forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frozen_conv_folding.cpp
410 lines (354 loc) · 14.2 KB
/
frozen_conv_folding.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#include <ATen/Utils.h>
#include <c10/core/ScalarType.h>
#include <c10/util/Exception.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/passes/frozen_conv_folding.h>
#include <torch/csrc/jit/passes/utils/optimization_utils.h>
#include <torch/csrc/jit/tensorexpr/types.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/ones_like.h>
#include <ATen/ops/zeros.h>
#include <ATen/ops/zeros_like.h>
#endif
namespace torch::jit {
namespace {
using Tensor = at::Tensor;
bool supportedConvNode(Node* n) {
switch (n->kind()) {
case aten::conv1d:
case aten::conv2d:
case aten::conv3d:
return true;
case aten::_convolution: {
auto transposed_conv =
constant_as<bool>(n->namedInput("transposed")).value_or(true);
// dont handle transposed conv yet or not-constant transpose parameter
return !transposed_conv;
}
default:
return false;
}
}
bool FoldFrozenConvBatchnorm(Block* b) {
bool graph_modified = false;
for (Node* n : b->nodes()) {
for (Block* block : n->blocks()) {
graph_modified |= FoldFrozenConvBatchnorm(block);
}
if (n->kind() == aten::batch_norm &&
supportedConvNode(n->inputs().at(0)->node())) {
auto conv = n->inputs().at(0)->node();
auto bn = n;
if (nonConstantParameters(conv) || nonConstantParameters(bn)) {
continue;
}
if (conv->output()->uses().size() > 1) {
continue;
}
auto bn_rm_ivalue = bn->namedInput("running_mean");
auto bn_rv_ivalue = bn->namedInput("running_var");
// check running_mean and running_var has value, if they are
// None(track_running_stats=False), skipping the folding path.
if (bn_rm_ivalue->type() == NoneType::get() &&
bn_rv_ivalue->type() == NoneType::get()) {
continue;
}
auto bn_rm = constant_as<Tensor>(bn->namedInput("running_mean")).value();
auto bn_rv = constant_as<Tensor>(bn->namedInput("running_var")).value();
auto bn_eps = constant_as<double>(bn->namedInput("eps")).value();
auto conv_w = constant_as<Tensor>(conv->namedInput("weight")).value();
// implementation taken from torch/nn/utils/fusion.py
Tensor conv_b;
if (conv->namedInput("bias")->type() == NoneType::get()) {
// If this is on GPU and bias is none and weight was half/bfloat, but
// bn_rm was float, then probably this was a case where autocasting
// casted inputs to conv. And since CUDA conv implementation requires
// all the inputs to have the same scalar dtype, we need to make this
// placeholder have the same type as conv_w.
at::ScalarType bias_dtype = bn_rm.scalar_type();
at::ScalarType weight_dtype = conv_w.scalar_type();
if ((weight_dtype == at::kHalf || weight_dtype == at::kBFloat16) &&
bias_dtype == at::kFloat) {
bias_dtype = weight_dtype;
}
conv_b = at::zeros_like(bn_rm, at::TensorOptions().dtype(bias_dtype));
} else {
conv_b = constant_as<Tensor>(conv->namedInput("bias")).value();
}
Tensor bn_w;
if (bn->namedInput("weight")->type() == NoneType::get()) {
bn_w = at::ones_like(bn_rm);
} else {
bn_w = constant_as<Tensor>(bn->namedInput("weight")).value();
}
Tensor bn_b;
if (n->namedInput("bias")->type() == NoneType::get()) {
bn_b = at::zeros_like(bn_rm);
} else {
bn_b = constant_as<Tensor>(bn->namedInput("bias")).value();
}
ConvBNParameters params;
params.conv_w = conv_w;
params.conv_b = conv_b;
params.bn_rm = bn_rm;
params.bn_rv = bn_rv;
params.bn_eps = bn_eps;
params.bn_w = bn_w;
params.bn_b = bn_b;
std::tuple<Tensor, Tensor> out = computeUpdatedConvWeightAndBias(params);
WithInsertPoint guard(conv);
auto fused_conv_w = b->owningGraph()->insertConstant(std::get<0>(out));
auto fused_conv_b = b->owningGraph()->insertConstant(std::get<1>(out));
auto conv_w_value = conv->namedInput("weight");
auto conv_b_value = conv->namedInput("bias");
fused_conv_w->setDebugName(conv_w_value->debugName() + "_fused_bn");
fused_conv_b->setDebugName(conv_b_value->debugName() + "_fused_bn");
conv->replaceInputWith(conv_w_value, fused_conv_w);
conv->replaceInputWith(conv_b_value, fused_conv_b);
bn->output()->replaceAllUsesWith(conv->output());
graph_modified = true;
}
}
return graph_modified;
}
bool supportedAddOrSub(Node* n) {
static const OperatorSet add_set{
"aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor",
"aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
// sub is equivalent to add
"aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor",
"aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
};
return n->isMemberOf(add_set);
}
// In order to fuse add/sub/mul/div with conv, the dimensions of its
// constant tensor must satisfy the following:
// - with resizing, broadcast to w/ weight/bias tensor shape
// - broadcast to the conv output shape
// It needs to have a shape that can resize to weight/bias
// tensor shape because we need to run the op with the conv
// weights/bias without changing their sizes.
// It needs to broadcast to the conv output shape so that we do
// accidentally change the shape of op output by pre-fusing it
// compared to eager.
// The only dimension value shared by weight/bias/conv output
// is they all contain a dim with value = channels-out. In the
// conv output tensor, this is in the second dimension,
// so the pointwise op tensor may have a second dimension of
// value == channels-out, but all the other dimensions have to be 1
bool opDoesNotBroadCastWithConv(Tensor& op_tensor, Tensor& weight_tensor) {
if (op_tensor.ndimension() > weight_tensor.ndimension()) {
return false;
}
for (int64_t i = op_tensor.ndimension() - 1; i >= 0; i--) {
// channels-out dimension == weight_tensor.size(0)
if (i == 1 && op_tensor.size(i) == weight_tensor.size(0)) {
continue;
}
if (op_tensor.size(i) != 1) {
return false;
}
}
return true;
}
bool checkConvAndBroadcastingOpPreConditions(Node* conv, Node* op) {
if (nonConstantParameters(conv) || nonConstantParameters(op)) {
return false;
}
if (conv->output()->uses().size() > 1) {
return false;
}
Tensor weight_tensor =
constant_as<Tensor>(conv->namedInput("weight")).value();
// avoid fusing op that causes type promotion
// restricting to float avoids int/float difficulties with scalar overload
if (!weight_tensor.is_floating_point()) {
return false;
}
if (op->inputs().at(1)->type()->cast<TensorType>()) {
auto op_tensor = constant_as<Tensor>(op->inputs().at(1)).value();
if (!opDoesNotBroadCastWithConv(op_tensor, weight_tensor)) {
return false;
}
if (!op_tensor.is_floating_point() &&
c10::promoteTypes(
op_tensor.scalar_type(), weight_tensor.scalar_type()) !=
weight_tensor.scalar_type()) {
return false;
}
}
return true;
}
Tensor resizeConstantScalarOrTensorToShape(
Value* v,
const std::vector<int64_t>& shape,
at::TensorOptions options) {
Tensor ret_tensor;
if (v->type()->cast<TensorType>()) {
ret_tensor = constant_as<Tensor>(v).value();
} else {
ret_tensor = at::zeros(shape, options);
if (v->type()->cast<IntType>()) {
ret_tensor.fill_(constant_as<int64_t>(v).value());
} else {
ret_tensor.fill_(constant_as<double>(v).value());
}
}
if (ret_tensor.numel() == 1) {
// expand errors if the shape input has less # dims than the tensor input
ret_tensor = ret_tensor.reshape({1});
ret_tensor = ret_tensor.expand(shape);
} else {
TORCH_INTERNAL_ASSERT(ret_tensor.numel() == c10::multiply_integers(shape));
ret_tensor = ret_tensor.view(shape);
}
return ret_tensor;
}
bool FoldFrozenConvAddOrSub(Block* b) {
bool graph_modified = false;
for (Node* n : b->nodes()) {
for (Block* block : n->blocks()) {
graph_modified |= FoldFrozenConvAddOrSub(block);
}
if (supportedAddOrSub(n) && supportedConvNode(n->inputs().at(0)->node())) {
auto conv = n->inputs().at(0)->node();
auto add_or_sub = n;
if (!checkConvAndBroadcastingOpPreConditions(conv, add_or_sub)) {
continue;
}
Tensor weight_tensor =
constant_as<Tensor>(conv->namedInput("weight")).value();
Tensor add_or_sub_tensor = resizeConstantScalarOrTensorToShape(
add_or_sub->inputs().at(1),
{weight_tensor.size(0)},
weight_tensor.options());
Tensor bias;
if (conv->namedInput("bias")->type() == NoneType::get()) {
bias = at::zeros_like(add_or_sub_tensor, weight_tensor.dtype());
} else {
bias = constant_as<Tensor>(conv->namedInput("bias")).value();
}
WithInsertPoint guard(conv);
add_or_sub->replaceInputWith(
conv->output(), b->owningGraph()->insertConstant(bias));
add_or_sub->replaceInput(
1, b->owningGraph()->insertConstant(add_or_sub_tensor));
auto stack_out = runNodeIfInputsAreConstant(add_or_sub);
TORCH_INTERNAL_ASSERT(stack_out && stack_out->size() == 1);
Tensor fuse_bias = (*stack_out)[0].toTensor().to(bias.dtype());
auto fused_conv_b = b->owningGraph()->insertConstant(fuse_bias);
auto conv_b_value = conv->namedInput("bias");
fused_conv_b->setDebugName(
conv_b_value->debugName() + "_fused_" +
add_or_sub->kind().toUnqualString());
conv->replaceInputWith(conv_b_value, fused_conv_b);
add_or_sub->output()->replaceAllUsesWith(conv->output());
graph_modified = true;
// DCE run after cleans up nodes
}
}
return graph_modified;
}
bool supportedMulOrDiv(Node* n) {
static const OperatorSet add_set{
"aten::mul.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::mul.Scalar(Tensor self, Scalar other) -> Tensor",
// div is equivalent to mul
"aten::div.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::div.Scalar(Tensor self, Scalar other) -> Tensor",
};
return n->isMemberOf(add_set);
}
bool FoldFrozenConvMulOrDiv(Block* b) {
bool graph_modified = false;
for (Node* n : b->nodes()) {
for (Block* block : n->blocks()) {
graph_modified |= FoldFrozenConvMulOrDiv(block);
}
if (supportedMulOrDiv(n) && supportedConvNode(n->inputs().at(0)->node())) {
auto conv = n->inputs().at(0)->node();
auto mul_or_div = n;
if (!checkConvAndBroadcastingOpPreConditions(conv, mul_or_div)) {
continue;
}
Tensor weight_tensor =
constant_as<Tensor>(conv->namedInput("weight")).value();
int64_t out_channels = weight_tensor.size(0);
// We've already verified that the second input has numel == 1 or
// channels-out resize it to the shape that will broadcast to
// weight_tensor when the op is run so we dont change weight size
std::vector<int64_t> weight_compatible_size = {out_channels};
for ([[maybe_unused]] const auto i :
c10::irange(1, weight_tensor.ndimension())) {
weight_compatible_size.push_back(1);
}
WithInsertPoint guard(conv);
Tensor mul_tensor = resizeConstantScalarOrTensorToShape(
mul_or_div->inputs().at(1),
weight_compatible_size,
weight_tensor.options());
// First fold with weight tensor
mul_or_div->replaceInputWith(
conv->output(), b->owningGraph()->insertConstant(weight_tensor));
mul_or_div->replaceInput(1, b->owningGraph()->insertConstant(mul_tensor));
auto stack_out = runNodeIfInputsAreConstant(mul_or_div);
TORCH_INTERNAL_ASSERT(stack_out && stack_out->size() == 1);
Tensor fuse_weight = (*stack_out)[0].toTensor().to(weight_tensor.dtype());
auto fused_conv_weight = b->owningGraph()->insertConstant(fuse_weight);
auto conv_weight_value = conv->namedInput("weight");
fused_conv_weight->setDebugName(
conv_weight_value->debugName() + "_fused_" +
mul_or_div->kind().toUnqualString());
conv->replaceInputWith(conv_weight_value, fused_conv_weight);
mul_or_div->output()->replaceAllUsesWith(conv->output());
// now fold with bias tensor
if (conv->namedInput("bias")->type() != NoneType::get()) {
Tensor bias = constant_as<Tensor>(conv->namedInput("bias")).value();
// bias is of shape {channels_out}
auto mul_tensor = resizeConstantScalarOrTensorToShape(
mul_or_div->inputs().at(1), {out_channels}, bias.options());
mul_or_div->replaceInput(0, b->owningGraph()->insertConstant(bias));
mul_or_div->replaceInput(
1, b->owningGraph()->insertConstant(mul_tensor));
auto stack_out = runNodeIfInputsAreConstant(mul_or_div);
TORCH_INTERNAL_ASSERT(stack_out && stack_out->size() == 1);
Tensor fuse_bias = (*stack_out)[0].toTensor().to(bias.dtype());
auto fused_conv_bias = b->owningGraph()->insertConstant(fuse_bias);
auto conv_b_value = conv->namedInput("bias");
fused_conv_weight->setDebugName(
conv_b_value->debugName() + "_fused_" +
mul_or_div->kind().toUnqualString());
conv->replaceInputWith(conv_b_value, fused_conv_bias);
}
graph_modified = true;
// DCE run after cleans up nodes
}
}
return graph_modified;
}
} // namespace
bool FoldFrozenConvBatchnorm(std::shared_ptr<Graph>& graph) {
bool graph_modified = FoldFrozenConvBatchnorm(graph->block());
EliminateDeadCode(graph);
return graph_modified;
}
bool FoldFrozenConvAddOrSub(std::shared_ptr<Graph>& graph) {
bool graph_modified = FoldFrozenConvAddOrSub(graph->block());
EliminateDeadCode(graph);
return graph_modified;
}
bool FoldFrozenConvMulOrDiv(std::shared_ptr<Graph>& graph) {
bool graph_modified = FoldFrozenConvMulOrDiv(graph->block());
EliminateDeadCode(graph);
return graph_modified;
}
} // namespace torch::jit