Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add new results for V100 SXM2 #32

Open
yujiqinghe opened this issue Sep 24, 2024 · 0 comments
Open

add new results for V100 SXM2 #32

yujiqinghe opened this issue Sep 24, 2024 · 0 comments

Comments

@yujiqinghe
Copy link

C:\Users\levi\AppData\Local\Microsoft\WindowsApps\python3.12.exe C:\Users\levi\Desktop\总目录-兆衍\跑分\pytorch-gpu-benchmark-main\benchmark_models.py
benchmark start : 2024/09/24 16:07:45
Number of GPUs on current device : 1
CUDA Version : 11.8
Cudnn Version : 90100
Device Name : Tesla V100-SXM2-32GB
uname_result(system='Windows', node='DESKTOP-V8VCGPS', release='10', version='10.0.19045', machine='AMD64')
scpufreq(current=2300.0, min=0.0, max=2300.0)
cpu_count: 8
memory_available: 1331605504
Benchmarking Training float precision type mnasnet0_5
mnasnet0_5 model average train time : 40.779852867126465ms
Benchmarking Training float precision type mnasnet0_75
mnasnet0_75 model average train time : 57.56028652191162ms
Benchmarking Training float precision type mnasnet1_0
mnasnet1_0 model average train time : 62.10038185119629ms
Benchmarking Training float precision type mnasnet1_3
mnasnet1_3 model average train time : 60.16016960144043ms
Benchmarking Training float precision type resnet18
resnet18 model average train time : 32.97965049743652ms
Benchmarking Training float precision type resnet34
resnet34 model average train time : 49.080657958984375ms
Benchmarking Training float precision type resnet50
resnet50 model average train time : 58.658742904663086ms
Benchmarking Training float precision type resnet101
resnet101 model average train time : 95.45299053192139ms
Benchmarking Training float precision type resnet152
resnet152 model average train time : 118.63776206970215ms
Benchmarking Training float precision type resnext50_32x4d
resnext50_32x4d model average train time : 94.1808557510376ms
Benchmarking Training float precision type resnext101_32x8d
resnext101_32x8d model average train time : 247.60605335235596ms
Benchmarking Training float precision type resnext101_64x4d
resnext101_64x4d model average train time : 263.53647232055664ms
Benchmarking Training float precision type wide_resnet50_2
wide_resnet50_2 model average train time : 102.8178882598877ms
Benchmarking Training float precision type wide_resnet101_2
wide_resnet101_2 model average train time : 169.45948123931885ms
Benchmarking Training float precision type densenet121
densenet121 model average train time : 70.9781551361084ms
Benchmarking Training float precision type densenet161
densenet161 model average train time : 138.28054904937744ms
Benchmarking Training float precision type densenet169
densenet169 model average train time : 94.05195236206055ms
Benchmarking Training float precision type densenet201
densenet201 model average train time : 118.00044059753418ms
Benchmarking Training float precision type squeezenet1_0
squeezenet1_0 model average train time : 24.398889541625977ms
Benchmarking Training float precision type squeezenet1_1
squeezenet1_1 model average train time : 23.419828414916992ms
Benchmarking Training float precision type vgg11
vgg11 model average train time : 52.15620517730713ms
Benchmarking Training float precision type vgg11_bn
vgg11_bn model average train time : 57.5331974029541ms
Benchmarking Training float precision type vgg13
vgg13 model average train time : 64.07845973968506ms
Benchmarking Training float precision type vgg13_bn
vgg13_bn model average train time : 75.23913860321045ms
Benchmarking Training float precision type vgg16
vgg16 model average train time : 79.0393877029419ms
Benchmarking Training float precision type vgg16_bn
vgg16_bn model average train time : 84.83956813812256ms
Benchmarking Training float precision type vgg19
vgg19 model average train time : 72.85277843475342ms
Benchmarking Training float precision type vgg19_bn
vgg19_bn model average train time : 81.79934024810791ms
Benchmarking Training float precision type mobilenet_v3_large
mobilenet_v3_large model average train time : 21.939353942871094ms
Benchmarking Training float precision type mobilenet_v3_small
mobilenet_v3_small model average train time : 15.919809341430664ms
Benchmarking Training float precision type shufflenet_v2_x0_5
shufflenet_v2_x0_5 model average train time : 19.15968894958496ms
Benchmarking Training float precision type shufflenet_v2_x1_0
shufflenet_v2_x1_0 model average train time : 21.83973789215088ms
Benchmarking Training float precision type shufflenet_v2_x1_5
shufflenet_v2_x1_5 model average train time : 19.1195011138916ms
Benchmarking Training float precision type shufflenet_v2_x2_0
shufflenet_v2_x2_0 model average train time : 22.25897789001465ms
Benchmarking Inference float precision type mnasnet0_5
mnasnet0_5 model average inference time : 8.699288368225098ms
Benchmarking Inference float precision type mnasnet0_75
mnasnet0_75 model average inference time : 9.519319534301758ms
Benchmarking Inference float precision type mnasnet1_0
mnasnet1_0 model average inference time : 18.99911403656006ms
Benchmarking Inference float precision type mnasnet1_3
mnasnet1_3 model average inference time : 22.16010093688965ms
Benchmarking Inference float precision type resnet18
resnet18 model average inference time : 22.259244918823242ms
Benchmarking Inference float precision type resnet34
resnet34 model average inference time : 21.059303283691406ms
Benchmarking Inference float precision type resnet50
resnet50 model average inference time : 27.0988130569458ms
Benchmarking Inference float precision type resnet101
resnet101 model average inference time : 36.17978096008301ms
Benchmarking Inference float precision type resnet152
resnet152 model average inference time : 45.93863487243652ms
Benchmarking Inference float precision type resnext50_32x4d
resnext50_32x4d model average inference time : 31.87857151031494ms
Benchmarking Inference float precision type resnext101_32x8d
resnext101_32x8d model average inference time : 76.87961101531982ms
Benchmarking Inference float precision type resnext101_64x4d
resnext101_64x4d model average inference time : 79.81907844543457ms
Benchmarking Inference float precision type wide_resnet50_2
wide_resnet50_2 model average inference time : 36.97860240936279ms
Benchmarking Inference float precision type wide_resnet101_2
wide_resnet101_2 model average inference time : 59.099273681640625ms
Benchmarking Inference float precision type densenet121
densenet121 model average inference time : 31.83908462524414ms
Benchmarking Inference float precision type densenet161
densenet161 model average inference time : 50.73944568634033ms
Benchmarking Inference float precision type densenet169
densenet169 model average inference time : 39.839816093444824ms
Benchmarking Inference float precision type densenet201
densenet201 model average inference time : 34.97932434082031ms
Benchmarking Inference float precision type squeezenet1_0
squeezenet1_0 model average inference time : 13.399724960327148ms
Benchmarking Inference float precision type squeezenet1_1
squeezenet1_1 model average inference time : 14.160284996032715ms
Benchmarking Inference float precision type vgg11
vgg11 model average inference time : 17.058839797973633ms
Benchmarking Inference float precision type vgg11_bn
vgg11_bn model average inference time : 27.99907684326172ms
Benchmarking Inference float precision type vgg13
vgg13 model average inference time : 23.240089416503906ms
Benchmarking Inference float precision type vgg13_bn
vgg13_bn model average inference time : 27.69937038421631ms
Benchmarking Inference float precision type vgg16
vgg16 model average inference time : 24.059300422668457ms
Benchmarking Inference float precision type vgg16_bn
vgg16_bn model average inference time : 37.35865116119385ms
Benchmarking Inference float precision type vgg19
vgg19 model average inference time : 28.23927879333496ms
Benchmarking Inference float precision type vgg19_bn
vgg19_bn model average inference time : 36.740665435791016ms
Benchmarking Inference float precision type mobilenet_v3_large
mobilenet_v3_large model average inference time : 22.719449996948242ms
Benchmarking Inference float precision type mobilenet_v3_small
mobilenet_v3_small model average inference time : 24.17999267578125ms
Benchmarking Inference float precision type shufflenet_v2_x0_5
shufflenet_v2_x0_5 model average inference time : 25.560874938964844ms
Benchmarking Inference float precision type shufflenet_v2_x1_0
shufflenet_v2_x1_0 model average inference time : 10.258355140686035ms
Benchmarking Inference float precision type shufflenet_v2_x1_5
shufflenet_v2_x1_5 model average inference time : 10.658831596374512ms
Benchmarking Inference float precision type shufflenet_v2_x2_0
shufflenet_v2_x2_0 model average inference time : 9.099092483520508ms
Benchmarking Training half precision type mnasnet0_5
mnasnet0_5 model average train time : 19.317455291748047ms
Benchmarking Training half precision type mnasnet0_75
mnasnet0_75 model average train time : 17.296757698059082ms
Benchmarking Training half precision type mnasnet1_0
mnasnet1_0 model average train time : 18.497648239135742ms
Benchmarking Training half precision type mnasnet1_3
mnasnet1_3 model average train time : 20.337824821472168ms
Benchmarking Training half precision type resnet18
resnet18 model average train time : 10.737395286560059ms
Benchmarking Training half precision type resnet34
resnet34 model average train time : 18.01840305328369ms
Benchmarking Training half precision type resnet50
resnet50 model average train time : 24.13780689239502ms
Benchmarking Training half precision type resnet101
resnet101 model average train time : 65.053391456604ms
Benchmarking Training half precision type resnet152
resnet152 model average train time : 87.77993202209473ms
Benchmarking Training half precision type resnext50_32x4d
resnext50_32x4d model average train time : 38.41778755187988ms
Benchmarking Training half precision type resnext101_32x8d
resnext101_32x8d model average train time : 78.39791297912598ms
Benchmarking Training half precision type resnext101_64x4d
resnext101_64x4d model average train time : 65.95728874206543ms
Benchmarking Training half precision type wide_resnet50_2
wide_resnet50_2 model average train time : 38.639774322509766ms
Benchmarking Training half precision type wide_resnet101_2
wide_resnet101_2 model average train time : 75.23865222930908ms
Benchmarking Training half precision type densenet121
densenet121 model average train time : 63.9487886428833ms
Benchmarking Training half precision type densenet161
densenet161 model average train time : 72.19789505004883ms
Benchmarking Training half precision type densenet169
densenet169 model average train time : 67.53844738006592ms
Benchmarking Training half precision type densenet201
densenet201 model average train time : 79.63869094848633ms
Benchmarking Training half precision type squeezenet1_0
squeezenet1_0 model average train time : 9.997620582580566ms
Benchmarking Training half precision type squeezenet1_1
squeezenet1_1 model average train time : 10.357756614685059ms
Benchmarking Training half precision type vgg11
vgg11 model average train time : 18.937969207763672ms
Benchmarking Training half precision type vgg11_bn
vgg11_bn model average train time : 21.8375301361084ms
Benchmarking Training half precision type vgg13
vgg13 model average train time : 26.059551239013672ms
Benchmarking Training half precision type vgg13_bn
vgg13_bn model average train time : 31.498489379882812ms
Benchmarking Training half precision type vgg16
vgg16 model average train time : 30.217652320861816ms
Benchmarking Training half precision type vgg16_bn
vgg16_bn model average train time : 36.59909725189209ms
Benchmarking Training half precision type vgg19
vgg19 model average train time : 33.51834774017334ms
Benchmarking Training half precision type vgg19_bn
vgg19_bn model average train time : 41.778907775878906ms
Benchmarking Training half precision type mobilenet_v3_large
mobilenet_v3_large model average train time : 26.117448806762695ms
Benchmarking Training half precision type mobilenet_v3_small
mobilenet_v3_small model average train time : 20.058345794677734ms
Benchmarking Training half precision type shufflenet_v2_x0_5
shufflenet_v2_x0_5 model average train time : 20.09774684906006ms
Benchmarking Training half precision type shufflenet_v2_x1_0
shufflenet_v2_x1_0 model average train time : 23.45808506011963ms
Benchmarking Training half precision type shufflenet_v2_x1_5
shufflenet_v2_x1_5 model average train time : 24.498424530029297ms
Benchmarking Training half precision type shufflenet_v2_x2_0
shufflenet_v2_x2_0 model average train time : 22.27804660797119ms
Benchmarking Inference half precision type mnasnet0_5
mnasnet0_5 model average inference time : 7.685980796813965ms
Benchmarking Inference half precision type mnasnet0_75
mnasnet0_75 model average inference time : 8.238997459411621ms
Benchmarking Inference half precision type mnasnet1_0
mnasnet1_0 model average inference time : 7.277264595031738ms
Benchmarking Inference half precision type mnasnet1_3
mnasnet1_3 model average inference time : 8.098416328430176ms
Benchmarking Inference half precision type resnet18
resnet18 model average inference time : 5.898685455322266ms
Benchmarking Inference half precision type resnet34
resnet34 model average inference time : 9.138631820678711ms
Benchmarking Inference half precision type resnet50
resnet50 model average inference time : 10.759201049804688ms
Benchmarking Inference half precision type resnet101
resnet101 model average inference time : 13.077878952026367ms
Benchmarking Inference half precision type resnet152
resnet152 model average inference time : 16.79670810699463ms
Benchmarking Inference half precision type resnext50_32x4d
resnext50_32x4d model average inference time : 9.577674865722656ms
Benchmarking Inference half precision type resnext101_32x8d
resnext101_32x8d model average inference time : 19.257173538208008ms
Benchmarking Inference half precision type resnext101_64x4d
resnext101_64x4d model average inference time : 19.3574857711792ms
Benchmarking Inference half precision type wide_resnet50_2
wide_resnet50_2 model average inference time : 10.996685028076172ms
Benchmarking Inference half precision type wide_resnet101_2
wide_resnet101_2 model average inference time : 18.69781494140625ms
Benchmarking Inference half precision type densenet121
densenet121 model average inference time : 15.078353881835938ms
Benchmarking Inference half precision type densenet161
densenet161 model average inference time : 20.338892936706543ms
Benchmarking Inference half precision type densenet169
densenet169 model average inference time : 22.104644775390625ms
Benchmarking Inference half precision type densenet201
densenet201 model average inference time : 24.018239974975586ms
Benchmarking Inference half precision type squeezenet1_0
squeezenet1_0 model average inference time : 4.998345375061035ms
Benchmarking Inference half precision type squeezenet1_1
squeezenet1_1 model average inference time : 4.978952407836914ms
Benchmarking Inference half precision type vgg11
vgg11 model average inference time : 12.93889045715332ms
Benchmarking Inference half precision type vgg11_bn
vgg11_bn model average inference time : 13.59870433807373ms
Benchmarking Inference half precision type vgg13
vgg13 model average inference time : 9.677634239196777ms
Benchmarking Inference half precision type vgg13_bn
vgg13_bn model average inference time : 11.417737007141113ms
Benchmarking Inference half precision type vgg16
vgg16 model average inference time : 10.67772388458252ms
Benchmarking Inference half precision type vgg16_bn
vgg16_bn model average inference time : 11.676826477050781ms
Benchmarking Inference half precision type vgg19
vgg19 model average inference time : 12.33820915222168ms
Benchmarking Inference half precision type vgg19_bn
vgg19_bn model average inference time : 13.658561706542969ms
Benchmarking Inference half precision type mobilenet_v3_large
mobilenet_v3_large model average inference time : 11.939544677734375ms
Benchmarking Inference half precision type mobilenet_v3_small
mobilenet_v3_small model average inference time : 12.039885520935059ms
Benchmarking Inference half precision type shufflenet_v2_x0_5
shufflenet_v2_x0_5 model average inference time : 10.122275352478027ms
Benchmarking Inference half precision type shufflenet_v2_x1_0
shufflenet_v2_x1_0 model average inference time : 10.29858112335205ms
Benchmarking Inference half precision type shufflenet_v2_x1_5
shufflenet_v2_x1_5 model average inference time : 8.597450256347656ms
Benchmarking Inference half precision type shufflenet_v2_x2_0
shufflenet_v2_x2_0 model average inference time : 14.09965991973877ms
Benchmarking Training double precision type mnasnet0_5
mnasnet0_5 model average train time : 29.278149604797363ms
Benchmarking Training double precision type mnasnet0_75
mnasnet0_75 model average train time : 32.03717231750488ms
Benchmarking Training double precision type mnasnet1_0
mnasnet1_0 model average train time : 35.578227043151855ms
Benchmarking Training double precision type mnasnet1_3
mnasnet1_3 model average train time : 42.65677452087402ms
Benchmarking Training double precision type resnet18
resnet18 model average train time : 42.737083435058594ms
Benchmarking Training double precision type resnet34
resnet34 model average train time : 76.87731266021729ms
Benchmarking Training double precision type resnet50
resnet50 model average train time : 97.04819202423096ms
Benchmarking Training double precision type resnet101
resnet101 model average train time : 172.39765167236328ms
Benchmarking Training double precision type resnet152
resnet152 model average train time : 247.73847579956055ms
Benchmarking Training double precision type resnext50_32x4d
resnext50_32x4d model average train time : 114.30838584899902ms
Benchmarking Training double precision type resnext101_32x8d
resnext101_32x8d model average train time : 352.13791370391846ms
Benchmarking Training double precision type resnext101_64x4d
resnext101_64x4d model average train time : 368.9488697052002ms
Benchmarking Training double precision type wide_resnet50_2
wide_resnet50_2 model average train time : 223.41819286346436ms
Benchmarking Training double precision type wide_resnet101_2
wide_resnet101_2 model average train time : 422.1772766113281ms
Benchmarking Training double precision type densenet121
densenet121 model average train time : 111.37905597686768ms
Benchmarking Training double precision type densenet161
densenet161 model average train time : 250.80832958221436ms
Benchmarking Training double precision type densenet169
densenet169 model average train time : 131.77853107452393ms
Benchmarking Training double precision type densenet201
densenet201 model average train time : 171.81907176971436ms
Benchmarking Training double precision type squeezenet1_0
squeezenet1_0 model average train time : 30.43745994567871ms
Benchmarking Training double precision type squeezenet1_1
squeezenet1_1 model average train time : 20.757312774658203ms
Benchmarking Training double precision type vgg11
vgg11 model average train time : 125.81704139709473ms
Benchmarking Training double precision type vgg11_bn
vgg11_bn model average train time : 136.49741649627686ms
Benchmarking Training double precision type vgg13
vgg13 model average train time : 191.9779872894287ms
Benchmarking Training double precision type vgg13_bn
vgg13_bn model average train time : 215.01746654510498ms
Benchmarking Training double precision type vgg16
vgg16 model average train time : 254.417085647583ms
Benchmarking Training double precision type vgg16_bn
vgg16_bn model average train time : 285.3776979446411ms
Benchmarking Training double precision type vgg19
vgg19 model average train time : 321.7171239852905ms
Benchmarking Training double precision type vgg19_bn
vgg19_bn model average train time : 364.0787363052368ms
Benchmarking Training double precision type mobilenet_v3_large
mobilenet_v3_large model average train time : 31.97683334350586ms
Benchmarking Training double precision type mobilenet_v3_small
mobilenet_v3_small model average train time : 20.437145233154297ms
Benchmarking Training double precision type shufflenet_v2_x0_5
shufflenet_v2_x0_5 model average train time : 21.977334022521973ms
Benchmarking Training double precision type shufflenet_v2_x1_0
shufflenet_v2_x1_0 model average train time : 23.27650547027588ms
Benchmarking Training double precision type shufflenet_v2_x1_5
shufflenet_v2_x1_5 model average train time : 28.07706356048584ms
Benchmarking Training double precision type shufflenet_v2_x2_0
shufflenet_v2_x2_0 model average train time : 30.9163761138916ms
Benchmarking Inference double precision type mnasnet0_5
mnasnet0_5 model average inference time : 9.1965913772583ms
Benchmarking Inference double precision type mnasnet0_75
mnasnet0_75 model average inference time : 10.13648509979248ms
Benchmarking Inference double precision type mnasnet1_0
mnasnet1_0 model average inference time : 11.316795349121094ms
Benchmarking Inference double precision type mnasnet1_3
mnasnet1_3 model average inference time : 13.03621768951416ms
Benchmarking Inference double precision type resnet18
resnet18 model average inference time : 15.237846374511719ms
Benchmarking Inference double precision type resnet34
resnet34 model average inference time : 24.8165225982666ms
Benchmarking Inference double precision type resnet50
resnet50 model average inference time : 30.696945190429688ms
Benchmarking Inference double precision type resnet101
resnet101 model average inference time : 51.01701736450195ms
Benchmarking Inference double precision type resnet152
resnet152 model average inference time : 72.44745254516602ms
Benchmarking Inference double precision type resnext50_32x4d
resnext50_32x4d model average inference time : 35.83712100982666ms
Benchmarking Inference double precision type resnext101_32x8d
resnext101_32x8d model average inference time : 99.85790729522705ms
Benchmarking Inference double precision type resnext101_64x4d
resnext101_64x4d model average inference time : 99.69750881195068ms
Benchmarking Inference double precision type wide_resnet50_2
wide_resnet50_2 model average inference time : 62.41707801818848ms
Benchmarking Inference double precision type wide_resnet101_2
wide_resnet101_2 model average inference time : 116.47632598876953ms
Benchmarking Inference double precision type densenet121
densenet121 model average inference time : 34.49748516082764ms
Benchmarking Inference double precision type densenet161
densenet161 model average inference time : 78.39729309082031ms
Benchmarking Inference double precision type densenet169
densenet169 model average inference time : 45.37738800048828ms
Benchmarking Inference double precision type densenet201
densenet201 model average inference time : 57.647833824157715ms
Benchmarking Inference double precision type squeezenet1_0
squeezenet1_0 model average inference time : 12.858242988586426ms
Benchmarking Inference double precision type squeezenet1_1
squeezenet1_1 model average inference time : 9.777970314025879ms
Benchmarking Inference double precision type vgg11
vgg11 model average inference time : 42.438035011291504ms
Benchmarking Inference double precision type vgg11_bn
vgg11_bn model average inference time : 44.33735370635986ms
Benchmarking Inference double precision type vgg13
vgg13 model average inference time : 61.6082763671875ms
Benchmarking Inference double precision type vgg13_bn
vgg13_bn model average inference time : 63.85744094848633ms
Benchmarking Inference double precision type vgg16
vgg16 model average inference time : 79.07710075378418ms
Benchmarking Inference double precision type vgg16_bn
vgg16_bn model average inference time : 82.25726127624512ms
Benchmarking Inference double precision type vgg19
vgg19 model average inference time : 97.41812705993652ms
Benchmarking Inference double precision type vgg19_bn
vgg19_bn model average inference time : 100.57655811309814ms
Benchmarking Inference double precision type mobilenet_v3_large
mobilenet_v3_large model average inference time : 10.818839073181152ms
Benchmarking Inference double precision type mobilenet_v3_small
mobilenet_v3_small model average inference time : 8.477234840393066ms
Benchmarking Inference double precision type shufflenet_v2_x0_5
shufflenet_v2_x0_5 model average inference time : 9.297652244567871ms
Benchmarking Inference double precision type shufflenet_v2_x1_0
shufflenet_v2_x1_0 model average inference time : 10.63753604888916ms
Benchmarking Inference double precision type shufflenet_v2_x1_5
shufflenet_v2_x1_5 model average inference time : 11.77729606628418ms
Benchmarking Inference double precision type shufflenet_v2_x2_0
shufflenet_v2_x2_0 model average inference time : 12.73733139038086ms
benchmark end : 2024/09/24 17:00:47

Process finished with exit code 0

result.zip

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant