-
Notifications
You must be signed in to change notification settings - Fork 0
/
sailbottrainipynb.py
70 lines (59 loc) · 2.01 KB
/
sailbottrainipynb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
"""Sailbottrainipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1CW4P9hcAguVcBRLJJIIZZqcKI2cUd3pd
"""
import nltk
from nltk.stem.lancaster import LancasterStemmer
import numpy as np
import tensorflow as tf
import random
import json
import pickle
from google.colab import files
uploaded = files.upload()
with open('intents.json') as file:
intents = json.load(file)
nltk.download('punkt')
# Preprocess the data
stemmer = LancasterStemmer()
words = []
classes = []
documents = []
ignore_words = ['?']
for intent in intents['intents']:
for pattern in intent['patterns']:
w = nltk.word_tokenize(pattern)
words.extend(w)
documents.append((w, intent['tag']))
if intent['tag'] not in classes:
classes.append(intent['tag'])
words = [stemmer.stem(w.lower()) for w in words if w not in ignore_words]
words = sorted(list(set(words)))
classes = sorted(list(set(classes)))
training = []
output = []
output_empty = [0] * len(classes)
for doc in documents:
bag = []
pattern_words = doc[0]
pattern_words = [stemmer.stem(word.lower()) for word in pattern_words]
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
random.shuffle(training)
training = np.array(training)
train_x = list(training[:,0])
train_y = list(training[:,1])
model = tf.keras.Sequential([
tf.keras.layers.Dense(8, input_shape=(len(train_x[0]),), activation='relu'),
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(len(train_y[0]), activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(np.array(train_x), np.array(train_y), epochs=1000, batch_size=8)
model.save('model.h5')
pickle.dump({'words': words, 'classes': classes, 'train_x': train_x, 'train_y': train_y}, open('training_data', 'wb'))