Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a custom adorn function #580

Open
larry77 opened this issue Oct 18, 2024 · 1 comment
Open

Add a custom adorn function #580

larry77 opened this issue Oct 18, 2024 · 1 comment

Comments

@larry77
Copy link

larry77 commented Oct 18, 2024

I do not know if this should be a pull request, but I would like to have an adorn_function where I can specify any function I want to add an extra row with some stats.
Something along the line of the function below (not tested under all possible circumstances).
Thanks!

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(janitor)
#> 
#> Attaching package: 'janitor'
#> The following objects are masked from 'package:stats':
#> 
#>     chisq.test, fisher.test



# Define the custom function to add a row with an arbitrary function and custom value for non-numeric columns
adorn_custom <- function(df, fun, exclude = NULL, na.rm = TRUE, position = "bottom", custom_values = list()) {
  
  # Identify numeric columns where the function should be applied, excluding specified columns
  cols_to_apply <- df |>
    select(where(is.numeric)) |>
    select(-all_of(exclude)) |>
    colnames()
  
  # Apply the function to the selected numeric columns
  custom_row <- df |>
    summarise(across(all_of(cols_to_apply), ~ fun(., na.rm = na.rm)))
  
  # Create a new row with NA for all columns first
  custom_row_full <- df[1, ] |> 
    summarise(across(everything(), ~ NA)) |> 
    mutate(across(all_of(cols_to_apply), ~ custom_row[[cur_column()]]))
  
  # Assign custom values for non-numeric (or excluded) columns
  for (col_name in names(custom_values)) {
    if (col_name %in% colnames(df)) {
      custom_row_full[[col_name]] <- custom_values[[col_name]]
    }
  }
  
  # Add the custom row at the specified position
  if (position == "top") {
    df_with_custom <- bind_rows(custom_row_full, df)
  } else if (position == "bottom") {
    df_with_custom <- bind_rows(df, custom_row_full)
  } else {
    stop("Invalid position. Use 'top' or 'bottom'.")
  }
  
  return(df_with_custom)
}

# Example usage
# Sample dataframe with a 'Year' and 'Category' column
df <- data.frame(
  Category = c("A", "B", "C"),
  Year = c(2020, 2021, 2022),
  Value1 = c(10, 20, 30),
  Value2 = c(40, 50, 60)
)

# Add a row with the mean, exclude 'Year', and set a custom value for the 'Category' column
df_with_mean_top <- adorn_custom(
  df, 
  mean, 
  exclude = c("Year"), 
  position = "top", 
  custom_values = list(Category = "Summary")
)
print(df_with_mean_top)
#>   Category Year Value1 Value2
#> 1  Summary   NA     20     50
#> 2        A 2020     10     40
#> 3        B 2021     20     50
#> 4        C 2022     30     60

# Add a row with the mean, exclude 'Year', and set a custom value for the 'Category' column at the bottom
df_with_mean_bottom <- adorn_custom(
  df, 
  mean, 
  exclude = c("Year"), 
  position = "bottom", 
  custom_values = list(Category = "Mean Summary")
)
print(df_with_mean_bottom)
#>       Category Year Value1 Value2
#> 1            A 2020     10     40
#> 2            B 2021     20     50
#> 3            C 2022     30     60
#> 4 Mean Summary   NA     20     50


sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Debian GNU/Linux 12 (bookworm)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB.UTF-8        LC_COLLATE=en_GB.UTF-8    
#>  [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Europe/Brussels
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] janitor_2.2.0 dplyr_1.1.4  
#> 
#> loaded via a namespace (and not attached):
#>  [1] vctrs_0.6.5       cli_3.6.3         knitr_1.48        rlang_1.1.4      
#>  [5] xfun_0.47         stringi_1.8.4     generics_0.1.3    glue_1.7.0       
#>  [9] htmltools_0.5.8.1 fansi_1.0.6       rmarkdown_2.28    snakecase_0.11.1 
#> [13] evaluate_0.24.0   tibble_3.2.1      fastmap_1.2.0     yaml_2.3.10      
#> [17] lifecycle_1.0.4   stringr_1.5.1     compiler_4.4.1    fs_1.6.4         
#> [21] timechange_0.3.0  pkgconfig_2.0.3   digest_0.6.37     R6_2.5.1         
#> [25] reprex_2.1.1      tidyselect_1.2.1  utf8_1.2.4        pillar_1.9.0     
#> [29] magrittr_2.0.3    tools_4.4.1       withr_3.0.1       lubridate_1.9.3

Created on 2024-10-18 with reprex v2.1.1

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants
@larry77 and others