forked from YonghaoHe/LFD-A-Light-and-Fast-Detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WIDERFACE_LFD_M.py
259 lines (207 loc) · 9.88 KB
/
WIDERFACE_LFD_M.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# -*- coding: utf-8 -*-
import sys
import shutil
import os
import time
import torch
from lfd.execution.utils import set_random_seed, set_cudnn_backend
from lfd.model.backbone import LFDResNet
from lfd.model.neck import SimpleNeck
from lfd.model.head import LFDHead
from lfd.model.losses import *
from lfd.model import *
from lfd.data_pipeline.data_loader import DataLoader
from lfd.data_pipeline.dataset import Dataset
from lfd.data_pipeline.sampler import *
from lfd.data_pipeline.augmentation import *
from lfd.execution.executor import Executor
from lfd.execution.utils import customize_exception_hook
assert torch.cuda.is_available(), 'GPU training supported only!'
memo = 'WIDERFACE M' \
'head: share, path merge, with GN' \
'FL as classification loss, loss weight is set to 1.0' \
'IoULoss as regression loss, distance_to_bbox_mode is set to sigmoid, loss weight is set to 1.0'
# all config parameters will be stored in config_dict
config_dict = dict()
def prepare_common_settings():
# work directory (saving log and model weights)
config_dict['timestamp'] = time.strftime('%Y%m%d_%H%M%S', time.localtime())
config_dict['work_dir'] = './' + os.path.basename(__file__).split('.')[0] + '_work_dir_' + config_dict['timestamp']
# copy current config file to work dir for backup
if not os.path.exists(config_dict['work_dir']):
os.makedirs(config_dict['work_dir'])
shutil.copyfile(__file__, os.path.join(config_dict['work_dir'], os.path.basename(__file__)))
# log file path
config_dict['log_path'] = os.path.join(config_dict['work_dir'], 'log_' + config_dict['timestamp'] + '.log')
# set exception hook, record all output info including exceptions and errors
sys.excepthook = customize_exception_hook(os.path.join(config_dict['work_dir'], 'exception_log_' + config_dict['timestamp'] + '.log'))
# training epochs
config_dict['training_epochs'] = 1000
# reproductive
config_dict['seed'] = 666
config_dict['cudnn_benchmark'] = True
if config_dict['seed'] is not None:
set_random_seed(config_dict['seed'])
set_cudnn_backend(config_dict['cudnn_benchmark'])
# GPU list
config_dict['gpu_list'] = [0, 1, 2, 3]
assert isinstance(config_dict['gpu_list'], list)
# display interval in iterations
config_dict['display_interval'] = 100
# checkpoint save interval in epochs
config_dict['save_interval'] = 100
# validation interval in epochs
config_dict['val_interval'] = 0
'''
build model ----------------------------------------------------------------------------------------------
'''
def prepare_model():
# input image channels: BGR--3, gray--1
config_dict['num_input_channels'] = 3
classification_loss = FocalLoss(
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
reduction='mean',
loss_weight=1.0
)
regression_loss = IoULoss(
eps=1e-6,
reduction='mean',
loss_weight=1.0
)
# number of classes
config_dict['num_classes'] = 1
config_dict['backbone_init_param_file_path'] = None # if no pretrained weights, set to None
lfd_backbone = LFDResNet(
block_mode='faster', # affect block type
stem_mode='fast', # affect stem type
body_mode=None, # affect body architecture
input_channels=config_dict['num_input_channels'],
stem_channels=64,
body_architecture=[3, 2, 1, 1, 1],
body_channels=[64, 64, 64, 128, 128],
out_indices=((0, 2), (1, 1), (2, 0), (3, 0), (4, 0)),
frozen_stages=-1,
activation_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='BatchNorm2d'),
init_with_weight_file=config_dict['backbone_init_param_file_path'],
norm_eval=False
)
lfd_neck = SimpleNeck(
num_neck_channels=128,
num_input_channels_list=lfd_backbone.num_output_channels_list,
num_input_strides_list=lfd_backbone.num_output_strides_list,
norm_cfg=dict(type='BatchNorm2d'),
activation_cfg=dict(type='ReLU', inplace=True)
)
lfd_head = LFDHead(
num_classes=config_dict['num_classes'],
num_heads=len(lfd_neck.num_output_strides_list),
num_input_channels=128,
num_head_channels=128,
num_conv_layers=2,
activation_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='GroupNorm', num_groups=16),
share_head_flag=True,
merge_path_flag=True,
classification_loss_type=type(classification_loss).__name__,
regression_loss_type=type(regression_loss).__name__
)
config_dict['detection_scales'] = ((4, 20), (20, 40), (40, 80), (80, 160), (160, 320))
config_dict['model'] = LFD(
backbone=lfd_backbone,
neck=lfd_neck,
head=lfd_head,
num_classes=config_dict['num_classes'],
regression_ranges=config_dict['detection_scales'],
gray_range_factors=(0.9, 1.1),
point_strides=lfd_neck.num_output_strides_list,
classification_loss_func=classification_loss,
regression_loss_func=regression_loss,
distance_to_bbox_mode='sigmoid'
)
# init param weights file
# when set, the executor will init the whole net using this file
config_dict['weight_path'] = None
# resume training path
# when set, the 'weight_path' will be ignored. The executor will init the whole net and training parameters using this file
config_dict['resume_path'] = None
# evaluator
# the evaluator should match the dataset
config_dict['evaluator'] = None
'''
prepare data loader -----------------------------------------------------------------------------------------
'''
def prepare_data_pipeline():
# batch size
config_dict['batch_size'] = 64
# number of train data_loader workers
config_dict['num_train_workers'] = 12
# number of val data_loader workers
config_dict['num_val_workers'] = 0
# construct train data_loader
config_dict['train_dataset_path'] = './WIDERFACE_pack/widerface_train.pkl'
train_dataset = Dataset(load_path=config_dict['train_dataset_path'])
train_dataset_sampler = RandomWithNegDatasetSampler(
train_dataset,
batch_size=config_dict['batch_size'],
neg_ratio=0.2,
shuffle=True,
ignore_last=False
)
train_region_sampler = RandomBBoxCropRegionSampler(crop_size=480,
resize_range=(0.5, 1.5),
resize_prob=0.5)
config_dict['train_data_loader'] = DataLoader(dataset=train_dataset,
dataset_sampler=train_dataset_sampler,
region_sampler=train_region_sampler,
augmentation_pipeline=simple_widerface_train_pipeline,
num_workers=config_dict['num_train_workers'])
# construct val data_loader
# config_dict['val_dataset_path'] = 'xxxxxxxxxx'
# val_dataset = Dataset(load_path=config_dict['val_dataset_path'])
# val_dataset_sampler = RandomDatasetSampler(dataset=val_dataset,
# batch_size=config_dict['batch_size'],
# shuffle=False,
# ignore_last=False)
# val_region_sampler = IdleRegionSampler()
# config_dict['val_data_loader'] = DataLoader(dataset=val_dataset,
# dataset_sampler=val_dataset_sampler,
# region_sampler=val_region_sampler,
# augmentation_pipeline=simple_widerface_val_pipeline,
# num_workers=config_dict['num_val_workers'])
'''
learning rate and optimizer --------------------------------------------------------------------------------
optimizer and scheduler can be customized
'''
def prepare_optimizer():
config_dict['learning_rate'] = 0.1
config_dict['momentum'] = 0.9
config_dict['weight_decay'] = 0.0001
config_dict['optimizer'] = torch.optim.SGD(params=config_dict['model'].parameters(),
lr=config_dict['learning_rate'],
momentum=config_dict['momentum'],
weight_decay=config_dict['weight_decay'])
config_dict['optimizer_grad_clip_cfg'] = dict(max_norm=10, norm_type=2,)
# multi step lr scheduler is used here
config_dict['milestones'] = [500, 700, 900]
config_dict['gamma'] = 0.1
assert max(config_dict['milestones']) < config_dict['training_epochs'], 'the max value in milestones should be less than total epochs!'
config_dict['lr_scheduler'] = torch.optim.lr_scheduler.MultiStepLR(config_dict['optimizer'],
milestones=config_dict['milestones'],
gamma=config_dict['gamma']) # scheduler 也需要被保存在checkpoint中
# add warmup parameters
config_dict['warmup_setting'] = dict(by_epoch=False,
warmup_mode='linear', # if no warmup needed, set warmup_mode = None
warmup_loops=200,
warmup_ratio=0.1)
assert isinstance(config_dict['warmup_setting'], dict) and 'by_epoch' in config_dict['warmup_setting'] and 'warmup_mode' in config_dict['warmup_setting'] \
and 'warmup_loops' in config_dict['warmup_setting'] and 'warmup_ratio' in config_dict['warmup_setting']
if __name__ == '__main__':
prepare_common_settings()
prepare_model()
prepare_data_pipeline()
prepare_optimizer()
training_executor = Executor(config_dict)
training_executor.run()