archive.keys();
ASSERT_EQ(keys.size(), 3);
for (size_t i = 0; i < keys.size(); i++) {
ASSERT_EQ(keys[i], "element/" + c10::to_string(i));
}
}
TEST(SerializeTest, TryReadFunc) {
auto tempfile = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
for (size_t i = 0; i < 3; i++) {
output_archive.write("element/" + c10::to_string(i), c10::IValue(static_cast<int64_t>(i)));
}
output_archive.save_to(tempfile.name);
torch::serialize::InputArchive input_archive;
input_archive.load_from(tempfile.name);
c10::IValue ivalue;
ASSERT_FALSE(input_archive.try_read("1", ivalue));
ASSERT_TRUE(input_archive.try_read("element/1", ivalue));
ASSERT_EQ(ivalue.toInt(), 1);
}
TEST(SerializeTest, Basic) {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, BasicToFile) {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
auto tempfile = c10::make_tempfile();
torch::save(x, tempfile.name);
torch::Tensor y;
torch::load(y, tempfile.name);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, BasicViaFunc) {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
std::string serialized;
torch::save(x, [&](const void* buf, size_t n) {
serialized.append(reinterpret_cast<const char *>(buf), n);
return n;
});
torch::Tensor y;
torch::load(y, serialized.data(), serialized.size());
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
torch::Tensor z;
torch::load(z, [&](uint64_t pos, void* buf, size_t n) -> size_t {
if (pos >= serialized.size()) return 0;
size_t nbytes = std::min(static_cast<size_t>(pos) + n,
serialized.size()) - pos;
memcpy(buf, serialized.data() + pos, nbytes);
return nbytes;
},
[&]() -> size_t { return serialized.size(); });
ASSERT_TRUE(z.defined());
ASSERT_EQ(x.sizes().vec(), z.sizes().vec());
ASSERT_TRUE(x.allclose(z));
}
TEST(SerializeTest, Resized) {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x.resize_({5, 5});
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, Sliced) {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x = x.slice(0, 1, 5);
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, NonContiguous) {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x = x.slice(1, 1, 4);
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, ErrorOnMissingKey) {
struct B : torch::nn::Module {
B(const std::string& name_c) {
register_buffer(name_c, torch::ones(5, torch::kFloat));
}
};
struct A : torch::nn::Module {
A(const std::string& name_b, const std::string& name_c) {
register_module(name_b, std::make_shared<B>(name_c));
}
};
struct M : torch::nn::Module {
M(const std::string& name_a,
const std::string& name_b,
const std::string& name_c) {
register_module(name_a, std::make_shared<A>(name_b, name_c));
}
};
// create a hierarchy of models with names differing below the top level
auto model1 = std::make_shared<M>("a", "b", "c");
auto model2 = std::make_shared<M>("a", "b", "x");
auto model3 = std::make_shared<M>("a", "x", "c");
std::stringstream stream;
torch::save(model1, stream);
// We want the errors to contain hierarchy information, too.
ASSERT_THROWS_WITH(
torch::load(model2, stream), "No such serialized tensor 'a.b.x'");
ASSERT_THROWS_WITH(
torch::load(model3, stream), "No such serialized submodule: 'a.x'");
}
TEST(SerializeTest, XOR) {
// We better be able to save and load an XOR model!
auto getLoss = [](Sequential model, uint32_t batch_size) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
for (size_t i = 0; i < batch_size; i++) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
ASSERT_LT(epoch, 3000);
epoch++;
}
auto tempfile = c10::make_tempfile();
torch::save(model, tempfile.name);
torch::load(model2, tempfile.name);
auto loss = getLoss(model2, 100);
ASSERT_LT(loss.item<float>(), 0.1);
}
TEST(SerializeTest, Optim) {
auto model1 = Linear(5, 2);
auto model2 = Linear(5, 2);
auto model3 = Linear(5, 2);
// Models 1, 2, 3 will have the same parameters.
auto model_tempfile = c10::make_tempfile();
torch::save(model1, model_tempfile.name);
torch::load(model2, model_tempfile.name);
torch::load(model3, model_tempfile.name);
auto param1 = model1->named_parameters();
auto param2 = model2->named_parameters();
auto param3 = model3->named_parameters();
for (const auto& p : param1) {
ASSERT_TRUE(p->allclose(param2[p.key()]));
ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()]));
}
// Make some optimizers with momentum (and thus state)
auto optim1 = torch::optim::SGD(
model1->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2_2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3_2 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
// Do 2 steps of model1
step(optim1, model1);
step(optim1, model1);
// Do 2 steps of model 2 without saving the optimizer
step(optim2, model2);
step(optim2_2, model2);
// Do 2 steps of model 3 while saving the optimizer
step(optim3, model3);
auto optim_tempfile = c10::make_tempfile();
torch::save(optim3, optim_tempfile.name);
torch::load(optim3_2, optim_tempfile.name);
step(optim3_2, model3);
param1 = model1->named_parameters();
param2 = model2->named_parameters();
param3 = model3->named_parameters();
for (const auto& p : param1) {
const auto& name = p.key();
// Model 1 and 3 should be the same
ASSERT_TRUE(
param1[name].norm().item<float>() == param3[name].norm().item<float>());
ASSERT_TRUE(
param1[name].norm().item<float>() != param2[name].norm().item<float>());
}
}
TEST(SerializeTest, Optim_Adagrad) {
test_serialize_optimizer<Adagrad, AdagradOptions, AdagradParamState>(AdagradOptions(1e-1));
// bc compatibility check
auto model1 = Linear(5, 2);
auto optim1 = torch::optim::Adagrad(
model1->parameters(), torch::optim::AdagradOptions(1e-1));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
auto optim1_2 = Adagrad(model1->parameters(), torch::optim::AdagradOptions(1e-1));
// fill up with optim1 sum_buffers
std::vector<torch::Tensor> sum_buffers;
// fill up with optim1 state_buffers
std::vector<int64_t> step_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (size_t i = 0; i < params_.size(); i++) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
const AdagradParamState& curr_state_ = static_cast<const AdagradParamState&>(*(optim1_state.at(key_).get()));
sum_buffers.emplace_back(curr_state_.sum());
step_buffers.emplace_back(curr_state_.step());
}
// write sum_buffers and step_buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_tensors_to_archive(output_archive, "sum_buffers", sum_buffers);
write_step_buffers(output_archive, "step_buffers", step_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<AdagradParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_SGD) {
test_serialize_optimizer<SGD, SGDOptions, SGDParamState>(SGDOptions(1e-1).momentum(0.9));
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have a momentum buffer entry
model1_params.emplace_back(torch::randn({2,3}));
auto optim1 = torch::optim::SGD(model1_params, torch::optim::SGDOptions(0.01).momentum(0.9));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<at::Tensor> momentum_buffers;
int64_t iteration_{0};
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (size_t i = 0; i < params_.size(); i++) {
if(i != (params_.size() - 1)) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
const SGDParamState& curr_state_ = static_cast<const SGDParamState&>(*(optim1_state.at(key_).get()));
momentum_buffers.emplace_back(curr_state_.momentum_buffer());
}
}
ASSERT_TRUE(momentum_buffers.size() == (params_.size() - 1));
// write momentum_buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_tensors_to_archive(output_archive, "momentum_buffers", momentum_buffers);
write_int_value(output_archive, "iteration_", iteration_);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = SGD(model1_params, torch::optim::SGDOptions(1e-1).momentum(0.9));
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<SGDParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_Adam) {
test_serialize_optimizer<Adam, AdamOptions, AdamParamState>(AdamOptions().lr(0.99999).amsgrad(true).weight_decay(0.5));
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have entry in buffers
model1_params.emplace_back(torch::randn({2,3}));
auto optim1 = torch::optim::Adam(model1_params, torch::optim::AdamOptions().weight_decay(0.5));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<int64_t> step_buffers;
std::vector<at::Tensor> exp_average_buffers;
std::vector<at::Tensor> exp_average_sq_buffers;
std::vector<at::Tensor> max_exp_average_sq_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (size_t i = 0; i < params_.size(); i++) {
if(i != (params_.size() - 1)) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
const AdamParamState& curr_state_ = static_cast<const AdamParamState&>(*(optim1_state.at(key_).get()));
step_buffers.emplace_back(curr_state_.step());
exp_average_buffers.emplace_back(curr_state_.exp_avg());
exp_average_sq_buffers.emplace_back(curr_state_.exp_avg_sq());
if(curr_state_.max_exp_avg_sq().defined()) {
max_exp_average_sq_buffers.emplace_back(curr_state_.max_exp_avg_sq());
}
}
}
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_step_buffers(output_archive, "step_buffers", step_buffers);
write_tensors_to_archive(output_archive, "exp_average_buffers", exp_average_buffers);
write_tensors_to_archive(output_archive, "exp_average_sq_buffers", exp_average_sq_buffers);
write_tensors_to_archive(output_archive, "max_exp_average_sq_buffers", max_exp_average_sq_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = Adam(model1_params, torch::optim::AdamOptions());
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<AdamParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_RMSprop) {
auto options = RMSpropOptions(0.1).momentum(0.9).centered(true);
test_serialize_optimizer<RMSprop, RMSpropOptions, RMSpropParamState>(options);
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have a momentum buffer entry
model1_params.emplace_back(torch::randn({2,3}));
auto optim1 = torch::optim::RMSprop(model1_params, options);
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<at::Tensor> square_average_buffers;
std::vector<at::Tensor> momentum_buffers;
std::vector<at::Tensor> grad_average_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (size_t i = 0; i < params_.size(); i++) {
if(i != (params_.size() - 1)) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
const RMSpropParamState& curr_state_ = static_cast<const RMSpropParamState&>(*(optim1_state.at(key_).get()));
square_average_buffers.emplace_back(curr_state_.square_avg());
if(curr_state_.momentum_buffer().defined()) {
momentum_buffers.emplace_back(curr_state_.momentum_buffer());
}
if(curr_state_.grad_avg().defined()) {
grad_average_buffers.emplace_back(curr_state_.grad_avg());
}
}
}
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_tensors_to_archive(output_archive, "square_average_buffers", square_average_buffers);
write_tensors_to_archive(output_archive, "momentum_buffers", momentum_buffers);
write_tensors_to_archive(output_archive, "grad_average_buffers", grad_average_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = RMSprop(model1_params, options);
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(torch::load, optim1_2, optim_tempfile_old_format.name);
const auto& params1_2_ = optim1_2.param_groups()[0].params();
auto& optim1_2_state = optim1_2.state();
// old RMSprop didn't track step value
for (size_t i = 0; i < params1_2_.size(); i++) {
if(i != (params1_2_.size() - 1)) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
auto key1_2_ = c10::guts::to_string(params1_2_[i].unsafeGetTensorImpl());
const RMSpropParamState& curr_state_ = static_cast<const RMSpropParamState&>(*(optim1_state.at(key_).get()));
RMSpropParamState& curr_state1_2_ = static_cast<RMSpropParamState&>(*(optim1_2_state.at(key_).get()));
curr_state1_2_.step(curr_state_.step());
}
}
is_optimizer_state_equal<RMSpropParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_LBFGS) {
test_serialize_optimizer<LBFGS, LBFGSOptions, LBFGSParamState>(LBFGSOptions(), true);
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have entry in buffers
model1_params.emplace_back(torch::randn({2,3}));
auto optim1 = torch::optim::LBFGS(model1_params, torch::optim::LBFGSOptions());
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
auto closure = []() { return torch::tensor({10}); };
optimizer.step(closure);
};
step(optim1, model1);
at::Tensor d, t, H_diag, prev_flat_grad, prev_loss;
std::deque<at::Tensor> old_dirs, old_stps;
const auto& params_ = optim1.param_groups()[0].params();
auto key_ = c10::guts::to_string(params_[0].unsafeGetTensorImpl());
const auto& optim1_state = static_cast<const LBFGSParamState&>(*(optim1.state().at(key_).get()));
d = optim1_state.d();
t = at::tensor(optim1_state.t());
H_diag = optim1_state.H_diag();
prev_flat_grad = optim1_state.prev_flat_grad();
prev_loss = at::tensor(optim1_state.prev_loss());
old_dirs = optim1_state.old_dirs();
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
output_archive.write("d", d, /*is_buffer=*/true);
output_archive.write("t", t, /*is_buffer=*/true);
output_archive.write("H_diag", H_diag, /*is_buffer=*/true);
output_archive.write("prev_flat_grad", prev_flat_grad, /*is_buffer=*/true);
output_archive.write("prev_loss", prev_loss, /*is_buffer=*/true);
write_tensors_to_archive(output_archive, "old_dirs", old_dirs);
write_tensors_to_archive(output_archive, "old_stps", old_stps);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = LBFGS(model1_params, torch::optim::LBFGSOptions());
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(torch::load, optim1_2, optim_tempfile_old_format.name);
const auto& params1_2_ = optim1_2.param_groups()[0].params();
auto param_key = c10::guts::to_string(params1_2_[0].unsafeGetTensorImpl());
auto& optim1_2_state = static_cast<LBFGSParamState&>(*(optim1_2.state().at(param_key).get()));
// old LBFGS didn't track func_evals, n_iter, ro, al values
optim1_2_state.func_evals(optim1_state.func_evals());
optim1_2_state.n_iter(optim1_state.n_iter());
optim1_2_state.ro(optim1_state.ro());
optim1_2_state.al(optim1_state.al());
is_optimizer_state_equal<LBFGSParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, XOR_CUDA) {
torch::manual_seed(0);
// We better be able to save and load a XOR model!
auto getLoss = [](Sequential model,
uint32_t batch_size,
bool is_cuda = false) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
if (is_cuda) {
inputs = inputs.cuda();
labels = labels.cuda();
}
for (size_t i = 0; i < batch_size; i++) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
ASSERT_LT(epoch, 3000);
epoch++;
}
auto tempfile = c10::make_tempfile();
torch::save(model, tempfile.name);
torch::load(model2, tempfile.name);
auto loss = getLoss(model2, 100);
ASSERT_LT(loss.item<float>(), 0.1);
model2->to(torch::kCUDA);
loss = getLoss(model2, 100, true);
ASSERT_LT(loss.item<float>(), 0.1);
auto tempfile2 = c10::make_tempfile();
torch::save(model2, tempfile2.name);
torch::load(model3, tempfile2.name);
loss = getLoss(model3, 100, true);
ASSERT_LT(loss.item<float>(), 0.1);
}
TEST(
SerializeTest,
CanSerializeModulesWithIntermediateModulesWithoutParametersOrBuffers) {
struct C : torch::nn::Module {
C() {
register_buffer("foo", torch::ones(5, torch::kInt32));
}
};
struct B : torch::nn::Module {};
struct A : torch::nn::Module {
A() {
register_module("b", std::make_shared<B>());
register_module("c", std::make_shared<C>());
}
};
struct M : torch::nn::Module {
M() {
register_module("a", std::make_shared<A>());
}
};
auto out = std::make_shared<M>();
std::stringstream ss;
torch::save(out, ss);
auto in = std::make_shared<M>();
torch::load(in, ss);
const int output = in->named_buffers()["a.c.foo"].sum().item<int>();
ASSERT_EQ(output, 5);
}
TEST(SerializeTest, VectorOfTensors) {
torch::manual_seed(0);
std::vector<torch::Tensor> x_vec = { torch::randn({1, 2}), torch::randn({3, 4}) };
std::stringstream stream;
torch::save(x_vec, stream);
std::vector<torch::Tensor> y_vec;
torch::load(y_vec, stream);
for (int64_t i = 0; i < x_vec.size(); i++) {
auto& x = x_vec[i];
auto& y = y_vec[i];
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
}
TEST(SerializeTest, IValue) {
c10::IValue ivalue(1);
auto tempfile = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
output_archive.write("value", ivalue);
output_archive.save_to(tempfile.name);
torch::serialize::InputArchive input_archive;
input_archive.load_from(tempfile.name);
c10::IValue ivalue_out;
input_archive.read("value", ivalue_out);
ASSERT_EQ(ivalue_out.toInt(), 1);
ASSERT_THROWS_WITH(input_archive.read("bad_key", ivalue_out), "does not have a field with name");
}
// NOTE: if a `Module` contains unserializable submodules (e.g. `nn::Functional`),
// we expect those submodules to be skipped when the `Module` is being serialized.
TEST(SerializeTest, UnserializableSubmoduleIsSkippedWhenSavingModule) {
struct A : torch::nn::Module {
A() {
register_module("relu", torch::nn::Functional(torch::relu));
}
};
auto out = std::make_shared<A>();
std::stringstream ss;
torch::save(out, ss);
torch::serialize::InputArchive archive;
archive.load_from(ss);
torch::serialize::InputArchive relu_archive;
// Submodule with name "relu" should not exist in the `InputArchive`,
// because the "relu" submodule is an `nn::Functional` and is not serializable.
ASSERT_FALSE(archive.try_read("relu", relu_archive));
}
// NOTE: If a `Module` contains unserializable submodules (e.g. `nn::Functional`),
// we don't check the existence of those submodules in the `InputArchive` when
// deserializing.
TEST(SerializeTest, UnserializableSubmoduleIsIgnoredWhenLoadingModule) {
struct B : torch::nn::Module {
B() {
register_module("relu1", torch::nn::Functional(torch::relu));
register_buffer("foo", torch::zeros(5, torch::kInt32));
}
};
struct A : torch::nn::Module {
A() {
register_module("b", std::make_shared<B>());
register_module("relu2", torch::nn::Functional(torch::relu));
}
};
auto out = std::make_shared<A>();
// Manually change the values of "b.foo", so that we can check whether the buffer
// contains these values after deserialization.
out->named_buffers()["b.foo"].fill_(1);
auto tempfile = c10::make_tempfile();
torch::save(out, tempfile.name);
torch::serialize::InputArchive archive;
archive.load_from(tempfile.name);
torch::serialize::InputArchive archive_b;
torch::serialize::InputArchive archive_relu;
torch::Tensor tensor_foo;
ASSERT_TRUE(archive.try_read("b", archive_b));
ASSERT_TRUE(archive_b.try_read("foo", tensor_foo, /*is_buffer=*/true));
// Submodule with name "relu1" should not exist in `archive_b`, because the "relu1"
// submodule is an `nn::Functional` and is not serializable.
ASSERT_FALSE(archive_b.try_read("relu1", archive_relu));
// Submodule with name "relu2" should not exist in `archive`, because the "relu2"
// submodule is an `nn::Functional` and is not serializable.
ASSERT_FALSE(archive.try_read("relu2", archive_relu));
auto in = std::make_shared<A>();
// `torch::load(...)` works without error, even though `A` contains the `nn::Functional`
// submodules while the serialized file doesn't, because the `nn::Functional` submodules
// are not serializable and thus ignored when deserializing.
torch::load(in, tempfile.name);
// Check that the "b.foo" buffer is correctly deserialized from the file.
const int output = in->named_buffers()["b.foo"].sum().item<int>();
// `output` should equal to the sum of the values we manually assigned to "b.foo" before
// serialization.
ASSERT_EQ(output, 5);
}