-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
82 lines (65 loc) · 3.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import argparse
from solver import Solver
from data_loader import get_loader, TestDataset
from torch.backends import cudnn
def str2bool(v):
return v.lower() in ('true')
def main(config):
# For fast training.
cudnn.benchmark = True
# Create directories if not exist.
if not os.path.exists(config.log_dir):
os.makedirs(config.log_dir)
if not os.path.exists(config.model_save_dir):
os.makedirs(config.model_save_dir)
if not os.path.exists(config.sample_dir):
os.makedirs(config.sample_dir)
# Data loader.
train_loader = get_loader(config.train_data_dir, config.batch_size, 'train', num_workers=config.num_workers)
test_loader = TestDataset(config.test_data_dir, config.wav_dir, src_spk='p262', trg_spk='p272')
# Solver for training and testing StarGAN.
solver = Solver(train_loader, test_loader, config)
if config.mode == 'train':
solver.train()
# elif config.mode == 'test':
# solver.test()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Model configuration.
parser.add_argument('--num_speakers', type=int, default=10, help='dimension of speaker labels')
parser.add_argument('--lambda_cls', type=float, default=10, help='weight for domain classification loss')
parser.add_argument('--lambda_rec', type=float, default=10, help='weight for reconstruction loss')
parser.add_argument('--lambda_gp', type=float, default=10, help='weight for gradient penalty')
parser.add_argument('--sampling_rate', type=int, default=16000, help='sampling rate')
# Training configuration.
parser.add_argument('--batch_size', type=int, default=32, help='mini-batch size')
parser.add_argument('--num_iters', type=int, default=200000, help='number of total iterations for training D')
parser.add_argument('--num_iters_decay', type=int, default=100000, help='number of iterations for decaying lr')
parser.add_argument('--g_lr', type=float, default=0.0001, help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.0001, help='learning rate for D')
parser.add_argument('--n_critic', type=int, default=5, help='number of D updates per each G update')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer')
parser.add_argument('--resume_iters', type=int, default=None, help='resume training from this step')
# Test configuration.
parser.add_argument('--test_iters', type=int, default=100000, help='test model from this step')
# Miscellaneous.
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'])
parser.add_argument('--use_tensorboard', type=str2bool, default=True)
# Directories.
parser.add_argument('--train_data_dir', type=str, default='./data/mc/train')
parser.add_argument('--test_data_dir', type=str, default='./data/mc/test')
parser.add_argument('--wav_dir', type=str, default="./data/VCTK-Corpus/wav16")
parser.add_argument('--log_dir', type=str, default='./logs')
parser.add_argument('--model_save_dir', type=str, default='./models')
parser.add_argument('--sample_dir', type=str, default='./samples')
# Step size.
parser.add_argument('--log_step', type=int, default=10)
parser.add_argument('--sample_step', type=int, default=1000)
parser.add_argument('--model_save_step', type=int, default=1000)
parser.add_argument('--lr_update_step', type=int, default=1000)
config = parser.parse_args()
print(config)
main(config)