forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parse_bytecode.cpp
196 lines (180 loc) · 7.24 KB
/
parse_bytecode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#include <ATen/core/ivalue.h>
#include <torch/csrc/jit/mobile/code.h>
#include <torch/csrc/jit/mobile/parse_bytecode.h>
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/mobile/upgrader_mobile.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_export_functions.h>
#include <torch/custom_class_detail.h>
namespace torch::jit {
OpCode parseOpCode(const char* str);
using c10::IValue;
IValue expect_field(
c10::ivalue::TupleElements& elements,
const std::string& expected_name,
size_t entry) {
auto row = std::move(elements.at(entry)).toTuple();
TORCH_INTERNAL_ASSERT(
row->elements().at(0).toStringRef() == expected_name,
"Expected ",
expected_name,
" found ",
row->elements().at(0).toStringRef());
return std::move(row)->elements().at(1);
}
namespace mobile {
namespace {
#define COUNT_OPCODE(_, _a) 1 +
constexpr size_t numOpcodes = FORALL_OPCODES(COUNT_OPCODE) 0;
#undef COUNT_OPCODE
// Pickled strings are memoized, so we can cache a mapping from
// pointers to parsed OpCodes to speed up parsing.
class OpCodeCache {
private:
// We store as void* to emphasize that we care only about the
// address and should not be dereferencing these pointers.
std::array<const void*, numOpcodes> keys_{};
std::array<OpCode, numOpcodes> values_{};
size_t usedEntries_ = 0;
public:
OpCodeCache() {
memset(keys_.data(), 0, keys_.size() * sizeof(keys_[0]));
}
OpCode parse(const c10::ivalue::ConstantString& s) {
const auto endIt = keys_.begin() + usedEntries_;
auto it = std::find_if(
keys_.begin(), endIt, [&s](const void* k) { return k == &s; });
if (it == endIt) {
OpCode result = parseOpCode(s.string().c_str());
if (usedEntries_ < numOpcodes) {
keys_[usedEntries_] = &s;
values_[usedEntries_++] = result;
}
return result;
}
// NOTE: I tried implementing the transpose heuristic here to
// speed up the search, but it removed the benefit of this cache.
return values_[it - keys_.begin()];
}
};
} // namespace
void applyUpgrader(mobile::Function* function, uint64_t operator_version) {
Code& code = function->get_code();
auto& operator_version_map = getOperatorVersionMapForMobile();
for (size_t i = 0; i < code.instructions_.size(); i++) {
Instruction& inst = code.instructions_[i];
if (inst.op == OpCode::OP) {
std::string operator_name = code.op_names_[inst.X].name +
(code.op_names_[inst.X].overload_name.empty()
? ""
: "." + code.op_names_[inst.X].overload_name);
auto it = operator_version_map.find(operator_name);
// Find out if there is an upgrader for this operator
if (it != operator_version_map.end()) {
auto upgrader_list = it->second;
// Loop all upgraders for this operator, and find out if there exists a
// valid upgrader. Use iteration here instead of other faster search
// algorithm, because the number of upgrader per operator will be just a
// few and tend to keep the code light-weight from binary size concern.
for (const auto& upgrader : upgrader_list) {
if (static_cast<int>(operator_version) <= upgrader.max_version &&
static_cast<int>(operator_version) >= upgrader.min_version) {
// If there exists a valid upgrader, change the instruction OP to
// CALL, and the index will point to the according upgrader
// function. All upgrader function are available in
// function->get_code().functions_. It's a vector of function
// pointer and they are initialized in the same order as the global
// vector kUpgraderBytecode.
// Instruction new_inst = inst;
// new_inst.op = OpCode::CALL;
// new_inst.X = upgrader.index;
// code->instructions_[i] = new_inst;
TORCH_CHECK(
upgrader.index < static_cast<int>(code.functions_.size()),
"upgrader index is, ",
upgrader.index,
" and it's larger than the upgrader function list length ",
code.functions_.size());
inst.op = OpCode::CALL;
inst.X = upgrader.index;
}
}
}
}
}
}
void parseInstructions(
const std::string& function_name,
c10::ivalue::TupleElements&& ins_list,
c10::ivalue::TupleElements& debug_handles_m_tuple,
mobile::Function* function) {
c10::List<int64_t> debug_handles_list;
if (!debug_handles_m_tuple.empty()) {
const std::string& debug_info_function_name =
debug_handles_m_tuple[0].toStringRef();
TORCH_CHECK(
debug_info_function_name == function_name,
"The function names in the bytecode table and the debug info table do not match.");
IValue& debug_handles_table = debug_handles_m_tuple[1];
auto debugHandlesTableElements =
std::move(*std::move(debug_handles_table).toTuple()).elements();
debug_handles_list = (expect_field(
debugHandlesTableElements,
"function_debug_handles",
BYTECODE_INDEX_MODULE_DEBUG_HANDLES)
.toTupleRef()
.elements())[0]
.toIntList();
TORCH_CHECK(
debug_handles_list.size() == ins_list.size(),
"The numbers of instructions and debug handles strings do not match.");
}
// NOTE: this won't perform particularly well if the ins_list IValue
// didn't come from unpickler and thus have its strings
// interned. Consider adding a flag to bypass the cache if that
// becomes an important use case.
OpCodeCache opCodeCache;
for (const auto j : c10::irange(ins_list.size())) {
auto ins_tuple = std::move(ins_list[j]).toTuple();
c10::ArrayRef<IValue> ins_item = ins_tuple->elements();
TORCH_CHECK(
ins_item.size() == 3,
"There should be three parts in an instruction. The function name is ",
function_name);
OpCode op_code = opCodeCache.parse(*ins_item[0].toString());
auto X = ins_item[1].toInt();
auto N = ins_item[2].toInt();
if (!debug_handles_list.empty()) {
int64_t debug_handle = debug_handles_list[j];
function->append_instruction(op_code, X, N, debug_handle);
} else {
function->append_instruction(op_code, X, N);
}
}
}
void parseConstants(
const c10::ivalue::TupleElements& consts_list,
mobile::Function* function) {
for (const auto& constant : consts_list) {
function->append_constant(constant);
}
}
void parseTypes(
const c10::ivalue::TupleElements& types_list,
mobile::Function* function) {
std::vector<std::string> types_string_list;
types_string_list.resize(types_list.size());
for (size_t i = 0; i < types_list.size(); i++) {
types_string_list[i] = types_list[i].toStringRef();
}
std::vector<c10::TypePtr> types_ptr_list = c10::parseType(types_string_list);
for (auto& type_ptr : types_ptr_list) {
function->append_type(type_ptr);
}
}
void parseRegisterSize(size_t rsize, mobile::Function* function) {
function->set_register_size(rsize);
}
} // namespace mobile
} // namespace torch::jit