-
Notifications
You must be signed in to change notification settings - Fork 9
/
29.fbo.blur.variable.js
412 lines (318 loc) · 12.4 KB
/
29.fbo.blur.variable.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// Create kernel size slider and inject into the HTML page
const createSlider = (notifier, defaultValue=1, minValue=1, maxValue=255) => {
const slider = document.createElement('input');
slider.type="range";
slider.max=maxValue.toString();
slider.min=minValue.toString();
slider.step="2";
slider.defaultValue= defaultValue.toString();
const eventHandler = () => notifier(slider.value);
slider.addEventListener('mousemove', eventHandler);
slider.addEventListener('touchmove', eventHandler);
document.body.appendChild(slider);
notifier(defaultValue);
};
// Create FPS readout and inject into the HTML page
const createFPS = () => {
const LOG_SIZE = 60;
const times = new Uint32Array(LOG_SIZE);
times.fill(1000);
let timesIndex = 0;
let previousTime;
const meter = document.createElement('div');
document.body.append(meter);
const timer = (time) => {
if (previousTime) {
times[timesIndex] = 1000 / (time - previousTime);
const minimum = times.reduce((c,v)=>Math.min(c,v),1000);
timesIndex = (timesIndex + 1) % times.length;
meter.innerText = `${kernelWidth}x${kernelWidth} (low: ${minimum.toPrecision(3)} fps in last ${ LOG_SIZE } frames)`;
}
previousTime = time;
requestAnimationFrame(timer);
};
requestAnimationFrame(timer);
};
// Generate a gaussian kernel based on a width
const generate1DKernel = (width) => {
if ((width & 1) !== 1) throw new Error('Only odd guassian kernel sizes are accepted');
// Small sigma gaussian kernels are a problem. You usually need to add an error correction
// algorithm. But since our kernels grow in discrete intervals, we can just pre-compute the
// problematic ones. These values are derived from the Pascal's Triangle algorithm.
const smallKernelLerps = [
[1.0],
[0.25, 0.5, 0.25],
[0.0625, 0.25, 0.375, 0.25, 0.0625],
[0.03125, 0.109375, 0.21875, 0.28125, 0.21875, 0.109375, 0.03125],
];
if (width < 9) return smallKernelLerps[(width - 1) >> 1];
const kernel = [];
const sigma = width / 6; // Adjust as required
const radius = (width - 1) / 2;
let sum = 0;
// Populate the array with gaussian kernel values
for (let i = 0; i < width; i++) {
const offset = i - radius;
const coefficient = 1 / (sigma * Math.sqrt(2 * Math.PI));
const exponent = -(offset * offset) / (2 * (sigma * sigma));
const value = coefficient * Math.exp(exponent);
// We'll need this for normalization below
sum += value;
kernel.push(value);
}
// Normalize the array
for (let i = 0; i < width; i++) {
kernel[i] /= sum;
}
return kernel;
};
// Convert a 1D gaussian kernel to value pairs, as an array of linearly interpolated
// UV coordinates and scaling factors. Gaussian kernels are always have an odd number of
// weights, so in this implementation, the first weight value is treated as the lone non-pair
// and then all remaining values are treated as pairs.
const convertKernelToOffsetsAndScales = (kernel) => {
if ((kernel.length & 1) === 0) throw new Error('Only odd kernel sizes can be lerped');
const radius = Math.ceil(kernel.length / 2);
const data = [];
// Prepopulate the array with the first cell as the lone weight value
let offset = -radius + 1;
let scale = kernel[0];
data.push(offset, scale);
const total = kernel.reduce((c,v) => c+v);
for (let i = 1; i < kernel.length; i+= 2) {
const a = kernel[i];
const b = kernel[i + 1];
offset = -radius + 1 + i + (b / (a + b));
scale = (a + b) / total;
data.push(offset, scale);
}
return data
};
// PART 1: INITIALIZATION
// Step 1: Prepare the environment
const canvas = document.querySelector('canvas');
const gl = canvas.getContext('webgl2');
// Multiple programs are needed, so let's abstract the
// creation process
const createProgram = (gl, vs, fs) => {
const program = gl.createProgram();
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertexShader, vs);
gl.compileShader(vertexShader);
gl.attachShader(program, vertexShader);
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragmentShader, fs);
gl.compileShader(fragmentShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {
console.log(gl.getShaderInfoLog(vertexShader));
console.log(gl.getShaderInfoLog(fragmentShader));
}
return program;
};
// Step 2: Create the triangle program and configure its buffers
const triangleVertexShaderSource =
`#version 300 es
#pragma vscode_glsllint_stage: vert
layout(location=0) in vec4 aPosition;
layout(location=1) in vec4 aColor;
out vec4 vColor;
void main()
{
vColor = aColor;
gl_Position = aPosition;
}`;
const triangleFragmentShaderSource =
`#version 300 es
#pragma vscode_glsllint_stage: frag
precision mediump float;
in vec4 vColor;
out vec4 fragColor;
void main()
{
fragColor = vColor;
}`;
const triangleProgram = createProgram(gl, triangleVertexShaderSource, triangleFragmentShaderSource);
const triangleData = new Float32Array([
// Pos (xyz) // Color (rgb)
-.50,-.50, 0,0,1,
0.50,-.50, 0,0,1,
0.00,0.40, 0,0,1,
-.50,0.50, 1,0,0,
0.50,0.50, 1,0,0,
0.00,-.40, 1,0,0,
-.70,-.70, 1,1,1,
-.90,-.70, 1,1,1,
-.90,-.90, 1,1,1,
-.70,-.70, 1,1,1,
-.90,-.90, 1,1,1,
-.70,-.90, 1,1,1,
-.70,0.85, 0,1,1,
-.90,0.85, 0,1,1,
-.90,0.98, 0,1,1,
-.70,0.85, 0,1,1,
-.90,0.98, 0,1,1,
-.70,0.98, 0,1,1,
0.85,-.70, 1,1,0,
0.98,-.70, 1,1,0,
0.98,-.90, 1,1,0,
0.85,-.70, 1,1,0,
0.98,-.90, 1,1,0,
0.85,-.90, 1,1,0,
0.90,0.90, 1,1,1,
0.87,0.90, 1,1,1,
0.87,0.87, 1,1,1,
0.90,0.90, 1,1,1,
0.87,0.87, 1,1,1,
0.90,0.87, 1,1,1,
]);
// Two programs? Use vertex array objects. They will
// allow you to easily and instantly bind the buffers
// you need before you issue your draw calls.
const triangleVAO = gl.createVertexArray();
gl.bindVertexArray(triangleVAO);
const triangleBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, triangleBuffer);
gl.bufferData(gl.ARRAY_BUFFER, triangleData, gl.STATIC_DRAW);
gl.vertexAttribPointer(0, 3, gl.FLOAT, false, 20, 0);
gl.vertexAttribPointer(1, 3, gl.FLOAT, false, 20, 8);
gl.enableVertexAttribArray(0);
gl.enableVertexAttribArray(1);
gl.bindVertexArray(null);
const blurVertexShaderSource =
`#version 300 es
#pragma vscode_glsllint_stage: vert
layout(location=0) in vec4 aPosition;
layout(location=1) in vec2 aTexCoord;
out vec2 vTexCoord;
void main()
{
gl_Position = aPosition;
vTexCoord = aTexCoord;
}`;
const blurFragmentShaderSource =
`#version 300 es
#pragma vscode_glsllint_stage: frag
precision mediump float;
uniform sampler2D sampler;
uniform vec2 uvStride;
uniform vec2[128] offsetAndScale; // x=offset, y=scale
uniform int kernelWidth;
in vec2 vTexCoord;
out vec4 fragColor;
void main()
{
for (int i = 0; i < kernelWidth; i++) {
fragColor += texture(
sampler,
vTexCoord + offsetAndScale[i].x * uvStride
// ^------------------------------------ UV coord for this fragment
// ^------------------------- Offset to sample (in texel space)
// ^----- Amount to move in UV space per texel (horizontal OR vertical only)
// v------------------------------------ Scale down the sample
) * offsetAndScale[i].y;
}
}`;
const drawTriangles = () => {
gl.useProgram(triangleProgram);
gl.bindVertexArray(triangleVAO);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLES, 0, 30);
gl.bindVertexArray(null);
};
// Step 3: Create the blur program for drawing to the intermediate caching texture
// and to the canvas
const blurProgram = createProgram(gl, blurVertexShaderSource, blurFragmentShaderSource);
const blurQuadData = new Float32Array([
// Pos (xy) // UV coordinate
-1, 1, 0,1,
-1,-1, 0,0,
1, 1, 1,1,
1,-1, 1,0,
]);
const blurVAO = gl.createVertexArray();
gl.bindVertexArray(blurVAO);
const blurBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, blurBuffer);
gl.bufferData(gl.ARRAY_BUFFER, blurQuadData, gl.STATIC_DRAW);
gl.vertexAttribPointer(0, 2, gl.FLOAT, false, 16, 0);
gl.vertexAttribPointer(1, 2, gl.FLOAT, false, 16, 8);
gl.enableVertexAttribArray(0);
gl.enableVertexAttribArray(1);
gl.bindVertexArray(null);
// The geometry texture will be sampled during the HORIZONTAL pass
const geometryTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, geometryTexture);
gl.texStorage2D(gl.TEXTURE_2D, 1, gl.RGBA8, 480, 480);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
const geometryFbo = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, geometryFbo);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, geometryTexture, 0);
// The intermediate cache texture will be sampled during the VERTICAL pass
const intermediateTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, intermediateTexture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texStorage2D(gl.TEXTURE_2D, 1, gl.RGBA8, 480, 480);
const intermediateFbo = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, intermediateFbo);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, intermediateTexture, 0);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.bindTexture(gl.TEXTURE_2D, null);
const uvStrideUniformLocation = gl.getUniformLocation(blurProgram, 'uvStride');
const offsetScaleLocation = gl.getUniformLocation(blurProgram, 'offsetAndScale');
const kernelWidthLocation = gl.getUniformLocation(blurProgram, 'kernelWidth')
// Globals:
const offsetsAndScales = new Float32Array(256); // Supports gaussian blurs up to 255x255
let kernelWidth;
// setKernelWidth gets called any time the kernel size changes. It will:
// 1. calculate the kernel
// 2. populate `offsetsAndScales`
// 3. upload the new data to the vec2 array uniform
// 4. send the size of the vec2 array
const setKernelWidth = (newWidth) => {
if (newWidth === kernelWidth) return;
kernelWidth = newWidth;
const kernel1D = generate1DKernel(newWidth);
const lerpKernel = convertKernelToOffsetsAndScales(kernel1D);
const numberOfOffsetsAndScales = lerpKernel.length / 2;
offsetsAndScales.set(lerpKernel);
gl.useProgram(blurProgram);
gl.uniform2fv(offsetScaleLocation, offsetsAndScales);
gl.uniform1i(kernelWidthLocation, numberOfOffsetsAndScales);
};
// This will apply the 1D gaussian blur either horizontally or vertically from
// an input texture, to an output FBO, along a direction set with a horizontal or vertical stride
// 1. sourceTexture: where the blur program will get its samples (a sampler2D)
// 2. destinationFBO: the framebuffer object you created to hold the output
// 3. unidirectionalUVStride: the 2D horizontal or vertical uv-space unit to move
// per pixel (eg [0,.0625] or [.03125,0])
const drawUnidirectionalBlur = (sourceTexture, destinationFBO, unidirectionalUVStride) => {
gl.useProgram(blurProgram); // The program and vao shouldn't be global like this.
gl.bindVertexArray(blurVAO); // This is only for clarity.
gl.bindTexture(gl.TEXTURE_2D, sourceTexture);
gl.bindFramebuffer(gl.FRAMEBUFFER, destinationFBO);
gl.uniform2fv(uvStrideUniformLocation, unidirectionalUVStride);
gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.bindTexture(gl.TEXTURE_2D, null);
gl.bindVertexArray(null);
gl.useProgram(null);
};
const animate = () => {
// The canvas is 480x480, so the stride is set by these values
const WIDTH = 1/480;
const HEIGHT = 1/480;
// Draw triangles to geometry texture
gl.bindFramebuffer(gl.FRAMEBUFFER, geometryFbo);
drawTriangles();
// Horizontal pass samples from geometry texture and outputs to the cache FBO
drawUnidirectionalBlur(geometryTexture, intermediateFbo, [WIDTH, 0]);
// Vertical pass samples from the cache texture and outputs to the canvas (FBO = null)
drawUnidirectionalBlur(intermediateTexture, null, [0, HEIGHT]);
requestAnimationFrame(animate);
};
// Start the application:
createSlider((v) => setKernelWidth(v), 33, 1, 255);
createFPS();
animate();