diff --git a/code/paradigms/ParadigmDALERP.m b/code/paradigms/ParadigmDALERP.m index 63dcaf31..81f7ae9e 100644 --- a/code/paradigms/ParadigmDALERP.m +++ b/code/paradigms/ParadigmDALERP.m @@ -59,7 +59,7 @@ methods function defaults = preprocessing_defaults(self) - defaults = {'IIRFilter',{[0.1 0.5],'highpass'},'EpochExtraction',[-1.5 1.5],'Resampling',60,'SpectralSelection',[0.1 15]}; + defaults = {'FIRFilter',{[0.1 0.5],'highpass'},'EpochExtraction',[-1.5 1.5],'Resampling',60,'SpectralSelection',[0.1 15]}; end function defaults = machine_learning_defaults(self) @@ -160,7 +160,7 @@ function visualize_model(self,parent,fmodel,pmodel,varargin) %#ok<*INUSD> t = title('Regularization curve'); p1 = plot(mean(pmodel.model.losses)); p2=[]; l1 = xlabel('Regularization parameter #'); - l2 = ylabel('Prediction loss (MCR)'); + l2 = ylabel('Prediction loss'); end if args.paper set([p1,p2],'LineWidth',3); @@ -173,8 +173,8 @@ function visualize_model(self,parent,fmodel,pmodel,varargin) %#ok<*INUSD> end function layout = dialog_layout_defaults(self) - layout = {'SignalProcessing.Resampling.SamplingRate', 'SignalProcessing.IIRFilter.Frequencies', ... - 'SignalProcessing.IIRFilter.Type', 'SignalProcessing.EpochExtraction', ... + layout = {'SignalProcessing.Resampling.SamplingRate', 'SignalProcessing.FIRFilter.Frequencies',... + 'SignalProcessing.EpochExtraction', ... 'SignalProcessing.SpectralSelection.FrequencySpecification', '', ... 'Prediction.MachineLearning.Learner.Lambdas','Prediction.MachineLearning.Learner.LossFunction',... 'Prediction.MachineLearning.Learner.Regularizer'};