-
Notifications
You must be signed in to change notification settings - Fork 50
/
panel.py
843 lines (754 loc) · 31.2 KB
/
panel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
# -*- coding:utf-8 -*-
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110- 1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
# ----------------------------------------------------------
# Author: Stephen Leger (s-leger)
#
# ----------------------------------------------------------
from math import cos, sin, tan, sqrt, atan2, pi
from mathutils import Vector
class Panel():
"""
Define a bevel profil
index: array associate each y with a coord circle and a x
x = array of x of unique points in the profil relative to origin (0, 0) is bottom left
y = array of y of all points in the profil relative to origin (0, 0) is bottom left
idmat = array of material index for each segment
when path is not closed, start and end caps are generated
shape is the loft profile
path is the loft path
Open shape:
x = [0,1]
y = [0,1,1, 0]
index = [0, 0,1,1]
closed_shape = False
1 ____2
| |
| |
| |
0 3
Closed shape:
x = [0,1]
y = [0,1,1, 0]
index = [0, 0,1,1]
closed_shape = True
1 ____2
| |
| |
|____|
0 3
Side Caps (like glass for window):
x = [0,1]
y = [0,1,1, 0.75, 0.25, 0]
index = [0, 0,1,1,1,1]
closed_shape = True
side_caps = [3,4]
1 ____2 ____
| 3|__cap__| |
| 4|_______| |
|____| |____|
0 5
"""
def __init__(self, closed_shape, index, x, y, idmat, side_cap_front=-1, side_cap_back=-1, closed_path=True,
subdiv_x=0, subdiv_y=0, user_path_verts=0, user_path_uv_v=None):
self.closed_shape = closed_shape
self.closed_path = closed_path
self.index = index
self.x = x
self.y = y
self.idmat = idmat
self.side_cap_front = side_cap_front
self.side_cap_back = side_cap_back
self.subdiv_x = subdiv_x
self.subdiv_y = subdiv_y
self.user_path_verts = user_path_verts
self.user_path_uv_v = user_path_uv_v
@property
def n_pts(self):
return len(self.y)
@property
def profil_faces(self):
"""
number of faces for each section
"""
if self.closed_shape:
return len(self.y)
else:
return len(self.y) - 1
@property
def uv_u(self):
"""
uvs of profil (absolute value)
"""
x = [self.x[i] for i in self.index]
x.append(x[0])
y = [y for y in self.y]
y.append(y[0])
uv_u = []
uv = 0
uv_u.append(uv)
for i in range(len(self.index)):
dx = x[i + 1] - x[i]
dy = y[i + 1] - y[i]
uv += sqrt(dx * dx + dy * dy)
uv_u.append(uv)
return uv_u
def path_sections(self, steps, path_type):
"""
number of verts and faces sections along path
"""
n_path_verts = 2
if path_type == 'RECTANGLE':
n_path_verts = 4 + self.subdiv_x + 2 * self.subdiv_y
if self.closed_path:
n_path_verts += self.subdiv_x
elif path_type == 'QUADRI':
n_path_verts = 4
elif path_type in ['ROUND', 'ELLIPSIS']:
n_path_verts = steps + 3
elif path_type == 'CIRCLE':
n_path_verts = steps
elif path_type == 'TRIANGLE':
n_path_verts = 3
elif path_type == 'PENTAGON':
n_path_verts = 5
elif path_type == 'USER_DEFINED':
n_path_verts = self.user_path_verts
if self.closed_path:
n_path_faces = n_path_verts
else:
n_path_faces = n_path_verts - 1
return n_path_verts, n_path_faces
def n_verts(self, steps, path_type):
n_path_verts, n_path_faces = self.path_sections(steps, path_type)
return self.n_pts * n_path_verts
############################
# Geomerty
############################
def _intersect_line(self, center, basis, x):
""" upper intersection of line parallel to y axis and a triangle
where line is given by x origin
top by center, basis size as float
return float y of upper intersection point
center.x and center.y are absolute
a 0 center.x lie on half size
a 0 center.y lie on basis
"""
if center.x > 0:
dx = x - center.x
else:
dx = center.x - x
p = center.y / basis
return center.y + dx * p
def _intersect_triangle(self, center, basis, x):
""" upper intersection of line parallel to y axis and a triangle
where line is given by x origin
top by center, basis size as float
return float y of upper intersection point
center.x and center.y are absolute
a 0 center.x lie on half size
a 0 center.y lie on basis
"""
if x > center.x:
dx = center.x - x
sx = 0.5 * basis - center.x
else:
dx = x - center.x
sx = 0.5 * basis + center.x
if sx == 0:
sx = basis
p = center.y / sx
return center.y + dx * p
def _intersect_circle(self, center, radius, x):
""" upper intersection of line parallel to y axis and a circle
where line is given by x origin
circle by center, radius as float
return float y of upper intersection point, float angle
"""
dx = x - center.x
d = (radius * radius) - (dx * dx)
if d <= 0:
if x > center.x:
return center.y, 0
else:
return center.y, pi
else:
y = sqrt(d)
return center.y + y, atan2(y, dx)
def _intersect_elipsis(self, center, radius, x):
""" upper intersection of line parallel to y axis and an ellipsis
where line is given by x origin
circle by center, radius.x and radius.y semimajor and seminimor axis (half width and height) as float
return float y of upper intersection point, float angle
"""
dx = x - center.x
d2 = dx * dx
A = 1 / radius.y / radius.y
C = d2 / radius.x / radius.x - 1
d = - 4 * A * C
if d <= 0:
if x > center.x:
return center.y, 0
else:
return center.y, pi
else:
y0 = sqrt(d) / 2 / A
d = (radius.x * radius.x) - d2
y = sqrt(d)
return center.y + y0, atan2(y, dx)
def _intersect_arc(self, center, radius, x_left, x_right):
y0, a0 = self._intersect_circle(center, radius.x, x_left)
y1, a1 = self._intersect_circle(center, radius.x, x_right)
da = (a1 - a0)
if da < -pi:
da += 2 * pi
if da > pi:
da -= 2 * pi
return y0, y1, a0, da
def _intersect_arc_elliptic(self, center, radius, x_left, x_right):
y0, a0 = self._intersect_elipsis(center, radius, x_left)
y1, a1 = self._intersect_elipsis(center, radius, x_right)
da = (a1 - a0)
if da < -pi:
da += 2 * pi
if da > pi:
da -= 2 * pi
return y0, y1, a0, da
def _get_ellispe_coords(self, steps, offset, center, origin, size, radius, x, pivot, bottom_y=0):
"""
Rectangle with single arc on top
"""
x_left = size.x / 2 * (pivot - 1) + x
x_right = size.x / 2 * (pivot + 1) - x
cx = center.x - origin.x
cy = offset.y + center.y - origin.y
y0, y1, a0, da = self._intersect_arc_elliptic(center, radius, origin.x + x_left, origin.x + x_right)
da /= steps
coords = []
# bottom left
if self.closed_path:
coords.append((offset.x + x_left, offset.y + x + bottom_y))
else:
coords.append((offset.x + x_left, offset.y + bottom_y))
# top left
coords.append((offset.x + x_left, offset.y + y0 - origin.y))
for i in range(1, steps):
a = a0 + i * da
coords.append((offset.x + cx + cos(a) * radius.x, cy + sin(a) * radius.y))
# top right
coords.append((offset.x + x_right, offset.y + y1 - origin.y))
# bottom right
if self.closed_path:
coords.append((offset.x + x_right, offset.y + x + bottom_y))
else:
coords.append((offset.x + x_right, offset.y + bottom_y))
return coords
def _get_arc_coords(self, steps, offset, center, origin, size, radius, x, pivot, bottom_y=0):
"""
Rectangle with single arc on top
"""
x_left = size.x / 2 * (pivot - 1) + x
x_right = size.x / 2 * (pivot + 1) - x
cx = offset.x + center.x - origin.x
cy = offset.y + center.y - origin.y
y0, y1, a0, da = self._intersect_arc(center, radius, origin.x + x_left, origin.x + x_right)
da /= steps
coords = []
# bottom left
if self.closed_path:
coords.append((offset.x + x_left, offset.y + x + bottom_y))
else:
coords.append((offset.x + x_left, offset.y + bottom_y))
# top left
coords.append((offset.x + x_left, offset.y + y0 - origin.y))
for i in range(1, steps):
a = a0 + i * da
coords.append((cx + cos(a) * radius.x, cy + sin(a) * radius.x))
# top right
coords.append((offset.x + x_right, offset.y + y1 - origin.y))
# bottom right
if self.closed_path:
coords.append((offset.x + x_right, offset.y + x + bottom_y))
else:
coords.append((offset.x + x_right, offset.y + bottom_y))
return coords
def _get_circle_coords(self, steps, offset, center, origin, radius):
"""
Full circle
"""
cx = offset.x + center.x - origin.x
cy = offset.y + center.y - origin.y
a = -2 * pi / steps
return [(cx + cos(i * a) * radius.x, cy + sin(i * a) * radius.x) for i in range(steps)]
def _get_rectangular_coords(self, offset, size, x, pivot, bottom_y=0):
coords = []
x_left = offset.x + size.x / 2 * (pivot - 1) + x
x_right = offset.x + size.x / 2 * (pivot + 1) - x
if self.closed_path:
y0 = offset.y + x + bottom_y
else:
y0 = offset.y + bottom_y
y1 = offset.y + size.y - x
dy = (y1 - y0) / (1 + self.subdiv_y)
dx = (x_right - x_left) / (1 + self.subdiv_x)
# bottom left
# coords.append((x_left, y0))
# subdiv left
for i in range(self.subdiv_y + 1):
coords.append((x_left, y0 + i * dy))
# top left
# coords.append((x_left, y1))
# subdiv top
for i in range(self.subdiv_x + 1):
coords.append((x_left + dx * i, y1))
# top right
# coords.append((x_right, y1))
# subdiv right
for i in range(self.subdiv_y + 1):
coords.append((x_right, y1 - i * dy))
# subdiv bottom
if self.closed_path:
for i in range(self.subdiv_x + 1):
coords.append((x_right - dx * i, y0))
else:
# bottom right
coords.append((x_right, y0))
return coords
def _get_vertical_rectangular_trapezoid_coords(self, offset, center, origin, size, basis, x, pivot, bottom_y=0):
"""
Rectangular trapezoid vertical
basis is the full width of a triangular area the trapezoid lie into
center.y is the height of triagular area from top
center.x is the offset from basis center
|\
| \
|__|
"""
coords = []
x_left = size.x / 2 * (pivot - 1) + x
x_right = size.x / 2 * (pivot + 1) - x
sx = x * sqrt(basis * basis + center.y * center.y) / basis
dy = size.y + offset.y - sx
y0 = self._intersect_line(center, basis, origin.x + x_left)
y1 = self._intersect_line(center, basis, origin.x + x_right)
# bottom left
if self.closed_path:
coords.append((offset.x + x_left, offset.y + x + bottom_y))
else:
coords.append((offset.x + x_left, offset.y + bottom_y))
# top left
coords.append((offset.x + x_left, dy - y0))
# top right
coords.append((offset.x + x_right, dy - y1))
# bottom right
if self.closed_path:
coords.append((offset.x + x_right, offset.y + x + bottom_y))
else:
coords.append((offset.x + x_right, offset.y + bottom_y))
return coords
def _get_horizontal_rectangular_trapezoid_coords(self, offset, center, origin, size, basis, x, pivot, bottom_y=0):
"""
Rectangular trapeze horizontal
basis is the full width of a triangular area the trapezoid lie into
center.y is the height of triagular area from top to basis
center.x is the offset from basis center
___
| \
|____\
TODO: correct implementation
"""
raise NotImplementedError
def _get_pentagon_coords(self, offset, center, origin, size, basis, x, pivot, bottom_y=0):
"""
TODO: correct implementation
/\
/ \
| |
|____|
"""
raise NotImplementedError
def _get_triangle_coords(self, offset, center, origin, size, basis, x, pivot, bottom_y=0):
coords = []
x_left = offset.x + size.x / 2 * (pivot - 1) + x
x_right = offset.x + size.x / 2 * (pivot + 1) - x
# bottom left
if self.closed_path:
coords.append((x_left, offset.y + x + bottom_y))
else:
coords.append((x_left, offset.y + bottom_y))
# top center
coords.append((center.x, offset.y + center.y))
# bottom right
if self.closed_path:
coords.append((x_right, offset.y + x + bottom_y))
else:
coords.append((x_right, offset.y + bottom_y))
return coords
def _get_horizontal_coords(self, offset, size, x, pivot):
coords = []
x_left = offset.x + size.x / 2 * (pivot - 1)
x_right = offset.x + size.x / 2 * (pivot + 1)
# left
coords.append((x_left, offset.y + x))
# right
coords.append((x_right, offset.y + x))
return coords
def _get_vertical_coords(self, offset, size, x, pivot):
coords = []
x_left = offset.x + size.x / 2 * (pivot - 1) + x
# top
coords.append((x_left, offset.y + size.y))
# bottom
coords.append((x_left, offset.y))
return coords
def choose_a_shape_in_tri(self, center, origin, size, basis, pivot):
"""
Choose wich shape inside either a tri or a pentagon
"""
cx = (0.5 * basis + center.x) - origin.x
cy = center.y - origin.y
x_left = size.x / 2 * (pivot - 1)
x_right = size.x / 2 * (pivot + 1)
y0 = self.intersect_triangle(cx, cy, basis, x_left)
y1 = self.intersect_triangle(cx, cy, basis, x_right)
if (y0 == 0 and y1 == 0) or ((y0 == 0 or y1 == 0) and (y0 == cy or y1 == cy)):
return 'TRIANGLE'
elif x_right <= cx or x_left >= cx:
# single side of triangle
# may be horizontal or vertical rectangular trapezoid
# horizontal if size.y < center.y
return 'QUADRI'
else:
# both sides of triangle
# may be horizontal trapezoid or pentagon
# horizontal trapezoid if size.y < center.y
return 'PENTAGON'
def avaliable_vertical_space(self, steps, offset, center, origin, size, radius,
angle_y, pivot, shape_z=None, path_type='ROUND', axis='XZ'):
"""
Compute avaliable vertical space on both side of the panel
for hinges
"""
x = 0
if path_type == 'ROUND':
radius = Vector((radius.x - x, 0))
x_left = size.x / 2 * (pivot - 1) + x
x_right = size.x / 2 * (pivot + 1) - x
y0, y1, a0, da = self._intersect_arc(center, radius, origin.x + x_left, origin.x + x_right)
left = y0 - origin.y - x
right = y1 - origin.y - x
elif path_type == 'ELLIPSIS':
radius = Vector((radius.x - x, radius.y - x))
x_left = size.x / 2 * (pivot - 1) + x
x_right = size.x / 2 * (pivot + 1) - x
y0, y1, a0, da = self._intersect_arc_elliptic(center, radius, origin.x + x_left, origin.x + x_right)
left = y0 - origin.y - x
right = y1 - origin.y - x
elif path_type == 'QUADRI':
x_left = size.x / 2 * (pivot - 1) + x
x_right = size.x / 2 * (pivot + 1) - x
sx = x * sqrt(radius.x * radius.x + center.y * center.y) / radius.x
dy = size.y - sx
y0 = self._intersect_line(center, radius.x, origin.x + x_left)
y1 = self._intersect_line(center, radius.x, origin.x + x_right)
# bottom left
left = dy - y0 - x
right = dy - y1 - x
elif path_type == 'HORIZONTAL':
left, right = size, size
elif path_type == 'VERTICAL':
left, right = size, size
elif path_type == 'CIRCLE':
left = 2 * radius.x
right = left
else:
y0 = offset.y + x
y1 = offset.y + size.y - x
dy = y1 - y0
left, right = dy, dy
return left, right
############################
# Vertices
############################
def vertices(self, steps, offset, center, origin, size, radius,
angle_y, pivot, shape_z=None, path_type='ROUND', axis='XZ'):
verts = []
if shape_z is None:
shape_z = [0 for x in self.x]
if path_type == 'ROUND':
coords = [self._get_arc_coords(steps, offset, center, origin,
size, Vector((radius.x - x, 0)), x, pivot, shape_z[i]) for i, x in enumerate(self.x)]
elif path_type == 'ELLIPSIS':
coords = [self._get_ellispe_coords(steps, offset, center, origin,
size, Vector((radius.x - x, radius.y - x)), x, pivot, shape_z[i]) for i, x in enumerate(self.x)]
elif path_type == 'QUADRI':
coords = [self._get_vertical_rectangular_trapezoid_coords(offset, center, origin,
size, radius.x, x, pivot, shape_z[i]) for i, x in enumerate(self.x)]
elif path_type == 'HORIZONTAL':
coords = [self._get_horizontal_coords(offset, size, x, pivot)
for i, x in enumerate(self.x)]
elif path_type == 'VERTICAL':
coords = [self._get_vertical_coords(offset, size, x, pivot)
for i, x in enumerate(self.x)]
elif path_type == 'CIRCLE':
coords = [self._get_circle_coords(steps, offset, center, origin, Vector((radius.x - x, 0)))
for i, x in enumerate(self.x)]
else:
coords = [self._get_rectangular_coords(offset, size, x, pivot, shape_z[i])
for i, x in enumerate(self.x)]
# vertical panel (as for windows)
if axis == 'XZ':
for i in range(len(coords[0])):
for j, p in enumerate(self.index):
x, z = coords[p][i]
y = self.y[j]
verts.append((x, y, z))
# horizontal panel (table and so on)
elif axis == 'XY':
for i in range(len(coords[0])):
for j, p in enumerate(self.index):
x, y = coords[p][i]
z = self.y[j]
verts.append((x, y, z))
return verts
############################
# Faces
############################
def _faces_cap(self, faces, n_path_verts, offset):
if self.closed_shape and not self.closed_path:
last_point = offset + self.n_pts * n_path_verts - 1
faces.append(tuple([offset + i for i in range(self.n_pts)]))
faces.append(tuple([last_point - i for i in range(self.n_pts)]))
def _faces_closed(self, n_path_faces, offset):
faces = []
n_pts = self.n_pts
for i in range(n_path_faces):
k0 = offset + i * n_pts
if self.closed_path and i == n_path_faces - 1:
k1 = offset
else:
k1 = k0 + n_pts
for j in range(n_pts - 1):
faces.append((k1 + j, k1 + j + 1, k0 + j + 1, k0 + j))
# close profile
faces.append((k1 + n_pts - 1, k1, k0, k0 + n_pts - 1))
return faces
def _faces_open(self, n_path_faces, offset):
faces = []
n_pts = self.n_pts
for i in range(n_path_faces):
k0 = offset + i * n_pts
if self.closed_path and i == n_path_faces - 1:
k1 = offset
else:
k1 = k0 + n_pts
for j in range(n_pts - 1):
faces.append((k1 + j, k1 + j + 1, k0 + j + 1, k0 + j))
return faces
def _faces_side(self, faces, n_path_verts, start, reverse, offset):
n_pts = self.n_pts
vf = [offset + start + n_pts * f for f in range(n_path_verts)]
if reverse:
faces.append(tuple(reversed(vf)))
else:
faces.append(tuple(vf))
def faces(self, steps, offset=0, path_type='ROUND'):
n_path_verts, n_path_faces = self.path_sections(steps, path_type)
if self.closed_shape:
faces = self._faces_closed(n_path_faces, offset)
else:
faces = self._faces_open(n_path_faces, offset)
if self.side_cap_front > -1:
self._faces_side(faces, n_path_verts, self.side_cap_front, False, offset)
if self.side_cap_back > -1:
self._faces_side(faces, n_path_verts, self.side_cap_back, True, offset)
self._faces_cap(faces, n_path_verts, offset)
return faces
############################
# Uvmaps
############################
def uv(self, steps, center, origin, size, radius, angle_y, pivot, x, x_cap, path_type='ROUND'):
uvs = []
n_path_verts, n_path_faces = self.path_sections(steps, path_type)
if path_type in ['ROUND', 'ELLIPSIS']:
x_left = size.x / 2 * (pivot - 1) + x
x_right = size.x / 2 * (pivot + 1) - x
if path_type == 'ELLIPSIS':
y0, y1, a0, da = self._intersect_arc_elliptic(center, radius, x_left, x_right)
else:
y0, y1, a0, da = self._intersect_arc(center, radius, x_left, x_right)
uv_r = abs(da) * radius.x / steps
uv_v = [uv_r for i in range(steps)]
uv_v.insert(0, y0 - origin.y)
uv_v.append(y1 - origin.y)
uv_v.append(size.x)
elif path_type == 'USER_DEFINED':
uv_v = self.user_path_uv_v
elif path_type == 'CIRCLE':
uv_r = 2 * pi * radius.x / steps
uv_v = [uv_r for i in range(steps + 1)]
elif path_type == 'QUADRI':
# dosent support subdiv
dy = 0.5 * tan(angle_y) * size.x
uv_v = [size.y - dy, size.x, size.y + dy, size.x]
elif path_type == 'HORIZONTAL':
uv_v = [size.y]
elif path_type == 'VERTICAL':
uv_v = [size.y]
else:
dx = size.x / (1 + self.subdiv_x)
dy = size.y / (1 + self.subdiv_y)
uv_v = []
for i in range(self.subdiv_y + 1):
uv_v.append(dy * (i + 1))
for i in range(self.subdiv_x + 1):
uv_v.append(dx * (i + 1))
for i in range(self.subdiv_y + 1):
uv_v.append(dy * (i + 1))
for i in range(self.subdiv_x + 1):
uv_v.append(dx * (i + 1))
# uv_v = [size.y, size.x, size.y, size.x]
uv_u = self.uv_u
if self.closed_shape:
n_pts = self.n_pts
else:
n_pts = self.n_pts - 1
v0 = 0
# uvs parties rondes
for i in range(n_path_faces):
v1 = v0 + uv_v[i]
for j in range(n_pts):
u0 = uv_u[j]
u1 = uv_u[j + 1]
uvs.append([(u0, v1), (u1, v1), (u1, v0), (u0, v0)])
v0 = v1
if self.side_cap_back > -1 or self.side_cap_front > -1:
if path_type == 'ROUND':
# rectangle with top part round
coords = self._get_arc_coords(steps, Vector((0, 0, 0)), center,
origin, size, Vector((radius.x - x_cap, 0)), x_cap, pivot, x_cap)
elif path_type == 'CIRCLE':
# full circle
coords = self._get_circle_coords(steps, Vector((0, 0, 0)), center,
origin, Vector((radius.x - x_cap, 0)))
elif path_type == 'ELLIPSIS':
coords = self._get_ellispe_coords(steps, Vector((0, 0, 0)), center,
origin, size, Vector((radius.x - x_cap, radius.y - x_cap)), x_cap, pivot, x_cap)
elif path_type == 'QUADRI':
coords = self._get_vertical_rectangular_trapezoid_coords(Vector((0, 0, 0)), center,
origin, size, radius.x, x_cap, pivot)
# coords = self._get_trapezoidal_coords(0, origin, size, angle_y, x_cap, pivot, x_cap)
else:
coords = self._get_rectangular_coords(Vector((0, 0, 0)), size, x_cap, pivot, 0)
if self.side_cap_front > -1:
uvs.append(list(coords))
if self.side_cap_back > -1:
uvs.append(list(reversed(coords)))
if self.closed_shape and not self.closed_path:
coords = [(self.x[self.index[i]], y) for i, y in enumerate(self.y)]
uvs.append(coords)
uvs.append(list(reversed(coords)))
return uvs
############################
# Material indexes
############################
def mat(self, steps, cap_front_id, cap_back_id, path_type='ROUND'):
n_path_verts, n_path_faces = self.path_sections(steps, path_type)
n_profil_faces = self.profil_faces
idmat = []
for i in range(n_path_faces):
for f in range(n_profil_faces):
idmat.append(self.idmat[f])
if self.side_cap_front > -1:
idmat.append(cap_front_id)
if self.side_cap_back > -1:
idmat.append(cap_back_id)
if self.closed_shape and not self.closed_path:
idmat.append(self.idmat[0])
idmat.append(self.idmat[0])
return idmat
############################
# Profile as curve
############################
def as_2d(self, steps, offset, center, origin, size, radius,
angle_y, pivot, shape_z=None, path_type='RECTANGLE', axis='XZ', connect=3):
"""
When closed last coord = first coord
connect : 0 dont, 1 connect front, 2 connect back, 3 connect both
"""
# index: array associate each y with a coord circle and a x
# x = array of x of unique points in the profil relative to origin (0, 0) is bottom left
# y = array of y of all points in the profil relative to origin (0, 0) is bottom left
coords = []
y = offset.y
sx = size.x
x0 = offset.x + sx / 2 * (pivot - 1)
x1 = offset.x + sx / 2 * (pivot + 1)
# single closed profile
if abs(self.side_cap_front - self.side_cap_back) == len(self.index) - 1:
coords.append([
(x0 + self.x[idx], y + self.y[idy], 0)
for idy, idx in enumerate(self.index)
] + list(reversed([
(x1 - self.x[idx], y + self.y[idy], 0)
for idy, idx in enumerate(self.index)
]))
)
coords[-1].append(coords[-1][0])
else:
# 2 profils on both sides
coords.append([
(x0 + self.x[idx], y + self.y[idy], 0)
for idy, idx in enumerate(self.index)
])
coords[-1].append(coords[-1][0])
coords.append(list(reversed([
(x1 - self.x[idx], y + self.y[idy], 0)
for idy, idx in enumerate(self.index)
])))
coords[-1].append(coords[-1][0])
# draw front and back caps if any as closed shape
if self.side_cap_front > -1 and self.side_cap_back > -1:
idf = self.side_cap_front
idb = self.side_cap_back
xf = self.x[self.index[idf]]
yf = y + self.y[idf]
xb = self.x[self.index[idb]]
yb = y + self.y[idb]
coords.append([
(x0 + xf, yf, 0), (x1 - xf, yf, 0),
(x1 - xb, yb, 0), (x0 + xb, yb, 0),
(x0 + xf, yf, 0)])
if connect > 0:
# connect profiles (projection of outermost top / bottom parts)
y_max = max(self.y)
y_min = min(self.y)
if connect % 2 == 1:
x = -1e32
for idy, idx in enumerate(self.index):
if self.y[idy] == y_max and self.x[idx] > x:
x = self.x[idx]
coords.append([(x0 + x, y + y_max, 0), (x1 - x, y + y_max, 0)])
if connect > 1:
x = -1e32
for idy, idx in enumerate(self.index):
if self.y[idy] == y_min and self.x[idx] > x:
x = self.x[idx]
coords.append([(x0 + x, y + y_min, 0), (x1 - x, y + y_min, 0)])
return coords