-
Notifications
You must be signed in to change notification settings - Fork 5
/
segmentation.py
67 lines (49 loc) · 1.79 KB
/
segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#import cv2
#import cv2.cv as cv
#import numpy as np
#from matplotlib import pyplot as plt
#img = cv2.imread('plate.jpg',0)
#gray = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
#color = cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU
#ret, thresh = cv2.threshold(gray,0,255,color)
import numpy as np
import cv2
from matplotlib import pyplot as plt
cap = cv2.VideoCapture("People.mp4")
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7))
fgbg = cv2.createBackgroundSubtractorMOG2()
#fgbg = cv2.createBackgroundSubtractorKNN()
while(1):
ret, img = cap.read()
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
cv2.imshow("image",thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
# noise removal
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
# sure background area
sure_bg = cv2.dilate(opening,kernel,iterations=3)
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening, cv2.CV_DIST_L2, 5)
cv2.CV_DIST_L2
ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0)
# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg,sure_fg)
#
# Marker labelling
#ret, markers = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
#markers = markers+1
# Now, mark the region of unknown with zero
#markers[unknown==255] = 0
#markers = cv2.watershed(img,markers)
#img[markers == -1] = [255,0,0]
cv2.imshow("image",sure_fg)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow("image",unknown)
cv2.waitKey(0)
cv2.destroyAllWindows()