-
Notifications
You must be signed in to change notification settings - Fork 0
/
pins_teensy.c
746 lines (633 loc) · 21.3 KB
/
pins_teensy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "core_pins.h"
#include "pins_arduino.h"
#include "HardwareSerial.h"
#if 0
// moved to pins_arduino.h
struct digital_pin_bitband_and_config_table_struct {
volatile uint32_t *reg;
volatile uint32_t *config;
};
const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[];
// compatibility macros
#define digitalPinToPort(pin) (pin)
#define digitalPinToBitMask(pin) (1)
#define portOutputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 0))
#define portSetRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 32))
#define portClearRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 64))
#define portToggleRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 96))
#define portInputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 128))
#define portModeRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 160))
#define portConfigRegister(pin) ((volatile uint32_t *)(digital_pin_to_info_PGM[(pin)].config))
#endif
//#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
//#define analogInPinToBit(P) (P)
#define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
#define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
//#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
//#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
{GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
{GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG}
};
typedef void (*voidFuncPtr)(void);
volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
void init_pin_interrupts(void)
{
//SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO
NVIC_ENABLE_IRQ(IRQ_PORTA);
NVIC_ENABLE_IRQ(IRQ_PORTB);
NVIC_ENABLE_IRQ(IRQ_PORTC);
NVIC_ENABLE_IRQ(IRQ_PORTD);
NVIC_ENABLE_IRQ(IRQ_PORTE);
// TODO: maybe these should be set to a lower priority
// so if the user puts lots of slow code on attachInterrupt
// fast interrupts will still be serviced quickly?
}
void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
{
volatile uint32_t *config;
uint32_t cfg, mask;
if (pin >= CORE_NUM_DIGITAL) return;
switch (mode) {
case CHANGE: mask = 0x0B; break;
case RISING: mask = 0x09; break;
case FALLING: mask = 0x0A; break;
case LOW: mask = 0x08; break;
case HIGH: mask = 0x0C; break;
default: return;
}
mask = (mask << 16) | 0x01000000;
config = portConfigRegister(pin);
__disable_irq();
cfg = *config;
cfg &= ~0x000F0000; // disable any previous interrupt
*config = cfg;
intFunc[pin] = function; // set the function pointer
cfg |= mask;
*config = cfg; // enable the new interrupt
__enable_irq();
}
void detachInterrupt(uint8_t pin)
{
volatile uint32_t *config;
config = portConfigRegister(pin);
__disable_irq();
*config = ((*config & ~0x000F0000) | 0x01000000);
intFunc[pin] = NULL;
__enable_irq();
}
void porta_isr(void)
{
uint32_t isfr = PORTA_ISFR;
PORTA_ISFR = isfr;
if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
}
void portb_isr(void)
{
uint32_t isfr = PORTB_ISFR;
PORTB_ISFR = isfr;
if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
}
void portc_isr(void)
{
// TODO: these are inefficent. Use CLZ somehow....
uint32_t isfr = PORTC_ISFR;
PORTC_ISFR = isfr;
if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
}
void portd_isr(void)
{
uint32_t isfr = PORTD_ISFR;
PORTD_ISFR = isfr;
if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
}
void porte_isr(void)
{
uint32_t isfr = PORTE_ISFR;
PORTE_ISFR = isfr;
if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
}
unsigned long rtc_get(void)
{
return RTC_TSR;
}
void rtc_set(unsigned long t)
{
RTC_SR = 0;
RTC_TPR = 0;
RTC_TSR = t;
RTC_SR = RTC_SR_TCE;
}
// adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
// For example, adjust = -100 is slows the clock by 11.92 ppm
//
void rtc_compensate(int adjust)
{
uint32_t comp, interval, tcr;
// This simple approach tries to maximize the interval.
// Perhaps minimizing TCR would be better, so the
// compensation is distributed more evenly across
// many seconds, rather than saving it all up and then
// altering one second up to +/- 0.38%
if (adjust >= 0) {
comp = adjust;
interval = 256;
while (1) {
tcr = comp * interval;
if (tcr < 128*256) break;
if (--interval == 1) break;
}
tcr = tcr >> 8;
} else {
comp = -adjust;
interval = 256;
while (1) {
tcr = comp * interval;
if (tcr < 129*256) break;
if (--interval == 1) break;
}
tcr = tcr >> 8;
tcr = 256 - tcr;
}
RTC_TCR = ((interval - 1) << 8) | tcr;
}
#if 0
// TODO: build system should define this
// so RTC is automatically initialized to approx correct time
// at least when the program begins running right after upload
#ifndef TIME_T
#define TIME_T 1350160272
#endif
void init_rtc(void)
{
serial_print("init_rtc\n");
//SIM_SCGC6 |= SIM_SCGC6_RTC;
// enable the RTC crystal oscillator, for approx 12pf crystal
if (!(RTC_CR & RTC_CR_OSCE)) {
serial_print("start RTC oscillator\n");
RTC_SR = 0;
RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
}
// should wait for crystal to stabilize.....
serial_print("SR=");
serial_phex32(RTC_SR);
serial_print("\n");
serial_print("CR=");
serial_phex32(RTC_CR);
serial_print("\n");
serial_print("TSR=");
serial_phex32(RTC_TSR);
serial_print("\n");
serial_print("TCR=");
serial_phex32(RTC_TCR);
serial_print("\n");
if (RTC_SR & RTC_SR_TIF) {
// enable the RTC
RTC_SR = 0;
RTC_TPR = 0;
RTC_TSR = TIME_T;
RTC_SR = RTC_SR_TCE;
}
}
#endif
extern void usb_init(void);
// create a default PWM at the same 488.28 Hz as Arduino Uno
#if F_BUS == 48000000
#define DEFAULT_FTM_MOD (49152 - 1)
#define DEFAULT_FTM_PRESCALE 1
#else
#define DEFAULT_FTM_MOD (49152 - 1)
#define DEFAULT_FTM_PRESCALE 0
#endif
//void init_pins(void)
void _init_Teensyduino_internal_(void)
{
init_pin_interrupts();
//SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
//SIM_SCGC6 |= SIM_SCGC6_FTM1;
FTM0_CNT = 0;
FTM0_MOD = DEFAULT_FTM_MOD;
FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
FTM0_C1SC = 0x28;
FTM0_C2SC = 0x28;
FTM0_C3SC = 0x28;
FTM0_C4SC = 0x28;
FTM0_C5SC = 0x28;
FTM0_C6SC = 0x28;
FTM0_C7SC = 0x28;
FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
FTM1_CNT = 0;
FTM1_MOD = DEFAULT_FTM_MOD;
FTM1_C0SC = 0x28;
FTM1_C1SC = 0x28;
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
analog_init();
//delay(100); // TODO: this is not necessary, right?
usb_init();
}
// SOPT4 is SIM select clocks?
// FTM is clocked by the bus clock, either 24 or 48 MHz
// input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
// 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
static uint8_t analog_write_res = 8;
void analogWrite(uint8_t pin, int val)
{
uint32_t cval, max;
max = 1 << analog_write_res;
if (val <= 0) {
digitalWrite(pin, LOW);
pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
return;
} else if (val >= max) {
digitalWrite(pin, HIGH);
pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
return;
}
//serial_print("analogWrite\n");
//serial_print("val = ");
//serial_phex32(val);
//serial_print("\n");
//serial_print("analog_write_res = ");
//serial_phex(analog_write_res);
//serial_print("\n");
if (pin == 3 || pin == 4) {
cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
//serial_print("FTM1_MOD = ");
//serial_phex32(FTM1_MOD);
//serial_print("\n");
} else {
cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
//serial_print("FTM0_MOD = ");
//serial_phex32(FTM0_MOD);
//serial_print("\n");
}
//serial_print("cval = ");
//serial_phex32(cval);
//serial_print("\n");
switch (pin) {
case 3: // PTA12, FTM1_CH0
FTM1_C0V = cval;
CORE_PIN3_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
case 4: // PTA13, FTM1_CH1
FTM1_C1V = cval;
CORE_PIN4_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
case 5: // PTD7, FTM0_CH7
FTM0_C7V = cval;
CORE_PIN5_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
case 6: // PTD4, FTM0_CH4
FTM0_C4V = cval;
CORE_PIN6_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
case 9: // PTC3, FTM0_CH2
FTM0_C2V = cval;
CORE_PIN9_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
case 10: // PTC4, FTM0_CH3
FTM0_C3V = cval;
CORE_PIN10_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
case 20: // PTD5, FTM0_CH5
FTM0_C5V = cval;
CORE_PIN20_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
case 21: // PTD6, FTM0_CH6
FTM0_C6V = cval;
CORE_PIN21_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
case 22: // PTC1, FTM0_CH0
FTM0_C0V = cval;
CORE_PIN22_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
case 23: // PTC2, FTM0_CH1
FTM0_C1V = cval;
CORE_PIN23_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
break;
default:
digitalWrite(pin, (val > 127) ? HIGH : LOW);
pinMode(pin, OUTPUT);
}
}
void analogWriteRes(uint32_t bits)
{
if (bits < 1) {
bits = 1;
} else if (bits > 16) {
bits = 16;
}
analog_write_res = bits;
}
void analogWriteFrequency(uint8_t pin, uint32_t frequency)
{
uint32_t minfreq, prescale, mod;
//serial_print("analogWriteFrequency: pin = ");
//serial_phex(pin);
//serial_print(", freq = ");
//serial_phex32(frequency);
//serial_print("\n");
for (prescale = 0; prescale < 7; prescale++) {
minfreq = (F_BUS >> 16) >> prescale;
if (frequency > minfreq) break;
}
//serial_print("F_BUS = ");
//serial_phex32(F_BUS >> prescale);
//serial_print("\n");
//serial_print("prescale = ");
//serial_phex(prescale);
//serial_print("\n");
//mod = ((F_BUS >> prescale) / frequency) - 1;
mod = (((F_BUS >> prescale) + (frequency >> 1)) / frequency) - 1;
if (mod > 65535) mod = 65535;
//serial_print("mod = ");
//serial_phex32(mod);
//serial_print("\n");
if (pin == 3 || pin == 4) {
FTM1_SC = 0;
FTM1_CNT = 0;
FTM1_MOD = mod;
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
} else if (pin == 5 || pin == 6 || pin == 9 || pin == 10 ||
(pin >= 20 && pin <= 23)) {
FTM0_SC = 0;
FTM0_CNT = 0;
FTM0_MOD = mod;
FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
}
}
// TODO: startup code needs to initialize all pins to GPIO mode, input by default
void digitalWrite(uint8_t pin, uint8_t val)
{
if (pin >= CORE_NUM_DIGITAL) return;
if (*portModeRegister(pin)) {
if (val) {
*portSetRegister(pin) = 1;
} else {
*portClearRegister(pin) = 1;
}
} else {
volatile uint32_t *config = portConfigRegister(pin);
if (val) {
// TODO use bitband for atomic read-mod-write
*config |= (PORT_PCR_PE | PORT_PCR_PS);
//*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
} else {
// TODO use bitband for atomic read-mod-write
*config &= ~(PORT_PCR_PE);
//*config = PORT_PCR_MUX(1);
}
}
}
uint8_t digitalRead(uint8_t pin)
{
if (pin >= CORE_NUM_DIGITAL) return 0;
return *portInputRegister(pin);
}
void pinMode(uint8_t pin, uint8_t mode)
{
volatile uint32_t *config;
if (pin >= CORE_NUM_DIGITAL) return;
config = portConfigRegister(pin);
if (mode == OUTPUT) {
*portModeRegister(pin) = 1;
*config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
} else {
*portModeRegister(pin) = 0;
if (mode == INPUT) {
*config = PORT_PCR_MUX(1);
} else {
*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
}
}
}
void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
{
if (bitOrder == LSBFIRST) {
shiftOut_lsbFirst(dataPin, clockPin, value);
} else {
shiftOut_msbFirst(dataPin, clockPin, value);
}
}
void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
{
uint8_t mask;
for (mask=0x01; mask; mask <<= 1) {
digitalWrite(dataPin, value & mask);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
}
}
void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
{
uint8_t mask;
for (mask=0x80; mask; mask >>= 1) {
digitalWrite(dataPin, value & mask);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
}
}
uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
{
if (bitOrder == LSBFIRST) {
return shiftIn_lsbFirst(dataPin, clockPin);
} else {
return shiftIn_msbFirst(dataPin, clockPin);
}
}
uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
{
uint8_t mask, value=0;
for (mask=0x01; mask; mask <<= 1) {
digitalWrite(clockPin, HIGH);
if (digitalRead(dataPin)) value |= mask;
digitalWrite(clockPin, LOW);
}
return value;
}
uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
{
uint8_t mask, value=0;
for (mask=0x80; mask; mask >>= 1) {
digitalWrite(clockPin, HIGH);
if (digitalRead(dataPin)) value |= mask;
digitalWrite(clockPin, LOW);
}
return value;
}
// the systick interrupt is supposed to increment this at 1 kHz rate
volatile uint32_t systick_millis_count = 0;
//uint32_t systick_current, systick_count, systick_istatus; // testing only
uint32_t micros(void)
{
uint32_t count, current, istatus;
__disable_irq();
current = SYST_CVR;
count = systick_millis_count;
istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
__enable_irq();
//systick_current = current;
//systick_count = count;
//systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
current = ((F_CPU / 1000) - 1) - current;
return count * 1000 + current / (F_CPU / 1000000);
}
void delay(uint32_t ms)
{
uint32_t start = micros();
if (ms > 0) {
while (1) {
if ((micros() - start) >= 1000) {
ms--;
if (ms == 0) return;
start += 1000;
}
yield();
}
}
}
#if F_CPU == 96000000
#define PULSEIN_LOOPS_PER_USEC 14
#elif F_CPU == 48000000
#define PULSEIN_LOOPS_PER_USEC 7
#elif F_CPU == 24000000
#define PULSEIN_LOOPS_PER_USEC 4
#endif
uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
{
uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
uint32_t usec_start, usec_stop;
// wait for any previous pulse to end
while (*reg) {
if (--timeout_count == 0) return 0;
}
// wait for the pulse to start
while (!*reg) {
if (--timeout_count == 0) return 0;
}
usec_start = micros();
// wait for the pulse to stop
while (*reg) {
if (--timeout_count == 0) return 0;
}
usec_stop = micros();
return usec_stop - usec_start;
}
uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
{
uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
uint32_t usec_start, usec_stop;
// wait for any previous pulse to end
while (!*reg) {
if (--timeout_count == 0) return 0;
}
// wait for the pulse to start
while (*reg) {
if (--timeout_count == 0) return 0;
}
usec_start = micros();
// wait for the pulse to stop
while (!*reg) {
if (--timeout_count == 0) return 0;
}
usec_stop = micros();
return usec_stop - usec_start;
}
// TODO: an inline version should handle the common case where state is const
uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
{
if (pin >= CORE_NUM_DIGITAL) return 0;
if (state) return pulseIn_high(portInputRegister(pin), timeout);
return pulseIn_low(portInputRegister(pin), timeout);;
}