forked from sbailey/empca
-
Notifications
You must be signed in to change notification settings - Fork 0
/
empca.py
567 lines (437 loc) · 16 KB
/
empca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
#!/usr/bin/env python
"""
Weighted Principal Component Analysis using Expectation Maximization
Classic PCA is great but it doesn't know how to handle noisy or missing
data properly. This module provides Weighted Expectation Maximization PCA,
an iterative method for solving PCA while properly weighting data.
Missing data is simply the limit of weight=0.
Given data[nvar, nobs] and weights[nvar, nobs],
m = empca(data, weights, options...)
Returns a Model object m, from which you can inspect the eigenvectors,
coefficients, and reconstructed model, e.g.
pylab.plot( m.eigvec[0] )
pylab.plot( m.data[0] )
pylab.plot( m.model[0] )
For comparison, two alternate methods are also implemented which also
return a Model object:
m = lower_rank(data, weights, options...)
m = classic_pca(data) # but no weights or even options...
Stephen Bailey, Spring 2012
"""
import numpy as N
import sys
#from scipy.sparse import dia_matrix
import scipy.sparse.linalg
import math
from random import sample
class Model(object):
"""
A wrapper class for storing data, eigenvectors, and coefficients.
Returned by empca() function. Useful member variables:
Inputs:
- eigvec [nvec, nobs]
- data [nvar, nobs]
- weights[nvar, nobs]
Calculated from those inputs:
- coeff [nvar, nvec] - coeffs to reconstruct data using eigvec
- model [nvar, nobs] - reconstruction of data using eigvec,coeff
Not yet implemented: eigenvalues, mean subtraction/bookkeeping
"""
def __init__(self, eigvec, data, weights):
"""
Create a Model object with eigenvectors, data, and weights.
Dimensions:
- eigvec [nvec, nobs] = [k, j]
- data [nvar, nobs] = [i, j]
- weights[nvar, nobs] = [i, j]
- coeff [nvar, nvec] = [i, k]
"""
self.eigvec = eigvec
self.nvec = eigvec.shape[0]
self.set_data(data, weights)
def set_data(self, data, weights):
"""
Assign a new data[nvar,nobs] and weights[nvar,nobs] to use with
the existing eigenvectors. Recalculates the coefficients and
model fit.
"""
self.data = data
self.weights = weights
self.nvar = data.shape[0]
self.nobs = data.shape[1]
self.coeff = N.zeros((self.nvar, self.nvec))
self.model = N.zeros(self.data.shape)
# - Calculate degrees of freedom
ii = N.where(self.weights > 0)
self.dof = self.data[ii].size - \
self.eigvec.size - self.nvec * self.nvar
# Cache variance of unmasked data
self._unmasked = ii
self._unmasked_data_var = N.var(self.data[ii])
self.solve_coeffs()
def solve_coeffs(self):
"""
Solve for c[i,k] such that data[i] ~= Sum_k: c[i,k] eigvec[k]
"""
for i in range(self.nvar):
# Only do weighted solution if really necessary
if N.any(self.weights[i] != self.weights[i, 0]):
self.coeff[i] = _solve(
self.eigvec.T, self.data[i], self.weights[i])
else:
self.coeff[i] = N.dot(self.eigvec, self.data[i])
self.solve_model()
def solve_eigenvectors(self, smooth=None):
"""
Solve for eigvec[k,j] such that data[i] = Sum_k: coeff[i,k] eigvec[k]
"""
# Utility function; faster than numpy.linalg.norm()
def norm(x):
return N.sqrt(N.dot(x, x))
# Make copy of data so we can modify it
data = self.data.copy()
# Solve the eigenvectors one by one
for k in range(self.nvec):
# Can we compact this loop into numpy matrix algebra?
c = self.coeff[:, k]
for j in range(self.nobs):
w = self.weights[:, j]
x = data[:, j]
# self.eigvec[k, j] = c.dot(w*x) / c.dot(w*c)
# self.eigvec[k, j] = w.dot(c*x) / w.dot(c*c)
cw = c * w
self.eigvec[k, j] = x.dot(cw) / c.dot(cw)
if smooth is not None:
self.eigvec[k] = smooth(self.eigvec[k])
# Remove this vector from the data before continuing with next
# Alternate: Resolve for coefficients before subtracting?
# Loop replaced with equivalent N.outer(c,v) call (faster)
# for i in range(self.nvar):
# data[i] -= self.coeff[i,k] * self.eigvec[k]
data -= N.outer(self.coeff[:, k], self.eigvec[k])
# Renormalize and re-orthogonalize the answer
self.eigvec[0] /= norm(self.eigvec[0])
for k in range(1, self.nvec):
for kx in range(0, k):
c = N.dot(self.eigvec[k], self.eigvec[kx])
self.eigvec[k] -= c * self.eigvec[kx]
self.eigvec[k] /= norm(self.eigvec[k])
# Recalculate model
self.solve_model()
def solve_model(self):
"""
Uses eigenvectors and coefficients to model data
"""
for i in range(self.nvar):
self.model[i] = self.eigvec.T.dot(self.coeff[i])
def chi2(self):
"""
Returns sum( (model-data)^2 / weights )
"""
delta = (self.model - self.data) * N.sqrt(self.weights)
return N.sum(delta**2)
def rchi2(self):
"""
Returns reduced chi2 = chi2/dof
"""
return self.chi2() / self.dof
def _model_vec(self, i):
"""Return the model using just eigvec i"""
return N.outer(self.coeff[:, i], self.eigvec[i])
def R2vec(self, i):
"""
Return fraction of data variance which is explained by vector i.
Notes:
- Does *not* correct for degrees of freedom.
- Not robust to data outliers.
"""
d = self._model_vec(i) - self.data
return 1.0 - N.var(d[self._unmasked]) / self._unmasked_data_var
def R2(self, nvec=None):
"""
Return fraction of data variance which is explained by the first
nvec vectors. Default is R2 for all vectors.
Notes:
- Does *not* correct for degrees of freedom.
- Not robust to data outliers.
"""
if nvec is None:
mx = self.model
else:
mx = N.zeros(self.data.shape)
for i in range(nvec):
mx += self._model_vec(i)
d = mx - self.data
# Only consider R2 for unmasked data
return 1.0 - N.var(d[self._unmasked]) / self._unmasked_data_var
def _random_orthonormal(nvec, nobs, seed):
"""
Return array of random orthonormal vectors A[nvec, nobs]
Doesn't protect against rare duplicate vectors leading to 0s
"""
if seed is not None:
N.random.seed(seed)
A = N.random.normal(size=(nvec, nobs))
for i in range(nvec):
A[i] /= N.linalg.norm(A[i])
for i in range(1, nvec):
for j in range(0, i):
A[i] -= N.dot(A[j], A[i]) * A[j]
A[i] /= N.linalg.norm(A[i])
return A
def _solve(A, b, w):
"""
Solve Ax = b with weights w; return x
A : 2D array
b : 1D array length A.shape[0]
w : 1D array same length as b
"""
# Apply weights
# nobs = len(w)
# W = dia_matrix((w, 0), shape=(nobs, nobs))
# bx = A.T.dot( W.dot(b) )
# Ax = A.T.dot( W.dot(A) )
b = A.T.dot(w * b)
A = A.T.dot((A.T * w).T)
if isinstance(A, scipy.sparse.spmatrix):
x = scipy.sparse.linalg.spsolve(A, b)
else:
# x = N.linalg.solve(A, b)
x = N.linalg.lstsq(A, b)[0]
return x
# ------------------------------------------------------------------------
def empca(data, weights=None, niter=25, nvec=5, smooth=0,
randseed=1, silent=False):
"""
Iteratively solve data[i] = Sum_j: c[i,j] p[j] using weights
Input:
- data[nvar, nobs]
- weights[nvar, nobs]
Optional:
- niter : maximum number of iterations
- nvec : number of model vectors
- smooth : smoothing length scale (0 for no smoothing)
- randseed : random number generator seed; None to not re-initialize
Returns Model object
"""
if weights is None:
weights = N.ones(data.shape)
if smooth > 0:
smooth = SavitzkyGolay(width=smooth)
else:
smooth = None
# Basic dimensions
nvar, nobs = data.shape
assert data.shape == weights.shape
# degrees of freedom for reduced chi2
ii = N.where(weights > 0)
dof = data[ii].size - nvec * nobs - nvec * nvar
# Starting random guess
eigvec = _random_orthonormal(nvec, nobs, seed=randseed)
model = Model(eigvec, data, weights)
model.solve_coeffs()
if not silent:
# print " iter chi2/dof drchi_E drchi_M drchi_tot
# R2 rchi2"
print " iter R2 rchi2"
for k in range(niter):
model.solve_coeffs()
model.solve_eigenvectors(smooth=smooth)
if not silent:
print 'EMPCA %2d/%2d %15.8f %15.8f' % \
(k + 1, niter, model.R2(), model.rchi2())
sys.stdout.flush()
# One last time with latest coefficients
model.solve_coeffs()
if not silent:
print "R2:", model.R2()
return model
def classic_pca(data, nvec=None):
"""
Perform classic SVD-based PCA of the data[obs, var].
Returns Model object
"""
u, s, v = N.linalg.svd(data)
if nvec is None:
m = Model(v, data, N.ones(data.shape))
else:
m = Model(v[0:nvec], data, N.ones(data.shape))
return m
def lower_rank(data, weights=None, niter=25, nvec=5, randseed=1, silent=False):
"""
Perform iterative lower rank matrix approximation of data[obs, var]
using weights[obs, var].
Generated model vectors are not orthonormal and are not
rotated/ranked by ability to model the data, but as a set
they are good at describing the data.
Optional:
- niter : maximum number of iterations to perform
- nvec : number of vectors to solve
- randseed : rand num generator seed; if None, don't re-initialize
Returns Model object
"""
if weights is None:
weights = N.ones(data.shape)
nvar, nobs = data.shape
P = _random_orthonormal(nvec, nobs, seed=randseed)
C = N.zeros((nvar, nvec))
ii = N.where(weights > 0)
dof = data[ii].size - P.size - nvec * nvar
if not silent:
print "iter dchi2 R2 chi2/dof"
oldchi2 = 1e6 * dof
for blat in range(niter):
# Solve for coefficients
for i in range(nvar):
# Convert into form b = A x
b = data[i] # - b[nobs]
A = P.T # - A[nobs, nvec]
w = weights[i] # - w[nobs]
C[i] = _solve(A, b, w) # - x[nvec]
# Solve for eigenvectors
for j in range(nobs):
b = data[:, j] # - b[nvar]
A = C # - A[nvar, nvec]
w = weights[:, j] # - w[nvar]
P[:, j] = _solve(A, b, w) # - x[nvec]
# Did the model improve?
model = C.dot(P)
delta = (data - model) * N.sqrt(weights)
chi2 = N.sum(delta[ii]**2)
diff = data - model
R2 = 1.0 - N.var(diff[ii]) / N.var(data[ii])
dchi2 = (chi2 - oldchi2) / oldchi2 # - fractional improvement in chi2
flag = '-' if chi2 < oldchi2 else '+'
if not silent:
print '%3d %9.3g %15.8f %15.8f %s' % \
(blat, dchi2, R2, chi2 / dof, flag)
oldchi2 = chi2
# normalize vectors
for k in range(nvec):
P[k] /= N.linalg.norm(P[k])
m = Model(P, data, weights)
if not silent:
print "R2:", m.R2()
# Rotate basis to maximize power in lower eigenvectors
# -> Doesn't work; wrong rotation
# u, s, v = N.linalg.svd(m.coeff, full_matrices=True)
# eigvec = N.zeros(m.eigvec.shape)
# for i in range(m.nvec):
# for j in range(s.shape[0]):
# eigvec[i] += v[i,j] * m.eigvec[j]
#
# eigvec[i] /= N.linalg.norm(eigvec[i])
#
# m = Model(eigvec, data, weights)
# print m.R2()
return m
class SavitzkyGolay(object):
"""
Utility class for performing Savitzky Golay smoothing
Code adapted from http://public.procoders.net/sg_filter/sg_filter.py
"""
def __init__(self, width, pol_degree=3, diff_order=0):
self._width = width
self._pol_degree = pol_degree
self._diff_order = diff_order
self._coeff = self._calc_coeff(width // 2, pol_degree, diff_order)
def _calc_coeff(self, num_points, pol_degree, diff_order=0):
"""
Calculates filter coefficients for symmetric savitzky-golay filter.
see: http://www.nrbook.com/a/bookcpdf/c14-8.pdf
num_points means that 2*num_points+1 values contribute to the
smoother.
pol_degree is degree of fitting polynomial
diff_order is degree of implicit differentiation.
0 means that filter results in smoothing of function
1 means that filter results in smoothing the first
derivative of function.
and so on ...
"""
# setup interpolation matrix
# ... you might use other interpolation points
# and maybe other functions than monomials ....
x = N.arange(-num_points, num_points + 1, dtype=int)
monom = lambda x, deg: math.pow(x, deg)
A = N.zeros((2 * num_points + 1, pol_degree + 1), float)
for i in range(2 * num_points + 1):
for j in range(pol_degree + 1):
A[i, j] = monom(x[i], j)
# calculate diff_order-th row of inv(A^T A)
ATA = N.dot(A.transpose(), A)
rhs = N.zeros((pol_degree + 1,), float)
rhs[diff_order] = (-1)**diff_order
wvec = N.linalg.solve(ATA, rhs)
# calculate filter-coefficients
coeff = N.dot(A, wvec)
return coeff
def __call__(self, signal):
"""
Applies Savitsky-Golay filtering
"""
n = N.size(self._coeff - 1) / 2
res = N.convolve(signal, self._coeff)
return res[n:-n]
if __name__ == '__main__':
import numpy as np
N.random.seed(1)
nvar = 100
nobs = 200
nvec = 5
data = N.zeros(shape=(nobs, nvar))
# Generate data
x = N.linspace(0, 2 * N.pi, nobs)
for i in range(nvar):
for k in range(nvec):
c = N.random.normal()
data[:, i] += 5.0 * nvec / (k + 1)**2 * c * N.sin(x * (k + 1))
# Add noise
sigma = N.ones(shape=data.shape)
# for i in sample(range(nobs), nvar / 10):
# sigma[i] *= 5 # temporal noise
for i in sample(range(nvar), nvar/5):
sigma[:, i] *= 75 # spatial noise
# weights = 1.0 / sigma**2
noisy_data = data + N.random.normal(scale=sigma)
# weights = 1.0 / sigma**2
from pandas.stats.moments import ewmstd
weights = 1 / ewmstd(noisy_data, com=5)
weights[np.isnan(weights)] = 0
print "Testing empca"
m0 = empca(noisy_data, weights, niter=20)
print "Testing lower rank matrix approximation"
m1 = lower_rank(noisy_data, weights, niter=20)
print "Testing classic PCA"
m2 = classic_pca(noisy_data, nvec=5)
print "R2", m2.R2()
try:
import pylab as P
except ImportError:
print >> sys.stderr, "pylab not installed; not making plots"
sys.exit(0)
# P.subplot(111)
# avg = np.nanmean(data, 0)
# avg_noise = np.nanmean(noisy_data, 0)
# ori = np.vstack((avg, avg_noise)).T
# P.plot(ori)
# P.figure()
# factor score (projected X)
nvec = 5
if True:
P.subplot(211)
for i in range(nvec):
P.plot(m0.coeff[:, i])
# P.ylim(-0.2, 0.2)
P.ylabel("EMPCA")
P.title("PCA scores")
# P.subplot(312)
# for i in range(nvec):
# P.plot(m1.coeff[:, i])
# # P.ylim(-0.2, 0.2)
# P.ylabel("Lower Rank")
P.subplot(212)
for i in range(nvec):
P.plot(m2.coeff[:, i])
# P.ylim(-0.2, 0.2)
P.ylabel("Classic PCA")
P.show()