Skip to content

Latest commit

 

History

History
19 lines (17 loc) · 1.66 KB

supported_xgboost_parameters_scala.md

File metadata and controls

19 lines (17 loc) · 1.66 KB

Supported XGBoost Parameters

This is a description of all the parameters available when you are running examples in this repo:

  1. All xgboost parameters are supported.
  2. -format=[csv|parquet|orc]: The format of the data for training/transforming, now supports 'csv', 'parquet' and 'orc'. Required.
  3. -mode=[all|train|transform]. To control the behavior of the sample app, default is 'all' if not specified.
    • all: Do both training and transforming, will save model to 'modelPath' if specified
    • train: Do training only, will save model to 'modelPath' if specified.
    • transform: Do transforming only, 'modelPath' is required to locate the model data to be loaded.
  4. -trainDataPath=[path]: Path to your training data file(s), required when mode is NOT 'transform'.
  5. -trainEvalDataPath=[path]: Path to your data file(s) for training with evaluation. Optional.
  6. -evalDataPath=[path]: Path to your test(evaluation) data file(s), required when mode is NOT 'train'.
  7. -modelPath=[path]: Path to save model after training, or where to load model for transforming only. Required only when mode is 'transform'.
  8. -overwrite=[true|false]: Whether to overwrite the current model data under 'modelPath'. Default is false. You may need to set to true to avoid IOException when saving the model to a path already exists.
  9. -hasHeader=[true|false]: Indicate if your csv file has header.
  10. -asFloats=[true|false]: Whether to cast numerical schema to float schema. Default is true.
  11. -maxRowsPerChunk=[value]: Max lines of row to be read per chunk. Default is Integer.MAX_VALUE.