-
Notifications
You must be signed in to change notification settings - Fork 0
/
heuristicount.py
executable file
·914 lines (760 loc) · 32.3 KB
/
heuristicount.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
import argparse
import gzip
import os
import platform
import sys
from collections import Counter, defaultdict
from contextlib import nullcontext
from datetime import datetime
from multiprocessing import Pool, cpu_count
from typing import Generator, List, Set, Tuple
import rich
import zstandard as zstd
# from Bio.Seq import Seq
from rich.console import Console
from rich.table import Table
import rich.table
# from Bio import SeqIO
from Logger import Logger
logger = Logger()
assumption_feedback = "If this assumption disrupts your pipeline, we welcome your feedback on our GitHub page:\nhttps://github.com/ryandward/barcoder/issues"
def rev_comp(sequence: str) -> str:
return sequence[::-1].translate(str.maketrans("ATCGN", "TAGCN"))
def safe_len(s):
return 0 if s is None else len(s)
def generate_kmers(seq: str, k: int) -> Set[str]:
return {seq[i : i + k] for i in range(len(seq) - k + 1)}
def read_fasta(fasta_file) -> Set[str]:
barcodes = set()
if fasta_file.endswith(".gz"):
open_func = gzip.open
elif fasta_file.endswith(".zst"):
open_func = zstd.open
elif fasta_file.endswith(".fasta") or fasta_file.endswith(".fa"):
open_func = open
else:
raise ValueError(
f'"{fasta_file}" does not appear to be a supported fasta file: .fasta or .fa.'
)
with open_func(fasta_file, "rt") as f:
for line in f:
if not line.startswith(">"):
barcodes.add(line.strip())
return barcodes
def open_reads_file(file_path, mode):
if file_path.endswith(".gz"):
return gzip.open(file_path, mode)
elif file_path.endswith(".zst"):
return zstd.open(file_path, mode)
elif file_path.endswith(".fastq") or file_path.endswith(".fq"):
return open(file_path, mode)
elif file_path.endswith(".reads"):
return open(file_path, mode)
else:
raise ValueError(
f'"{file_path}" does not appear to be a supported reads file: .fastq or .reads.'
)
def validate_barcodes(barcodes):
if isinstance(barcodes, list):
sequences = set(barcodes)
elif isinstance(barcodes, set):
sequences = barcodes
else:
raise ValueError("Pass a list or set of barcodes to validate.")
# Check if there are at least 10 sequences
if len(sequences) < 10:
raise ValueError(
"The input contains fewer than 10 sequences. Please provide at least 10 short barcodes."
)
# Check if the sequences are short (e.g., no more than 1,000 bases)
for seq in sequences:
if len(seq) > 1000:
raise ValueError(
f'The sequence "{seq.id}" is longer than 1,000 bases. Provide a list or fasta file of short barcodes.'
)
def read_in_chunks(
file1, file2=None, chunk_size=2**16
) -> Generator[Tuple[str, str], None, None]:
reads1, reads2 = [], []
# Remove compression extension if present
stripped_file1 = file1
if file1.endswith(".gz") or file1.endswith(".zst"):
stripped_file1 = os.path.splitext(file1)[0]
# Determine the file type based on the stripped extension
if stripped_file1.endswith(".fastq"):
file_type = "fastq"
elif stripped_file1.endswith(".reads"):
file_type = "reads"
else:
raise ValueError("Unsupported file type. Must be '.fastq' or '.reads'.")
with open_reads_file(file1, "rt") as f1, (
open_reads_file(file2, "rt") if file2 else nullcontext()
) as f2:
iters = [iter(f1), iter(f2) if f2 else iter([])]
while True:
try:
if file_type == "fastq":
next(iters[0]) # Skip @SEQUENCE_ID
reads1.append(next(iters[0]).strip()) # Capture SEQUENCE
next(iters[0]) # Skip +
next(iters[0]) # Skip QUALITY
if file2:
next(iters[1]) # Skip @SEQUENCE_ID
reads2.append(next(iters[1]).strip()) # Capture SEQUENCE
next(iters[1]) # Skip +
next(iters[1]) # Skip QUALITY
elif file_type == "reads":
reads1.append(next(iters[0]).strip()) # Capture SEQUENCE
if file2:
reads2.append(next(iters[1]).strip()) # Capture SEQUENCE
if len(reads1) >= chunk_size:
yield (reads1[:chunk_size], reads2[:chunk_size] if reads2 else None)
reads1, reads2 = reads1[chunk_size:], (
reads2[chunk_size:] if reads2 else []
)
except StopIteration:
break
if reads1:
yield (reads1, reads2 if reads2 else None)
def sample_data(file1, file2, barcodes, is_paired):
"""
The `sample_data` function samples from data files using barcodes and supports both
paired and single-end formats. It processes data in chunks based on barcode count,
identifying new barcodes, their orientations, and offsets in reads. It tracks barcode
diversity (`diversity_count1`, `diversity_count2`), read orientations and offsets
(`global_read1_orients`, `global_read2_orients`, `global_read1_offsets`,
`global_read2_offsets`), and unique reads and barcodes (`global_valid_reads1`,
`global_valid_reads2`, `global_novel_reads`, `global_observed_barcodes`). After each
chunk, it assesses diversity against expected sequencing outcomes, stopping if a
dominant offset indicates sufficient diversity. The function returns counts of unique
reads, barcode offsets, valid read sets, observed barcodes, a read-swapping flag, and
the chunk count.
"""
satisfy_diversity = False
rev_barcodes = set(rev_comp(bc) for bc in barcodes)
bc_len = len(next(iter(barcodes)))
chunk_generator = read_in_chunks(
file1, file2 if is_paired else None, chunk_size=len(barcodes)
)
# Initialize chunk diversity metric
diversity_count1 = 0
diversity_count2 = 0
# Initialize orientation determination
global_read1_orients = Counter()
global_read2_orients = Counter()
# Initialize offset determination
global_read1_offsets = Counter()
global_read2_offsets = Counter()
# Initialize sequencing depth determination
global_valid_reads1 = set()
global_valid_reads2 = set()
# Initialize unique barcode and read tracking
global_novel_reads = set()
# Initialize total number of observed barcodes
global_observed_barcodes = set()
# Initialize collector for barcode tracking per chunk
global_novel_barcodes = []
# Initialize chunk counter
num_chunks = 0
for read1_chunk, read2_chunk in chunk_generator:
# Increment chunk counter
num_chunks += 1
# Initialize local orientation determination
novel_read1_orients = []
novel_read2_orients = []
# Initialize local offset determination
novel_read1_offsets = []
novel_read2_offsets = []
# Initialize local sequencing depth determination
novel_barcodes = set()
# Initialize local unique barcode and read tracking
novel_reads = set()
for read1, read2 in zip(
read1_chunk, read2_chunk if read2_chunk else [None] * len(read1_chunk)
):
# Bypass pairs of reads if the read1 or read2 has been seen before
if read1 in novel_reads or (read2 and read2 in novel_reads):
continue
# Now we've seen the read
global_novel_reads.add(read1)
if is_paired:
global_novel_reads.add(read2)
for i in range(len(read1) - bc_len + 1):
kmer = read1[i : i + bc_len]
if kmer in novel_barcodes:
# We've already seen it this chunk
continue
if kmer in barcodes:
diversity_count1 += 1
novel_barcodes.add(kmer)
global_observed_barcodes.add(kmer)
novel_read1_orients.append("forward")
novel_read1_offsets.append(i)
global_valid_reads1.add(read1)
novel_reads.add(read1)
if kmer in rev_barcodes:
diversity_count1 += 1
novel_barcodes.add(kmer)
global_observed_barcodes.add(kmer)
novel_read1_orients.append("reverse")
novel_read1_offsets.append(i)
global_valid_reads1.add(read1)
novel_reads.add(read1)
if is_paired:
kmer2 = read2[i : i + bc_len]
if kmer2 in novel_barcodes:
# We've already seen it this chunk
continue
if kmer2 in barcodes:
diversity_count2 += 1
novel_barcodes.add(kmer2)
global_observed_barcodes.add(kmer)
novel_read2_orients.append("forward")
novel_read2_offsets.append(i)
global_valid_reads2.add(read2)
novel_reads.add(read2)
if kmer2 in rev_barcodes:
diversity_count2 += 1
novel_barcodes.add(kmer2)
global_observed_barcodes.add(kmer)
novel_read2_orients.append("reverse")
novel_read2_offsets.append(i)
global_valid_reads2.add(read2)
novel_reads.add(read2)
# Update the global observed barcodes based on the chunk
global_novel_barcodes.extend(novel_barcodes)
# Update the global orientation list after processing each chunk
global_read1_orients.update(novel_read1_orients)
global_read2_orients.update(novel_read2_orients)
# Update the global offset list after processing each chunk
global_read2_offsets.update(novel_read2_offsets)
global_read1_offsets.update(novel_read1_offsets)
# Update the most common offsets after processing each chunk
read1_offsets_common = Counter(global_read1_offsets).most_common(2)
read2_offsets_common = Counter(global_read2_offsets).most_common(2)
# Check conditions for two reads
if is_paired:
if all(
count >= 5 * len(barcodes)
for count in (diversity_count1, diversity_count2)
):
logger.info("Many barcodes seen enough in reads...")
satisfy_diversity = True
if len(global_novel_reads) >= 5 * len(barcodes) and global_novel_barcodes:
logger.info("Read depth diversity satisfied...")
satisfy_diversity = True
if len(global_novel_barcodes) >= 5 * len(barcodes):
logger.info("Barcode frequency diversity satisfied...")
satisfy_diversity = True
if satisfy_diversity:
# Break if there's a single dominant offset or the most common is 2 times more frequent than the second
if (
len(read1_offsets_common) == 1 and len(read2_offsets_common) == 1
) or (
len(read1_offsets_common) > 1
and len(read2_offsets_common) > 1
and read1_offsets_common[0][1] >= 2 * read1_offsets_common[1][1]
and read2_offsets_common[0][1] >= 2 * read2_offsets_common[1][1]
):
logger.info("Dominant offsets found...")
break
else:
# Check conditions for a single read
if diversity_count1 >= 5 * len(barcodes):
logger.info("Many barcodes seen enough in reads...")
satisfy_diversity = True
if len(global_novel_reads) >= 5 * len(barcodes) and global_novel_barcodes:
logger.info("Read depth diversity satisfied...")
satisfy_diversity = True
if len(global_novel_barcodes) >= 5 * len(barcodes):
logger.info("Barcode frequency diversity satisfied...")
satisfy_diversity = True
if satisfy_diversity:
if len(read1_offsets_common) == 1 or (
len(read1_offsets_common) > 1
and read1_offsets_common[0][1] >= 2 * read1_offsets_common[1][1]
):
logger.info("Dominant offsets found...")
break
if not satisfy_diversity:
logger.warn("Sequencing depth is probably insufficient! Continuing anyway...")
read1_orient = Counter(global_read1_orients).most_common(1)[0][0] if read1 else None
read1_offset = Counter(global_read1_offsets).most_common(1)[0][0] if read1 else None
read2_orient = Counter(global_read2_orients).most_common(1)[0][0] if read2 else None
read2_offset = Counter(global_read2_offsets).most_common(1)[0][0] if read2 else None
if read1_orient == "forward" or read2_orient == "reverse":
need_swap = False
return (
len(global_novel_reads),
read1_offset,
read2_offset,
global_valid_reads1,
global_valid_reads2,
global_observed_barcodes,
need_swap,
num_chunks,
)
elif read1_orient == "reverse" or read2_orient == "forward":
need_swap = True
return (
len(global_novel_reads),
read2_offset,
read1_offset,
global_valid_reads2,
global_valid_reads1,
global_observed_barcodes,
need_swap,
num_chunks,
)
else:
raise ValueError(
"Unable to determine orientation of reads. Please check the input files."
)
def find_flanks(
reads: List[str], start: int, bc_len: int, max_flank: int = 10
) -> Tuple[str, str]:
L_flanks, R_flanks = Counter(), Counter()
def update_flanks(side: str, seq: str, max_len: int):
"""Update counters with sub-sequences of varying lengths."""
counts = L_flanks if side == "L_flank" else R_flanks
for i in range(max_len, 0, -1):
truncated = seq[-i:] if side == "L_flank" else seq[:i]
counts[truncated] += 1
for read in reads:
# Extract potential flanking sequences from the read based on start and bc_len
L_flank = (
read[start - max_flank : start] if start - max_flank >= 0 else read[0:start]
)
R_flank = read[start + bc_len : start + bc_len + max_flank]
# Update flank counters with sequences of varying lengths
update_flanks("L_flank", L_flank, len(L_flank))
update_flanks("R_flank", R_flank, len(R_flank))
def extract_best_flank(counts: Counter) -> str:
most_common_prev = None
for fl_len in range(max_flank, 0, -1):
# print(f"Potential flank sequences: {counts}", file=sys.stderr)
potential_seqs = [seq for seq in counts if len(seq) == fl_len]
if not potential_seqs:
continue
most_common = max(potential_seqs, key=lambda x: counts[x])
if fl_len == max_flank:
if (
most_common_prev is None
or counts[most_common] > 3 * counts[most_common_prev]
):
return most_common
else:
if (
most_common_prev is not None
and counts[most_common] > 3 * counts[most_common_prev]
):
return most_common
if most_common_prev is None or (
counts[most_common] * 3 < counts[most_common_prev]
):
most_common_prev = most_common
return None
L_most_common = extract_best_flank(L_flanks)
R_most_common = extract_best_flank(R_flanks)
return L_most_common, R_most_common
def process_chunk(
chunk,
bcs_with_flanks_fwd,
bcs_with_flanks_rev,
L_fwd_start,
L_rev_start,
bc_len,
L_fwd,
R_fwd,
L_rev,
R_rev,
need_swap,
) -> Tuple[Counter, int]:
counts = Counter()
if need_swap:
reads2, reads1 = chunk
else:
reads1, reads2 = chunk
def validate_read(seq_with_flanks, L_flank, R_flank, rev=False):
if rev:
in_bcs_with_flanks = seq_with_flanks in bcs_with_flanks_rev
else:
in_bcs_with_flanks = seq_with_flanks in bcs_with_flanks_fwd
seq = seq_with_flanks[
safe_len(L_flank) : safe_len(seq_with_flanks) - safe_len(R_flank)
]
has_flanks = seq_with_flanks.startswith(
L_flank or ""
) and seq_with_flanks.endswith(R_flank or "")
return in_bcs_with_flanks, has_flanks, seq
L_fwd_len = safe_len(L_fwd)
R_fwd_len = safe_len(R_fwd)
L_rev_len = safe_len(L_rev)
R_rev_len = safe_len(R_rev)
def process_paired_end(
reads1,
reads2,
L_fwd_start,
L_fwd_len,
R_fwd_len,
L_rev_start,
L_rev_len,
R_rev_len,
L_fwd,
R_fwd,
L_rev,
R_rev,
):
if len(reads1) != len(reads2):
raise ValueError(
"Length of reads1 and reads2 must be the same for paired-end data."
)
for record_fwd, record_rev in zip(reads1, reads2):
if "N" in record_fwd or "N" in record_rev:
continue
seq_with_flanks_fwd = record_fwd[
L_fwd_start : L_fwd_start + L_fwd_len + bc_len + R_fwd_len
]
seq_with_flanks_rev = record_rev[
L_rev_start : L_rev_start + L_rev_len + bc_len + R_rev_len
]
in_bcs_with_flanks_fwd, has_flanks_fwd, seq1 = validate_read(
seq_with_flanks_fwd, L_fwd, R_fwd
)
in_bcs_with_flanks_rev, has_flanks_rev, seq2 = validate_read(
seq_with_flanks_rev, L_rev, R_rev, rev=True
)
if seq1 != rev_comp(seq2):
continue
if (
in_bcs_with_flanks_fwd
and in_bcs_with_flanks_rev
and has_flanks_fwd
and has_flanks_rev
):
counts[seq1] += 1
elif has_flanks_fwd and has_flanks_rev:
counts[seq1 + "*"] += 1
def process_single_end(
reads, start_pos, len_L, len_R, L_flank, R_flank, reverse=False
):
for record in reads:
if "N" in record:
continue
seq_with_flanks = record[start_pos : start_pos + len_L + bc_len + len_R]
in_bcs_with_flanks, has_flanks, seq = validate_read(
seq_with_flanks, L_flank, R_flank, rev=reverse
)
if reverse:
seq = rev_comp(seq)
if in_bcs_with_flanks and has_flanks:
counts[seq] += 1
elif has_flanks:
counts[seq + "*"] += 1
if reads1 and reads2: # Paired-end processing
process_paired_end(
reads1,
reads2,
L_fwd_start,
L_fwd_len,
R_fwd_len,
L_rev_start,
L_rev_len,
R_rev_len,
L_fwd,
R_fwd,
L_rev,
R_rev,
)
elif reads1: # Single-end processing, fwd orientation
process_single_end(reads1, L_fwd_start, L_fwd_len, R_fwd_len, L_fwd, R_fwd)
elif reads2: # Single-end processing, reverse complement
process_single_end(
reads2, L_rev_start, L_rev_len, R_rev_len, L_rev, R_rev, reverse=True
)
return (counts, len(reads1) if reads1 else len(reads2))
def main(args):
from rich.style import Style
logger.info("Initializing heuristic barcode counting...")
reads1 = args.file1
reads2 = args.file2
num_threads = cpu_count() // 2
# Reading FASTA File
logger.info("Reading barcodes...")
try:
barcodes = read_fasta(args.fasta_file)
validate_barcodes(barcodes)
bcs_rev = {rev_comp(barcode) for barcode in barcodes}
barcodes_iterator = iter(barcodes)
first_barcode = next(barcodes_iterator)
bc_len = len(first_barcode)
for barcode in barcodes_iterator:
if len(barcode) != bc_len:
logger.warn(
f"One of the assumptions of this analysis is that all barcodes are the same length\n{assumption_feedback}"
)
raise ValueError("All barcodes must be the same length")
is_paired = bool(args.file2)
# Reading reads Files
logger.info("Sampling reads to identify diversity characteristics...")
(
new_reads_sampled,
bc_start1,
bc_start2,
sample1,
sample2,
global_observed_barcodes,
need_swap,
num_chunks,
) = sample_data(reads1, reads2, barcodes, is_paired)
# logger.info(f"Sampled {new_reads_sampled:,} unique reads. Found {processed_count1:,} valid matches, including {safe_len(sample1):,} unique forward matches and {safe_len(sample2):,} unique reverse matches...")
logger.info(
f"Sampled {new_reads_sampled:,} diverse contexts in {num_chunks} chunks and found {safe_len(global_observed_barcodes):,} barcodes in {safe_len(sample1):,} forward and {safe_len(sample2):,} reverse reads..."
)
forward_name = os.path.basename(reads1)
reverse_name = os.path.basename(reads2) if reads2 else None
if need_swap:
logger.info("Swapping orientation...")
forward_name, reverse_name = reverse_name, forward_name
logger.info("Identifying flanking sequences...")
# Find flanking sequences
if sample1 is not None:
L_fwd, R_fwd = find_flanks(sample1, bc_start1, bc_len)
L_fwd_start = bc_start1 - len(L_fwd) if L_fwd else 0
else:
L_fwd, R_fwd = None, None
L_fwd_start = None
if sample2 is not None:
L_rev, R_rev = find_flanks(sample2, bc_start2, bc_len)
L_rev_start = bc_start2 - len(L_rev) if L_rev else 0
else:
L_rev, R_rev = None, None
L_rev_start = None
# Calculate reverse complements
L_rev_rev = rev_comp(L_rev) if L_rev else None
R_rev_rev = rev_comp(R_rev) if R_rev else None
# Check if the fwd and reverse flanking sequences are reverse complements
L_min_len = R_min_len = 0
error_messages = set()
if L_fwd and R_rev_rev:
L_min_len = min(len(L_fwd), len(R_rev_rev))
if L_fwd[-L_min_len:] != R_rev_rev[:L_min_len]:
error_messages.add("Flank complementarity violation")
if R_fwd and L_rev_rev:
R_min_len = min(len(R_fwd), len(L_rev_rev))
if R_fwd[:R_min_len] != L_rev_rev[:R_min_len]:
error_messages.add("Flank complementarity violation")
if error_messages:
logger.warn("Expected complemtarity not found for flanking sequences...")
if L_fwd and R_rev_rev:
logger.info(
f"Left flank: '{L_fwd}' (./{forward_name}) != '{R_rev_rev}' (./{reverse_name} revcomp)"
)
if R_fwd and L_rev_rev:
logger.info(
f"Right flank: '{R_fwd}' (./{forward_name}) != '{L_rev_rev}' (./{reverse_name} revcomp)"
)
logger.info(
f"""In the analysis, guides are presumed to be in the same position across all reads.
{assumption_feedback}
You might want to consider running the analysis with a single set of reads.
Please note, if flanks could not be identified, the localization of barcode positions may be unsuccessful with just one read.
Without the second read, this error cannot be triggered, so please proceed with caution.
However, if one read is of superior quality, it might be advantageous to proceed with that read alone.
Start by rerunning the analysis on the read that contains the identifiable flank.
"""
)
raise ValueError(
"A critical error occurred: " + ", ".join(list(error_messages))
)
def add_flank(barcodes, L_flank=None, R_flank=None):
L_flank, R_flank = (L_flank or ""), (R_flank or "")
return {L_flank + barcode + R_flank for barcode in barcodes}
# Add flanks to the ends of the barcodes, if present
bcs_with_flanks_fwd = add_flank(barcodes, L_fwd, R_fwd)
bcs_with_flanks_rev = add_flank(bcs_rev, L_rev, R_rev)
logger.info("Executing high-throughput read analysis...")
chunk_generator = read_in_chunks(args.file1, args.file2 if is_paired else None)
# Create argument generator
args_generator = (
(
chunk,
bcs_with_flanks_fwd,
bcs_with_flanks_rev,
L_fwd_start,
L_rev_start,
bc_len,
L_fwd,
R_fwd,
L_rev,
R_rev,
need_swap,
)
for chunk in chunk_generator
)
# Execute multiprocessing
with Pool(num_threads) as pool:
results = pool.starmap(process_chunk, args_generator)
# Collating Results
logger.info("Finishing up and collating results!")
doc_bcs = Counter()
undoc_bcs = Counter()
total_reads = 0
for result, chunk_size in results:
total_reads += chunk_size
for barcode, count in result.items():
if barcode.endswith("*"):
undoc_bcs[barcode] += count
else:
doc_bcs[barcode] += count
if is_paired:
file1_filename = (
os.path.basename(args.file1)
if not need_swap
else os.path.basename(args.file2)
)
file2_filename = (
os.path.basename(args.file2)
if not need_swap
else os.path.basename(args.file1)
)
else:
file1_filename = os.path.basename(args.file1) if not need_swap else None
file2_filename = None if not need_swap else os.path.basename(args.file1)
# Table
# Create a single table with enhanced styles
combined_table = Table(
# title="Summary",
box=rich.table.box.SIMPLE_HEAVY,
caption="Finished at [u]{}[/u]".format(datetime.now()),
title_style="bold bright_white",
caption_style="white",
header_style="bold bright_white",
border_style="bold bright_white",
highlight=True,
show_header=True,
)
# Define columns with justifications
combined_table.add_column(
os.path.basename(sys.argv[0]), justify="right", style="white", min_width=30
)
combined_table.add_column("Summary", justify="right", min_width=20)
# Input & Configuration Sub-heading
combined_table.add_section()
combined_table.add_row(
"[bold bright_magenta]Input & Config[/bold bright_magenta]", ""
)
if args.fasta_file:
combined_table.add_row(
"Barcodes", f"[bold]{os.path.basename(args.fasta_file)}[/bold]"
)
if file1_filename:
combined_table.add_row("Forward Reads", f"[bold]{file1_filename}[/bold]")
if file2_filename:
combined_table.add_row("Reverse Reads", f"[bold]{file2_filename}[/bold]")
if num_threads:
combined_table.add_row("Threads", f"[bold]{num_threads}[/bold]")
if platform.system:
combined_table.add_row(
"Operating System", f"[bold]{platform.system()}[/bold]"
)
# Heuristic Statistics Sub-heading
combined_table.add_section()
combined_table.add_row("[bold][bright_blue]Heuristics[/bright_blue][/bold]", "")
if bc_len:
combined_table.add_row("Barcode Length", f"[bold]{bc_len}[/bold]")
if bc_start1:
combined_table.add_row("Forward Offset", f"[bold]{bc_start1}[/bold]")
if bc_start2:
combined_table.add_row("Reverse Offset", f"[bold]{bc_start2}[/bold]")
if L_fwd or R_fwd:
combined_table.add_row("Forward Flanks", f"[bold]{L_fwd}...{R_fwd}[/bold]")
if L_rev or R_rev:
combined_table.add_row("Reverse Flanks", f"[bold]{L_rev}...{R_rev}[/bold]")
# Numeric Statistics Sub-heading
combined_table.add_section()
# combined_table.add_row("[bold][bright_green]Barcode Alignment Stats[/bright_green][/bold]", "")
combined_table.add_row(
"[bold]Total Reads[/bold]", f"[bold]{total_reads:,}[/bold]"
)
combined_table.add_row(
"Documented Barcode Reads", f"[bold]{sum(doc_bcs.values()):,}[/bold]"
)
combined_table.add_row(
"Undocumented Barcode Reads", f"[bold]{sum(undoc_bcs.values()):,}[/bold]"
)
combined_table.add_section()
combined_table.add_row("[bold]Documented Barcodes[/bold]", f"{len(barcodes):,}")
combined_table.add_row(
"Seen Documented Barcodes", f"[bold]{len(doc_bcs):,}[/bold]"
)
combined_table.add_row(
"Unseen Documented Barcodes",
f"[bold]{(len(barcodes) - len(doc_bcs)):,}[/bold]",
)
combined_table.add_section()
combined_table.add_row(
"[bold]Uncocumented Barcodes[/bold]", f"{len(undoc_bcs):,}"
)
combined_table.add_section()
combined_table.add_row(
"[bold]Barcoded Reads Fraction[/bold]",
f"[bold]{((sum(doc_bcs.values()) + sum(undoc_bcs.values())) / total_reads if total_reads != 0 else 0):.3f}[/bold]",
)
combined_table.add_row(
"Documented Fraction",
f"[bold]{(sum(doc_bcs.values()) / total_reads if total_reads != 0 else 0):.3f}[/bold]",
)
combined_table.add_row(
"Undocumented Fraction",
f"[bold]{(sum(undoc_bcs.values()) / total_reads if total_reads != 0 else 0):.3f}[/bold]",
end_section=True,
)
# Sequence Information Sub-heading
combined_table.add_section()
top_doc_bcs = min(5, len(doc_bcs))
combined_table.add_row(
f"[bold bright_green]Top {top_doc_bcs} Documented Barcodes[/bold bright_green]",
"",
)
for idx, (barcode, count) in enumerate(doc_bcs.most_common(top_doc_bcs)):
end_section = idx == (top_doc_bcs - 1)
combined_table.add_row(barcode, f"{count:,}", end_section=end_section)
combined_table.add_section()
top_undoc_bcs = min(5, len(undoc_bcs))
combined_table.add_row(
f"[bold bright_red]Top {top_undoc_bcs} Undocumented Barcodes[/bold bright_red]",
f"",
)
# combined_table.add_row("[bold]Found Undocumented Barcodes[bold]", f"[bold]{len(undoc_bcs):,}[/bold]")
for idx, (barcode, count) in enumerate(undoc_bcs.most_common(top_undoc_bcs)):
end_section = idx == (top_undoc_bcs - 1)
combined_table.add_row(barcode, f"{count:,}", end_section=end_section)
# Print the combined table
console = Console(stderr=True)
console.log(combined_table)
for barcode, count in doc_bcs.items():
print("\t".join([barcode, str(count)]))
# for barcode, count in undoc_bcs.items():
# print("\t".join([barcode, str(count)]))
except ValueError as ve:
logger.error(f"{str(ve)}")
# logger.help(parser.format_help())
except Exception as e:
logger.error(f"An unexpected error occurred: {str(e)}")
# logger.help(parser.format_help())
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process Barcodes.")
parser.add_argument(
"fasta_file", type=str, help="List or FASTA file containing barcodes."
)
parser.add_argument("file1", type=str, help="First reads file: FASTQ or raw reads.")
parser.add_argument(
"file2",
type=str,
nargs="?",
default=None,
help="Second reads file: FASTQ or raw reads (optional).",
)
args = parser.parse_args()
main(args)