forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph_fuser.h
35 lines (29 loc) · 1.2 KB
/
graph_fuser.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#pragma once
#include <torch/csrc/jit/ir/ir.h>
namespace torch::jit {
TORCH_API bool canFuseOnCPULegacy();
TORCH_API void overrideCanFuseOnCPULegacy(bool value);
// NB: Be sure to run DCE before fusion, because dead instructions
// can prevent fusion opportunities from being exploited.
// On Windows will noop, NYI
TORCH_API void FuseGraph(
std::shared_ptr<Graph>& graph,
bool strict_fuser_check = false);
// \brief Custom fusion pass using a node-level callback to
// determine the inclusion of nodes in a subgraph.
//
// This helper omits aliased inputs and fusion across control flow
// boundaries.
//
// \arg graph The graph to be modified in-place
// \arg is_fusable A callback run on each fusable node in the graph.
// \arg kind The label given to the resultant fused subgraph
// \arg arg_limit The maximum number of args the resultant fused subgraph
// should have. Note: This will likely develop into a general
// post condition on the fused subgraph.
TORCH_API void CustomFuseGraph(
std::shared_ptr<Graph>& graph,
const std::function<bool(Node*)>& is_fusable,
Symbol kind,
size_t arg_limit = std::numeric_limits<size_t>::max());
} // namespace torch::jit