forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
176 lines (147 loc) · 6.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import time
from tqdm import tqdm
import numpy as np
import torch
from torch.nn import BCEWithLogitsLoss
from dgl import NID, EID
from dgl.dataloading import GraphDataLoader
from utils import parse_arguments
from utils import load_ogb_dataset, evaluate_hits
from sampler import SEALData
from model import GCN, DGCNN
from logger import LightLogging
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
'''
Part of the code are adapted from
https://github.com/facebookresearch/SEAL_OGB
'''
def train(model, dataloader, loss_fn, optimizer, device, num_graphs=32, total_graphs=None):
model.train()
total_loss = 0
for g, labels in tqdm(dataloader, ncols=100):
g = g.to(device)
labels = labels.to(device)
optimizer.zero_grad()
logits = model(g, g.ndata['z'], g.ndata[NID], g.edata[EID])
loss = loss_fn(logits, labels)
loss.backward()
optimizer.step()
total_loss += loss.item() * num_graphs
return total_loss / total_graphs
@torch.no_grad()
def evaluate(model, dataloader, device):
model.eval()
y_pred, y_true = [], []
for g, labels in tqdm(dataloader, ncols=100):
g = g.to(device)
logits = model(g, g.ndata['z'], g.ndata[NID], g.edata[EID])
y_pred.append(logits.view(-1).cpu())
y_true.append(labels.view(-1).cpu().to(torch.float))
y_pred, y_true = torch.cat(y_pred), torch.cat(y_true)
pos_pred = y_pred[y_true == 1]
neg_pred = y_pred[y_true == 0]
return pos_pred, neg_pred
def main(args, print_fn=print):
print_fn("Experiment arguments: {}".format(args))
if args.random_seed:
torch.manual_seed(args.random_seed)
else:
torch.manual_seed(123)
# Load dataset
if args.dataset.startswith('ogbl'):
graph, split_edge = load_ogb_dataset(args.dataset)
else:
raise NotImplementedError
num_nodes = graph.num_nodes()
# set gpu
if args.gpu_id >= 0 and torch.cuda.is_available():
device = 'cuda:{}'.format(args.gpu_id)
else:
device = 'cpu'
if args.dataset == 'ogbl-collab':
# ogbl-collab dataset is multi-edge graph
use_coalesce = True
else:
use_coalesce = False
# Generate positive and negative edges and corresponding labels
# Sampling subgraphs and generate node labeling features
seal_data = SEALData(g=graph, split_edge=split_edge, hop=args.hop, neg_samples=args.neg_samples,
subsample_ratio=args.subsample_ratio, use_coalesce=use_coalesce, prefix=args.dataset,
save_dir=args.save_dir, num_workers=args.num_workers, print_fn=print_fn)
node_attribute = seal_data.ndata['feat']
edge_weight = seal_data.edata['weight'].float()
train_data = seal_data('train')
val_data = seal_data('valid')
test_data = seal_data('test')
train_graphs = len(train_data.graph_list)
# Set data loader
train_loader = GraphDataLoader(train_data, batch_size=args.batch_size, num_workers=args.num_workers)
val_loader = GraphDataLoader(val_data, batch_size=args.batch_size, num_workers=args.num_workers)
test_loader = GraphDataLoader(test_data, batch_size=args.batch_size, num_workers=args.num_workers)
# set model
if args.model == 'gcn':
model = GCN(num_layers=args.num_layers,
hidden_units=args.hidden_units,
gcn_type=args.gcn_type,
pooling_type=args.pooling,
node_attributes=node_attribute,
edge_weights=edge_weight,
node_embedding=None,
use_embedding=True,
num_nodes=num_nodes,
dropout=args.dropout)
elif args.model == 'dgcnn':
model = DGCNN(num_layers=args.num_layers,
hidden_units=args.hidden_units,
k=args.sort_k,
gcn_type=args.gcn_type,
node_attributes=node_attribute,
edge_weights=edge_weight,
node_embedding=None,
use_embedding=True,
num_nodes=num_nodes,
dropout=args.dropout)
else:
raise ValueError('Model error')
model = model.to(device)
parameters = model.parameters()
optimizer = torch.optim.Adam(parameters, lr=args.lr)
loss_fn = BCEWithLogitsLoss()
print_fn("Total parameters: {}".format(sum([p.numel() for p in model.parameters()])))
# train and evaluate loop
summary_val = []
summary_test = []
for epoch in range(args.epochs):
start_time = time.time()
loss = train(model=model,
dataloader=train_loader,
loss_fn=loss_fn,
optimizer=optimizer,
device=device,
num_graphs=args.batch_size,
total_graphs=train_graphs)
train_time = time.time()
if epoch % args.eval_steps == 0:
val_pos_pred, val_neg_pred = evaluate(model=model,
dataloader=val_loader,
device=device)
test_pos_pred, test_neg_pred = evaluate(model=model,
dataloader=test_loader,
device=device)
val_metric = evaluate_hits(args.dataset, val_pos_pred, val_neg_pred, args.hits_k)
test_metric = evaluate_hits(args.dataset, test_pos_pred, test_neg_pred, args.hits_k)
evaluate_time = time.time()
print_fn("Epoch-{}, train loss: {:.4f}, hits@{}: val-{:.4f}, test-{:.4f}, "
"cost time: train-{:.1f}s, total-{:.1f}s".format(epoch, loss, args.hits_k, val_metric, test_metric,
train_time - start_time,
evaluate_time - start_time))
summary_val.append(val_metric)
summary_test.append(test_metric)
summary_test = np.array(summary_test)
print_fn("Experiment Results:")
print_fn("Best hits@{}: {:.4f}, epoch: {}".format(args.hits_k, np.max(summary_test), np.argmax(summary_test)))
if __name__ == '__main__':
args = parse_arguments()
logger = LightLogging(log_name='SEAL', log_path='./logs')
main(args, logger.info)