forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modules.py
49 lines (39 loc) · 1.45 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
import torch.nn.functional as F
class MLP(nn.Sequential):
r"""
Description
-----------
From equation (5) in "DeeperGCN: All You Need to Train Deeper GCNs <https://arxiv.org/abs/2006.07739>"
"""
def __init__(self,
channels,
act='relu',
dropout=0.,
bias=True):
layers = []
for i in range(1, len(channels)):
layers.append(nn.Linear(channels[i - 1], channels[i], bias))
if i < len(channels) - 1:
layers.append(nn.BatchNorm1d(channels[i], affine=True))
layers.append(nn.ReLU())
layers.append(nn.Dropout(dropout))
super(MLP, self).__init__(*layers)
class MessageNorm(nn.Module):
r"""
Description
-----------
Message normalization was introduced in "DeeperGCN: All You Need to Train Deeper GCNs <https://arxiv.org/abs/2006.07739>"
Parameters
----------
learn_scale: bool
Whether s is a learnable scaling factor or not. Default is False.
"""
def __init__(self, learn_scale=False):
super(MessageNorm, self).__init__()
self.scale = nn.Parameter(torch.FloatTensor([1.0]), requires_grad=learn_scale)
def forward(self, feats, msg, p=2):
msg = F.normalize(msg, p=2, dim=-1)
feats_norm = feats.norm(p=p, dim=-1, keepdim=True)
return msg * feats_norm * self.scale