forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
289 lines (222 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse
import os
import time
import dgl
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
import numpy as np
import scipy.sparse as sp
from sklearn.metrics import roc_auc_score, average_precision_score
import torch
import torch.nn.functional as F
from input_data import load_data
import model
from preprocess import mask_test_edges, mask_test_edges_dgl, sparse_to_tuple, preprocess_graph
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
parser = argparse.ArgumentParser(description='Variant Graph Auto Encoder')
parser.add_argument('--learning_rate', type=float, default=0.01, help='Initial learning rate.')
parser.add_argument('--epochs', '-e', type=int, default=200, help='Number of epochs to train.')
parser.add_argument('--hidden1', '-h1', type=int, default=32, help='Number of units in hidden layer 1.')
parser.add_argument('--hidden2', '-h2', type=int, default=16, help='Number of units in hidden layer 2.')
parser.add_argument('--datasrc', '-s', type=str, default='dgl',
help='Dataset download from dgl Dataset or website.')
parser.add_argument('--dataset', '-d', type=str, default='cora', help='Dataset string.')
parser.add_argument('--gpu_id', type=int, default=0, help='GPU id to use.')
args = parser.parse_args()
# check device
device = torch.device("cuda:{}".format(args.gpu_id) if torch.cuda.is_available() else "cpu")
# device = "cpu"
# roc_means = []
# ap_means = []
def compute_loss_para(adj):
pos_weight = ((adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum())
norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2)
weight_mask = adj.view(-1) == 1
weight_tensor = torch.ones(weight_mask.size(0)).to(device)
weight_tensor[weight_mask] = pos_weight
return weight_tensor, norm
def get_acc(adj_rec, adj_label):
labels_all = adj_label.view(-1).long()
preds_all = (adj_rec > 0.5).view(-1).long()
accuracy = (preds_all == labels_all).sum().float() / labels_all.size(0)
return accuracy
def get_scores(edges_pos, edges_neg, adj_rec):
def sigmoid(x):
return 1 / (1 + np.exp(-x))
adj_rec = adj_rec.cpu()
# Predict on test set of edges
preds = []
for e in edges_pos:
preds.append(sigmoid(adj_rec[e[0], e[1]].item()))
preds_neg = []
for e in edges_neg:
preds_neg.append(sigmoid(adj_rec[e[0], e[1]].data))
preds_all = np.hstack([preds, preds_neg])
labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds_neg))])
roc_score = roc_auc_score(labels_all, preds_all)
ap_score = average_precision_score(labels_all, preds_all)
return roc_score, ap_score
def dgl_main():
# Load from DGL dataset
if args.dataset == 'cora':
dataset = CoraGraphDataset(reverse_edge=False)
elif args.dataset == 'citeseer':
dataset = CiteseerGraphDataset(reverse_edge=False)
elif args.dataset == 'pubmed':
dataset = PubmedGraphDataset(reverse_edge=False)
else:
raise NotImplementedError
graph = dataset[0]
# Extract node features
feats = graph.ndata.pop('feat').to(device)
in_dim = feats.shape[-1]
# generate input
adj_orig = graph.adjacency_matrix().to_dense()
# build test set with 10% positive links
train_edge_idx, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges_dgl(graph, adj_orig)
graph = graph.to(device)
# create train graph
train_edge_idx = torch.tensor(train_edge_idx).to(device)
train_graph = dgl.edge_subgraph(graph, train_edge_idx, relabel_nodes=False)
train_graph = train_graph.to(device)
adj = train_graph.adjacency_matrix().to_dense().to(device)
# compute loss parameters
weight_tensor, norm = compute_loss_para(adj)
# create model
vgae_model = model.VGAEModel(in_dim, args.hidden1, args.hidden2)
vgae_model = vgae_model.to(device)
# create training component
optimizer = torch.optim.Adam(vgae_model.parameters(), lr=args.learning_rate)
print('Total Parameters:', sum([p.nelement() for p in vgae_model.parameters()]))
# create training epoch
for epoch in range(args.epochs):
t = time.time()
# Training and validation using a full graph
vgae_model.train()
logits = vgae_model.forward(graph, feats)
# compute loss
loss = norm * F.binary_cross_entropy(logits.view(-1), adj.view(-1), weight=weight_tensor)
kl_divergence = 0.5 / logits.size(0) * (
1 + 2 * vgae_model.log_std - vgae_model.mean ** 2 - torch.exp(vgae_model.log_std) ** 2).sum(
1).mean()
loss -= kl_divergence
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc = get_acc(logits, adj)
val_roc, val_ap = get_scores(val_edges, val_edges_false, logits)
# Print out performance
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(loss.item()), "train_acc=",
"{:.5f}".format(train_acc), "val_roc=", "{:.5f}".format(val_roc), "val_ap=", "{:.5f}".format(val_ap),
"time=", "{:.5f}".format(time.time() - t))
test_roc, test_ap = get_scores(test_edges, test_edges_false, logits)
# roc_means.append(test_roc)
# ap_means.append(test_ap)
print("End of training!", "test_roc=", "{:.5f}".format(test_roc), "test_ap=", "{:.5f}".format(test_ap))
def web_main():
adj, features = load_data(args.dataset)
features = sparse_to_tuple(features.tocoo())
# Store original adjacency matrix (without diagonal entries) for later
adj_orig = adj
adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
adj_orig.eliminate_zeros()
adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj)
adj = adj_train
# # Create model
# graph = dgl.from_scipy(adj)
# graph.add_self_loop()
# Some preprocessing
adj_normalization, adj_norm = preprocess_graph(adj)
# Create model
graph = dgl.from_scipy(adj_normalization)
graph.add_self_loop()
# Create Model
pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2)
adj_label = adj_train + sp.eye(adj_train.shape[0])
adj_label = sparse_to_tuple(adj_label)
adj_norm = torch.sparse.FloatTensor(torch.LongTensor(adj_norm[0].T),
torch.FloatTensor(adj_norm[1]),
torch.Size(adj_norm[2]))
adj_label = torch.sparse.FloatTensor(torch.LongTensor(adj_label[0].T),
torch.FloatTensor(adj_label[1]),
torch.Size(adj_label[2]))
features = torch.sparse.FloatTensor(torch.LongTensor(features[0].T),
torch.FloatTensor(features[1]),
torch.Size(features[2]))
weight_mask = adj_label.to_dense().view(-1) == 1
weight_tensor = torch.ones(weight_mask.size(0))
weight_tensor[weight_mask] = pos_weight
features = features.to_dense()
in_dim = features.shape[-1]
vgae_model = model.VGAEModel(in_dim, args.hidden1, args.hidden2)
# create training component
optimizer = torch.optim.Adam(vgae_model.parameters(), lr=args.learning_rate)
print('Total Parameters:', sum([p.nelement() for p in vgae_model.parameters()]))
def get_scores(edges_pos, edges_neg, adj_rec):
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# Predict on test set of edges
preds = []
pos = []
for e in edges_pos:
# print(e)
# print(adj_rec[e[0], e[1]])
preds.append(sigmoid(adj_rec[e[0], e[1]].item()))
pos.append(adj_orig[e[0], e[1]])
preds_neg = []
neg = []
for e in edges_neg:
preds_neg.append(sigmoid(adj_rec[e[0], e[1]].data))
neg.append(adj_orig[e[0], e[1]])
preds_all = np.hstack([preds, preds_neg])
labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds_neg))])
roc_score = roc_auc_score(labels_all, preds_all)
ap_score = average_precision_score(labels_all, preds_all)
return roc_score, ap_score
def get_acc(adj_rec, adj_label):
labels_all = adj_label.to_dense().view(-1).long()
preds_all = (adj_rec > 0.5).view(-1).long()
accuracy = (preds_all == labels_all).sum().float() / labels_all.size(0)
return accuracy
# create training epoch
for epoch in range(args.epochs):
t = time.time()
# Training and validation using a full graph
vgae_model.train()
logits = vgae_model.forward(graph, features)
# compute loss
loss = norm * F.binary_cross_entropy(logits.view(-1), adj_label.to_dense().view(-1), weight=weight_tensor)
kl_divergence = 0.5 / logits.size(0) * (
1 + 2 * vgae_model.log_std - vgae_model.mean ** 2 - torch.exp(vgae_model.log_std) ** 2).sum(
1).mean()
loss -= kl_divergence
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc = get_acc(logits, adj_label)
val_roc, val_ap = get_scores(val_edges, val_edges_false, logits)
# Print out performance
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(loss.item()), "train_acc=",
"{:.5f}".format(train_acc), "val_roc=", "{:.5f}".format(val_roc), "val_ap=", "{:.5f}".format(val_ap),
"time=", "{:.5f}".format(time.time() - t))
test_roc, test_ap = get_scores(test_edges, test_edges_false, logits)
print("End of training!", "test_roc=", "{:.5f}".format(test_roc), "test_ap=", "{:.5f}".format(test_ap))
# roc_means.append(test_roc)
# ap_means.append(test_ap)
# if __name__ == '__main__':
# for i in range(10):
# web_main()
#
# roc_mean = np.mean(roc_means)
# roc_std = np.std(roc_means, ddof=1)
# ap_mean = np.mean(ap_means)
# ap_std = np.std(ap_means, ddof=1)
# print("roc_mean=", "{:.5f}".format(roc_mean), "roc_std=", "{:.5f}".format(roc_std), "ap_mean=",
# "{:.5f}".format(ap_mean), "ap_std=", "{:.5f}".format(ap_std))
if __name__ == '__main__':
if args.datasrc == 'dgl':
dgl_main()
elif args.datasrc == 'website':
web_main()