-
Notifications
You must be signed in to change notification settings - Fork 1
/
config.toml
41 lines (36 loc) · 1.42 KB
/
config.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Model Config File
# This gets copied to model directory when training is started
[database]
train = './data/train_data.csv'
test = './data/test_data.csv'
[data_stats]
lmin = 0.0 # load minimum
lmax = 600.0 # load maximum (generation capacity)
tmin = 0.0 # temperature minimum
tmax = 120.0 # temperature maximum
yearStart = 1900.0 # counting year from 1900
yearEnd = 2100.0 # world ends in 2100
[model_arch]
modelArch = 'LSTM01' # model architecture to use from modelLib.py
modelDir = './models' # where models are saved
modelName = 'LSTM01_001' # name to save model with
[model_params] # params particular to an architecture (define models in modelLib.py)
seqLength = 360 # number of hours, 360 = 24 * 15 days
stepSize = 120 # number of hours offset between each sequence
inputDim = 7
outputDim = 1
denseUnits = [1024,1024,1024,1024]
denseActivation = ['prelu', 'prelu', 'prelu', 'prelu']
lstmUnits = [256,1]
lstmActivation = ['sigmoid','sigmoid']
batchnorm = true
dropout = 0.5
[training_params]
epochs = 100
batchSize = 512
patience = 40 # number of epochs to wait before stopping if no change in loss
learningRate = 0.001
optimizer = 'adam' # 'sgd' / 'adam' / 'adagrad' / 'adadelta'/ 'rmsprop'
lossFunc = 'mse' # 'mse' / 'mae' / 'mape'
metricFuncs = []
saveAllWeights = false