forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
interpreter.cpp
1261 lines (1169 loc) · 43.5 KB
/
interpreter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/csrc/jit/runtime/interpreter.h>
#include <ATen/Parallel.h>
#include <ATen/core/ivalue.h>
#include <ATen/record_function.h>
#include <c10/core/thread_pool.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/mobile/promoted_prim_ops.h>
#include <torch/csrc/jit/runtime/exception_message.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/runtime/interpreter/code_impl.h>
#include <torch/csrc/jit/runtime/interpreter/frame.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/profiling_record.h>
#include <torch/csrc/jit/runtime/script_profile.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <torch/csrc/utils/cpp_stacktraces.h>
#include <string>
#ifdef USE_RPC
#include <torch/csrc/distributed/autograd/context/container.h>
using torch::distributed::autograd::DistAutogradContainer;
#endif
#include <exception>
#include <memory>
#include <mutex>
#include <ostream>
#include <stdexcept>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
C10_DEFINE_bool(
torch_jit_enable_rethrow_caught_exception,
false,
"enable rethrowing caught exception");
C10_DEFINE_bool(
torch_jit_enable_expanded_stacks,
false,
"When true we will attemps to pre-expand node stacks and cache expanded stacks.");
namespace torch::jit {
using CodeImpl = interpreter::CodeImpl;
// Before we translate to interpreter instructions, we do
// some preprocessing of the graph to turn it into a form that is closer
// to what the instructions will look like.
// In particular we:
// * Computes whether a input to a node is the last use, so we can issue MOVE
// rather than LOAD instructions.
// * Drop nodes are inserted for any node that is unused to create a dummy use
// that will cause the interpreter to free the node.
// A drop node just pops its input off the stack to ensure the interpreter
// releases references to nodes that are never used. Drop nodes are also
// inserted when the last use of a node is in some conditionally run control
// flow (e.g. one side of an If) and the interpreter must free the node only
// after the control flow has reconverged
// Outputs are:
// * graph - the post processed copy of g
// * move_flags[n] - a list of booleans, one for each input,
// indicating whether this is the last use of the value. The interpreter
// should generate a move rather than a copy in this case.
TensorTypePtr tensorTypeInCurrentExecutionContext(const at::Tensor& t) {
if (!t.defined()) {
return TensorType::get()->withUndefined();
}
auto r = TensorType::create(t);
if (!at::GradMode::is_enabled()) {
return r->withRequiresGrad(false);
}
return r;
}
namespace {
inline int64_t getDistAutogradContextId() {
#ifdef USE_RPC
return DistAutogradContainer::currentContextId();
#else
return 0;
#endif
}
} // namespace
thread_local InterpreterStateImpl* tls_int_state_ptr_ = nullptr;
struct TLSCurrentInterpreterGuard {
TLSCurrentInterpreterGuard(InterpreterStateImpl* state)
: prev_state_(tls_int_state_ptr_) {
tls_int_state_ptr_ = state;
}
~TLSCurrentInterpreterGuard() {
tls_int_state_ptr_ = prev_state_;
}
private:
InterpreterStateImpl* prev_state_;
};
bool in_torchscript_runtime() {
return tls_int_state_ptr_ != nullptr;
}
// InterpreterState state that and used to compute a Code
struct InterpreterStateImpl : c10::intrusive_ptr_target {
InterpreterStateImpl(const Code& code, TaskLauncher taskLauncher)
: taskLauncher_(std::move(taskLauncher)) {
enterFrame(code, 0);
}
private:
using Frame = torch::jit::interpreter::Frame;
struct WarnedNodes {
public:
// Inserts idx into warned_nodes_, returns a boolean indicates whether
// insertion actually happened (idx wasn't originally in the set).
bool insert(int32_t idx) {
std::unique_lock<std::mutex> lock(mutex_);
return warned_nodes_.insert(idx).second;
}
private:
std::mutex mutex_;
std::unordered_set<int32_t> warned_nodes_;
};
WarnedNodes warned_nodes_;
// if we need to suspend, where do we reset the stack?
// answer: to where it was when we were called, not
// including any inputs to this function
int64_t stack_start_ = -1;
c10::intrusive_ptr<Future> future_;
TaskLauncher taskLauncher_;
// this holds all the tensors for this interpreter run
// we don't bother minimizing the size of this vector, since the extra
// memory used by the pointers in this will be small
// instead we are very aggressive about releasing tensors when they become
// dead to make sure memory management happens efficiently. We optimize for
// the case where derivatives are run with retain_graph=False in the case
// where it is true, then the interpreter and this array get copied if this
// every becomes a bottleneck then we _should_ consider minimizing the total
// number or register
std::vector<IValue> registers;
// A stack of objects that have been __enter__'d.
std::vector<IValue> entered_objects;
std::vector<Frame> frames;
c10::intrusive_ptr<InterpreterStateImpl> intrusive_from_this() {
c10::raw::intrusive_ptr::incref(this);
return c10::intrusive_ptr<InterpreterStateImpl>::reclaim(this);
}
void enterFrame(const Code& code, size_t base_pointer) {
frames.emplace_back(Frame{code.pImpl, 0, base_pointer, std::nullopt});
registers.resize(registers.size() + code.pImpl->register_size_);
}
void leaveFrame() {
registers.resize(registers.size() - frames.back().function->register_size_);
frames.pop_back();
}
void callFunction(
Function& f,
Stack& stack,
std::optional<size_t> bailOut = std::nullopt,
bool next = true) {
bool newFrame = f.call(stack, bailOut, [&](const Code& code) {
enterFrame(code, stack.size() - code.num_inputs());
checkAndStartRecordFunction(frames.back(), stack);
});
if (next) {
(frames.rbegin() + (newFrame ? 1 : 0))->pc++;
}
}
// relative to the end of the register list so that when we call
// functions we are referring to the registers of the currently executing
// function.
IValue& reg(size_t reg) {
return *(registers.end() - reg);
}
void dump(std::ostream& out, const Stack& stack) const {
out << "Stack:\n";
for (const auto& val : stack) {
out << val;
out << "\n";
}
}
class StackSizeDidntChangeGuard {
public:
StackSizeDidntChangeGuard(const StackSizeDidntChangeGuard&) = delete;
StackSizeDidntChangeGuard(StackSizeDidntChangeGuard&&) = delete;
StackSizeDidntChangeGuard& operator=(const StackSizeDidntChangeGuard&) =
delete;
StackSizeDidntChangeGuard& operator=(StackSizeDidntChangeGuard&&) = delete;
StackSizeDidntChangeGuard(
const Frame& frame,
const torch::jit::Stack& stack,
const Instruction& inst)
: frame_(frame), stack_(stack), instX_(inst.X) {
// portable maybe_unused attribute.
(void)frame_;
(void)stack_;
(void)instX_;
(void)initialSize_;
}
void callAssert() const {
#ifndef NDEBUG
frame_.function->assert_stack_size(instX_, initialSize_, stack_.size());
#endif
}
private:
const Frame& frame_;
const torch::jit::Stack& stack_;
std::uint32_t instX_;
std::size_t initialSize_{stack_.size()};
};
struct [[maybe_unused]] DoNothing {};
#if defined(__GNUC__) || defined(__clang__)
#define JIT_USE_COMPUTED_GOTO
#endif
// Primitives for making interpreter internal state transitions.
// We maintain two local variables as the internal interpreter state:
// `frame` will be the current frame that the interpreter operators on.
// `inst` will the current instruction pointed to by program counter.
//
// Instruction blocks should be always declared through `INST` macro and
// the instruction body should always start with a `instGuard()` declaration.
// Also blocks should be ended properly with either `INST_NEXT` (for going
// to the next instruction), or `INST_DISPATCH` (for jumping to a computed
// position using `instFetch`).
#if defined(JIT_USE_COMPUTED_GOTO)
#define INST(NAME) \
NAME: \
label_##NAME
#define INST_DISPATCH goto* dispatch_table[inst.op]
#else
#define INST(NAME) NAME
#define INST_DISPATCH break
#endif
#define INST_NEXT \
inst = instFetch(1); \
INST_DISPATCH
template <bool EnableProfiling>
bool runTemplate(Stack& stack) {
// if we have never run before, then we might have to return the
// stack when we suspend, record where it starts so we return the right
// stack
if (stack_start_ == -1) {
TORCH_INTERNAL_ASSERT(stack.size() >= frames.back().function->n_inputs);
stack_start_ = stack.size() - frames.back().function->n_inputs;
} else {
// during restarts, all of the stack is always our own, so we leave
// nothing
stack_start_ = 0;
}
TLSCurrentInterpreterGuard g(this);
if (frames.back().pc == 0 && stack_start_ == 0) {
checkAndStartRecordFunction(frames.back(), stack);
}
#if defined(JIT_USE_COMPUTED_GOTO)
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays)
static void* dispatch_table[] = {
#define DISPATCH_TABLE_ENTRY(op, _) &&label_##op,
FORALL_OPCODES(DISPATCH_TABLE_ENTRY)
#undef DISPATCH_TABLE_ENTRY
};
#endif
try {
while (true) {
Frame& frame = frames.back();
auto instFetch = [&](auto x) {
return frame.function->instructions_[frame.pc += x];
};
auto instGuard = [&] {
if constexpr (!EnableProfiling) {
return DoNothing{};
} else {
return profiling::InstructionSpan{
*frame.function->instructions_source()[frame.pc]};
}
};
Instruction inst = instFetch(0);
auto stackSizeAssertGuard = [&] {
return StackSizeDidntChangeGuard{frame, stack, inst};
};
switch (inst.op) {
case INST(ENTER): {
[[maybe_unused]] auto _ = instGuard();
const auto& obj = peek(stack, 0, 1);
TORCH_INTERNAL_ASSERT(obj.isObject());
entered_objects.push_back(obj);
}
INST_NEXT;
case INST(EXIT): {
[[maybe_unused]] auto _ = instGuard();
auto obj = entered_objects.back().toObject();
auto& f = obj->type()->getMethod("__exit__");
push(stack, std::move(obj));
entered_objects.pop_back();
push(stack, IValue());
push(stack, IValue());
push(stack, IValue());
callFunction(f, stack);
continue;
}
case INST(OP): {
[[maybe_unused]] auto _ = instGuard();
auto stackSizeGuard = stackSizeAssertGuard();
frame.function->operator_table_[inst.X](stack);
stackSizeGuard.callAssert();
}
INST_NEXT;
case INST(OPN): {
[[maybe_unused]] auto _ = instGuard();
stack.emplace_back(inst.N);
auto stackSizeGuard = stackSizeAssertGuard();
frame.function->operator_table_[inst.X](stack);
stackSizeGuard.callAssert();
}
INST_NEXT;
case INST(LOAD): {
[[maybe_unused]] auto _ = instGuard();
stack.emplace_back(reg(inst.X));
}
INST_NEXT;
case INST(MOVE): {
[[maybe_unused]] auto _ = instGuard();
stack.emplace_back(std::move(reg(inst.X)));
}
INST_NEXT;
case INST(STORE): {
[[maybe_unused]] auto _ = instGuard();
reg(inst.X) = pop(stack);
}
INST_NEXT;
case INST(STOREN): {
[[maybe_unused]] auto _ = instGuard();
TORCH_INTERNAL_ASSERT(stack.size() >= inst.N);
for (size_t i = inst.N; i > 0; --i) {
reg(inst.X + i - 1) = pop(stack);
}
}
INST_NEXT;
case INST(DROP): {
[[maybe_unused]] auto _ = instGuard();
stack.pop_back();
}
INST_NEXT;
case INST(DROPR): {
[[maybe_unused]] auto _ = instGuard();
reg(inst.X) = IValue();
}
INST_NEXT;
case INST(LOADC): {
[[maybe_unused]] auto _ = instGuard();
stack.emplace_back(frame.function->constant_table_[inst.X]);
}
INST_NEXT;
case INST(GET_ATTR): {
[[maybe_unused]] auto _ = instGuard();
const auto& userObj = stack.back().toObjectRef();
stack.back() = userObj.getSlot(inst.X);
}
INST_NEXT;
case INST(SET_ATTR): {
[[maybe_unused]] auto _ = instGuard();
auto v = pop(stack);
auto& userObj = stack.back().toObjectRef();
userObj.setSlot(inst.X, std::move(v));
stack.pop_back();
}
INST_NEXT;
case INST(JF): {
[[maybe_unused]] auto _ = instGuard();
if (pop(stack).toBool()) {
inst = instFetch(1);
} else {
inst = instFetch(inst.X);
}
}
INST_DISPATCH;
case INST(JMP): {
[[maybe_unused]] auto _ = instGuard();
inst = instFetch(inst.X);
}
INST_DISPATCH;
case INST(LOOP): {
[[maybe_unused]] auto _ = instGuard();
// stack: iteration_count, max_iter, cond, loop_carried_deps...
auto fr = stack.end() - (inst.N + 1);
int64_t trip_count = fr[0].toInt();
int64_t max_trip_count = fr[1].toInt();
bool cond = fr[2].toBool();
if (trip_count < max_trip_count && cond) {
fr[2] = trip_count;
fr[0] = trip_count + 1;
inst = instFetch(1);
} else {
size_t n_loop_carried = inst.N - 2;
for (const auto i : c10::irange(n_loop_carried)) {
fr[i] = std::move(fr[i + 3]);
}
drop(stack, 3); // iteration_count, max_iter, cond
inst = instFetch(inst.X);
}
}
INST_DISPATCH;
case INST(CALL): {
[[maybe_unused]] auto _ = instGuard();
Function* fn = frame.function->function_table_[inst.X];
callFunction(*fn, stack);
continue;
}
case INST(INTERFACE_CALL): {
[[maybe_unused]] auto _ = instGuard();
// note the hash table lookup to find the function
// this can be more optimized if necessary, caching parts
// of the hashing computation or storing the offset when
// the object is turned into an interface
// consider passing
// `frames.back().function->remaining_bailout_depth_` into
// `get_executor().getPlanFor()` to propagate caller's depth
// restrictions onto children while this strategy has a potential to
// reduce the number of compilations for too dynamic callers we
// might miss opportunities where a caller is dynamic but a callee
// gets stable arguments
Function& function =
peek(stack, 0, inst.N)
.toObject()
->type()
->getMethod(
frame.function->constant_table_[inst.X].toStringRef());
callFunction(function, stack);
continue;
}
case INST(RET): {
if (frames.size() > 1) {
leaveFrame();
continue;
}
if (future_) {
auto num_outputs = frames.back().function->n_outputs;
if (num_outputs == 1) {
future_->markCompleted(stack.back());
} else {
future_->markCompleted(
c10::ivalue::Tuple::create(jit::last(stack, num_outputs)));
}
}
// destroy the last frame and call RecordFunction's end callbacks
leaveFrame();
return false;
}
case INST(WAIT): {
[[maybe_unused]] auto _ = instGuard();
auto future = stack.back().toFuture();
if (!future->completed()) {
getOrCreateFuture();
// callback needs to be a struct rather than a lambda so that
// we can move the stack to the other thread
struct Callback {
Callback(
c10::intrusive_ptr<InterpreterStateImpl> state,
Stack stack)
: stateImpl_(std::move(state)),
state_(stateImpl_),
stack_(std::move(stack)),
dist_autograd_context_id_(getDistAutogradContextId()) {
state_ = InterpreterState(stateImpl_);
}
void operator()(c10::ivalue::Future& /* unused */) {
stateImpl_->taskLauncher_(InterpreterContinuation(
state_,
std::move(stack_),
dist_autograd_context_id_,
std::move(tls_state_)));
}
private:
c10::intrusive_ptr<InterpreterStateImpl> stateImpl_;
InterpreterState state_;
Stack stack_;
int64_t dist_autograd_context_id_;
// preserve the original ThreadLocalState
at::ThreadLocalState tls_state_;
};
// we are suspending, so we need to reset the stack to where we
// started if it started empty, except for the inputs we can avoid
// a true copy by swapping, which leaves the original stack empty.
Stack copied;
if (stack_start_ == 0) {
copied.swap(stack);
} else {
copied.insert(
copied.begin(),
std::make_move_iterator(stack.begin() + stack_start_),
std::make_move_iterator(stack.end()));
stack.resize(stack_start_);
}
// save pc into the frame so we continue here when restored
future->addCallback(
Callback(intrusive_from_this(), std::move(copied)));
return true;
}
stack.pop_back();
stack.emplace_back(future->value());
}
INST_NEXT;
case INST(PROFILE_OP): {
[[maybe_unused]] auto _ = instGuard();
auto& frame_id_ref = frame.id;
if (!frame_id_ref.has_value()) {
frame_id_ref = Frame::genId();
}
const auto& callback =
frame.function->profile_function_table_[inst.X];
push(stack, c10::IValue{static_cast<int64_t>(*frame_id_ref)});
callback(stack);
}
INST_NEXT;
case INST(FAIL_GUARD): {
[[maybe_unused]] auto _ = instGuard();
// patch FAIL_GUARD back to GUARD
GRAPH_DEBUG(
"Bailout ", inst.X, " triggered via bailout_requests_!");
frame.function->instructions_[frame.pc].op = GUARD;
push(stack, false);
}
INST_NEXT;
case INST(TYPECHECK): {
[[maybe_unused]] auto _ = instGuard();
unsigned num_inputs = inst.N, i = 0;
TORCH_INTERNAL_ASSERT(stack.size() >= num_inputs && num_inputs > 0);
// Check every input's shape against profiled (expected) shape.
for (i = 0; i < num_inputs; i++) {
auto& input = peek(stack, i, num_inputs);
auto& t = input.toTensor();
const TypePtr& expected = frame.function->type_table_[inst.X + i];
auto* expected_type = expected->castRaw<TensorType>();
if (t.defined() && !expected_type->matchTensor(t)) {
push(stack, false);
break;
}
}
if (i == num_inputs) {
push(stack, true);
}
}
INST_NEXT;
case INST(GUARD): {
[[maybe_unused]] auto _ = instGuard();
if (!stack.back().isTensor()) {
// stack.back() is an Uninitialized IValue and this is a guard
// on a block output. Uninitialized IValues are never used
// so it's safe to pass this guard check
push(stack, true);
} else {
auto& t = stack.back().toTensor();
const TypePtr& expected = frame.function->type_table_[inst.X];
auto* expected_type = expected->castRaw<TensorType>();
if (t.defined() &&
!frames.back().symbols2dims.bindSymbolicShapes(
t.sizes(), expected_type->symbolic_sizes())) {
push(stack, false);
} else {
push(stack, expected_type->matchTensor(t));
}
}
}
INST_NEXT;
case INST(TAIL_CALL): {
[[maybe_unused]] auto _ = instGuard();
GRAPH_DEBUG("running TAIL_CALL for ", inst.X);
frame.function->function_table_[inst.X]->ensure_defined();
size_t remaining_bailout_depth =
frame.function->remaining_bailout_depth_ > 0
? frame.function->remaining_bailout_depth_ - 1
: 0;
auto& f = *frame.function->function_table_[inst.X];
size_t num_inputs = f.num_inputs();
size_t base_pointer = frame.base_pointer;
TORCH_INTERNAL_ASSERT(stack.size() >= num_inputs);
size_t inputs_start = stack.size() - num_inputs;
for (const auto i : c10::irange(num_inputs)) {
stack.at(base_pointer + i) =
std::move(stack.at(inputs_start + i));
}
stack.resize(base_pointer + num_inputs);
leaveFrame();
callFunction(f, stack, remaining_bailout_depth, false);
continue;
}
case INST(LIST_UNPACK): {
[[maybe_unused]] auto _ = instGuard();
listUnpack(stack, inst.X);
}
INST_NEXT;
case INST(TUPLE_CONSTRUCT): {
[[maybe_unused]] auto _ = instGuard();
tupleConstruct(stack, inst.X);
}
INST_NEXT;
case INST(TUPLE_SLICE): {
[[maybe_unused]] auto _ = instGuard();
tupleSlice(stack, inst.X, inst.X + inst.N);
}
INST_NEXT;
case INST(NAMED_TUPLE_CONSTRUCT): {
[[maybe_unused]] auto _ = instGuard();
namedTupleConstruct(
stack,
frame.function->type_table_[inst.X]->expect<TupleType>(),
inst.N);
}
INST_NEXT;
case INST(LIST_CONSTRUCT): {
[[maybe_unused]] auto _ = instGuard();
const auto& type =
frame.function->type_table_[inst.X]->expectRef<ListType>();
listConstruct(stack, type, inst.N);
}
INST_NEXT;
case INST(DICT_CONSTRUCT): {
[[maybe_unused]] auto _ = instGuard();
const auto& type =
frame.function->type_table_[inst.X]->expectRef<DictType>();
dictConstruct(stack, type, inst.N);
}
INST_NEXT;
case INST(CREATE_OBJECT): {
[[maybe_unused]] auto _ = instGuard();
auto type =
frame.function->type_table_[inst.X]->expect<ClassType>();
createObject(stack, type);
}
INST_NEXT;
case INST(ISINSTANCE): {
[[maybe_unused]] auto _ = instGuard();
at::ArrayRef<TypePtr> types(
&frame.function->type_table_[inst.X],
&frame.function->type_table_[inst.X] + inst.N);
isinstance(stack, types);
}
INST_NEXT;
case INST(TUPLE_INDEX): {
[[maybe_unused]] auto _ = instGuard();
tupleIndex(stack);
}
INST_NEXT;
case INST(RAISE_EXCEPTION): {
[[maybe_unused]] auto _ = instGuard();
raiseExceptionWithMessage(stack);
}
INST_NEXT;
case INST(UNCHECKED_CAST): {
[[maybe_unused]] auto _ = instGuard();
noop(stack);
}
INST_NEXT;
case INST(__IS__): {
[[maybe_unused]] auto _ = instGuard();
is(stack);
}
INST_NEXT;
case INST(UN_INITIALIZED): {
[[maybe_unused]] auto _ = instGuard();
unInitialized(stack);
}
INST_NEXT;
case INST(__ISNOT__): {
[[maybe_unused]] auto _ = instGuard();
isNot(stack);
}
INST_NEXT;
case INST(FORMAT): {
[[maybe_unused]] auto _ = instGuard();
format(stack, inst.X);
}
INST_NEXT;
case INST(DEVICE): {
[[maybe_unused]] auto _ = instGuard();
device(stack);
}
INST_NEXT;
case INST(DTYPE): {
[[maybe_unused]] auto _ = instGuard();
TORCH_INTERNAL_ASSERT(!stack.empty());
dtype(stack);
}
INST_NEXT;
case INST(DIM): {
[[maybe_unused]] auto _ = instGuard();
TORCH_INTERNAL_ASSERT(!stack.empty());
dim(stack);
}
INST_NEXT;
case INST(__NOT__): {
[[maybe_unused]] auto _ = instGuard();
_not(stack);
}
INST_NEXT;
case INST(DICT_INDEX): {
[[maybe_unused]] auto _ = instGuard();
dictIndex(stack);
}
INST_NEXT;
case INST(TO_LIST): {
[[maybe_unused]] auto _ = instGuard();
toList(stack);
}
INST_NEXT;
case INST(NUM_TO_TENSOR): {
[[maybe_unused]] auto _ = instGuard();
numToTensorScalar(stack);
}
INST_NEXT;
case INST(IS_CUDA): {
[[maybe_unused]] auto _ = instGuard();
isCuda(stack);
}
INST_NEXT;
case INST(FORK): {
[[maybe_unused]] auto _ = instGuard();
// Move inputs to a separate stack
auto& forked_fn =
toGraphFunction(*frame.function->function_table_[inst.X]);
InterpreterState forked_interpreter(
forked_fn.get_executor().getPlanFor(stack).code, taskLauncher_);
InterpreterContinuation continuation(
forked_interpreter,
Stack(stack.end() - inst.N, stack.end()),
getDistAutogradContextId());
drop(stack, inst.N);
push(stack, forked_interpreter.getFuture());
taskLauncher_(std::move(continuation));
}
INST_NEXT;
case INST(AWAITABLE): {
[[maybe_unused]] auto _ = instGuard();
auto fn_ptr = frame.function->function_table_[inst.X];
auto& fn = toGraphFunction(*fn_ptr);
auto num_outputs = fn.graph()->outputs().size();
TypePtr out_type;
if (num_outputs == 1) {
out_type = fn.graph()->outputs()[0]->type();
} else {
std::vector<TypePtr> out_types;
for (const auto& o : fn.graph()->outputs()) {
out_types.push_back(o->type());
}
out_type = TupleType::create(out_types);
}
auto args = std::vector<IValue>(stack.end() - inst.N, stack.end());
auto aw = c10::make_intrusive<c10::ivalue::Await>(out_type);
aw->setArgs(std::move(args));
aw->setFn(
[&args = aw->args(),
fn_ptr,
taskLauncher = taskLauncher_]() -> IValue {
auto& fn = toGraphFunction(*fn_ptr);
auto n_out = fn.graph()->outputs().size();
torch::jit::Stack s;
for (const auto& arg : args) {
s.push_back(arg);
}
InterpreterState await_interpreter(
fn.get_executor().getPlanFor(s).code, taskLauncher);
await_interpreter.run(s);
if (n_out == 1) {
return s.back();
}
return c10::ivalue::Tuple::create(jit::last(s, n_out));
});
drop(stack, inst.N);
push(stack, std::move(aw));
}
INST_NEXT;
case INST(WARN): {
[[maybe_unused]] auto _ = instGuard();
// Keeps track of which WARN instruction has been executed before,
// we only want to execute each WARN once to match default Python
// warning behavior.
bool need_warn = true;
if (inst.X != -1) {
need_warn = warned_nodes_.insert(inst.X);
}
Node* node =
frames.back().function->instructions_source_.at(frame.pc);
auto range = node->sourceRange().source();
if (range->filename()) {
drop(stack, 1);
const auto& msg = stack.back().toStringRef();
if (need_warn) {
auto line = range->starting_line_no() +
range->lineno_for_offset(node->sourceRange().start());
c10::SourceLocation location{
"", range->filename()->c_str(), uint32_t(line)};
// Sends the warning to the warning handler with the
// "verbatim" flag. This flag ensures the warning handler
// will print the exception as configured.
c10::warn(c10::Warning(
c10::UserWarning(), location, msg, /*verbatim=*/true));
}
stack.pop_back();
} else {
if (need_warn) {
TORCH_WARN(stack.back().toStringRef());
}
stack.pop_back();
}
}
INST_NEXT;
}
}
} catch (std::exception& e) {
for (auto it = entered_objects.rbegin(), end = entered_objects.rend();
it != end;
++it) {
auto& f = it->toObject()->type()->getMethod("__exit__");
Stack stack;
push(stack, *it);
push(stack, IValue());
push(stack, IValue());
push(stack, IValue());
try {
f.run(stack);
} catch (std::exception& _) {
// TODO(T98048876): Handle `_` correctly.
}
}
if (FLAGS_torch_jit_enable_rethrow_caught_exception) {
if (future_) {
future_->setError(std::current_exception());
return false;
}
throw;
}
auto* jit_exception = dynamic_cast<JITException*>(&e);
// Janky af. See https://github.com/pytorch/pytorch/issues/54612
auto* not_implemented_error = dynamic_cast<c10::NotImplementedError*>(&e);
std::optional<std::string> python_class_name;
if (jit_exception) {
python_class_name = jit_exception->getPythonClassName();
}
handleError(
e, (bool)jit_exception, not_implemented_error, python_class_name);
return false;
}
}
#undef INST_NEXT
#undef INST_DISPATCH
#undef INST
#undef JIT_USE_COMPUTED_GOTO
bool runImpl(Stack& stack) {
if (!profiling::isProfilingOngoing()) {
return runTemplate</*EnableProfiling*/ false>(stack);
} else {
return runTemplate</*EnableProfiling*/ true>(stack);
}
}
void formatStackTrace(std::ostream& out) {
format_stack_trace(out, callstack());
}
void handleError(
const std::exception& e,
bool is_jit_exception,
c10::NotImplementedError* not_implemented_error,
std::optional<std::string> python_class_name) {
ExceptionMessage msg(e);
std::ostringstream ss;
std::string class_name =
python_class_name ? *python_class_name : "RuntimeError";
ss << "The following operation failed in the TorchScript interpreter.\n";
formatStackTrace(ss);
ss << class_name << ": " << msg << "\n";
if (future_) {
future_->setError(std::make_exception_ptr(Future::FutureError(ss.str())));
} else if (is_jit_exception) {
// save the original exception's message when creating a new JITException
throw JITException(ss.str(), python_class_name, e.what());
} else if (not_implemented_error) {
throw c10::NotImplementedError(
ss.str(),
not_implemented_error->backtrace(),
not_implemented_error->caller());
} else {
if (get_cpp_stacktraces_enabled()) {
ss << e.what() << "\n";
}
throw std::runtime_error(ss.str());
}
}
static void checkAndStartRecordFunction(Frame& frame, Stack& stack) {
if (!frame.record_function) {
auto step_callbacks = at::getStepCallbacksUnlessEmpty(
at::RecordScope::TORCHSCRIPT_FUNCTION);
if (C10_UNLIKELY(step_callbacks.has_value())) {
auto rec_fn =
std::make_unique<at::RecordFunction>(std::move(*step_callbacks));
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rec_fn->isActive());
if (rec_fn->needsInputs()) {
rec_fn->before(
frame.function->function_name_,
last(stack, frame.function->n_inputs));
} else {
rec_fn->before(frame.function->function_name_);
}
frame.record_function = std::move(rec_fn);
}
}
}
public:
// One way to avoid overhead of forming string would be to return
// a vector of frame.function, i.e. CodeImpl*
// This is not exactly clean as it will expose, internal details of
// interpreter. But this way we hold onto graph/node and Function and
// we can create module hierarchy string for each event in autograd
// profiler at the end, when consolidating events.
// At the moment overhead does not seem exhorbitantly large.
// Another option would be return vector of (string, InlinedCallstackPtrs)
// string would contain function name and typename of self
// Format of the returned vector of strings:
// For each frame, the corresponding module name, type and function name
// are in following format:
// <module-instance-name>(module type)::<function-name>
// Special keys for module-instance-name:
// - TOP: for top level module
// - SELF: When method/function of the frame is associated with
// previous frame's module instance
// - INSTANCE_NAME_UNKNOWN: instance name cannot be figured out
// - CALL_FUNCTION: call to free function
std::vector<std::string> moduleHierarchy() const {
std::vector<std::string> module_function_list;
std::string module_hierarchy("TOP");
for (size_t i = 0; i < frames.size(); ++i) {
const Frame& frame = frames[i];
std::string fn_name = frame.function->function_name_;
// For each frame, type of the class with which the function is
// associated, is queried here. And the type name is added to
// module hierarchy.
const auto& g = frame.function->graph_;
std::string g_self_type;
if (g && !g->inputs().empty()) {
const auto& g_self_type_ptr =
g->inputs()[0]->type()->cast<c10::ClassType>();
if (g_self_type_ptr) {
g_self_type = g_self_type_ptr->name()->qualifiedName();