From df3868b87fb37de80fd17fcccd5746f8e9fe0649 Mon Sep 17 00:00:00 2001 From: Corey Date: Wed, 12 Jun 2024 11:47:42 -0400 Subject: [PATCH 01/11] Updating BCs documentation --- .../source/bcs/CircuitDirichletPotential.md | 22 +++++++- doc/content/source/bcs/DCIonBC.md | 41 +++++++++++--- .../source/bcs/DriftDiffusionDoNothingBC.md | 20 ++++++- .../source/bcs/EconomouDielectricBC.md | 29 +++++++--- .../bcs/ElectronAdvectionDoNothingBC.md | 20 ++++++- .../bcs/ElectronDiffusionDoNothingBC.md | 19 ++++++- .../bcs/ElectronTemperatureDirichletBC.md | 28 +++++++--- doc/content/source/bcs/FieldEmissionBC.md | 56 ++++++++++++++++--- .../source/bcs/HagelaarElectronAdvectionBC.md | 42 +++++++++++--- doc/content/source/bcs/HagelaarElectronBC.md | 44 ++++++++++++--- .../source/bcs/HagelaarEnergyAdvectionBC.md | 40 ++++++++++--- doc/content/source/bcs/HagelaarEnergyBC.md | 44 ++++++++++++--- .../source/bcs/HagelaarIonAdvectionBC.md | 41 +++++++++++--- .../source/bcs/HagelaarIonDiffusionBC.md | 31 +++++++--- .../source/bcs/LogDensityDirichletBC.md | 22 +++++--- .../source/bcs/LymberopoulosElectronBC.md | 29 +++++++--- doc/content/source/bcs/LymberopoulosIonBC.md | 28 +++++++--- doc/content/source/bcs/MatchedValueLogBC.md | 23 ++++++++ .../bcs/NeumannCircuitVoltageMoles_KV.md | 49 +++++++++++++++- .../source/bcs/PenaltyCircuitPotential.md | 12 +++- .../source/bcs/PotentialDriftOutflowBC.md | 16 +++++- .../source/bcs/SakiyamaElectronDiffusionBC.md | 27 ++++++--- .../source/bcs/SakiyamaEnergyDiffusionBC.md | 27 ++++++--- .../bcs/SakiyamaEnergySecondaryElectronBC.md | 34 ++++++++--- .../source/bcs/SakiyamaIonAdvectionBC.md | 34 ++++++++--- .../source/bcs/SakiyamaSecondaryElectronBC.md | 34 ++++++++--- doc/content/source/bcs/SecondaryElectronBC.md | 37 +++++++++--- .../source/bcs/SecondaryElectronEnergyBC.md | 37 +++++++++--- src/bcs/FieldEmissionBC.C | 5 +- src/bcs/HagelaarEnergyBC.C | 2 + src/bcs/MatchedValueLogBC.C | 2 + 31 files changed, 725 insertions(+), 170 deletions(-) create mode 100644 doc/content/source/bcs/MatchedValueLogBC.md diff --git a/doc/content/source/bcs/CircuitDirichletPotential.md b/doc/content/source/bcs/CircuitDirichletPotential.md index 80bf0915e6d..1051180d96c 100644 --- a/doc/content/source/bcs/CircuitDirichletPotential.md +++ b/doc/content/source/bcs/CircuitDirichletPotential.md @@ -10,7 +10,27 @@ documentation clear for users. ## Overview -!! Replace these lines with information regarding the CircuitDirichletPotential object. +`CircuitDirichletPotential` is a Dirichlet boundary condition for a potential based on Kirchoff's voltage law. + +The formulation of the potential at the wall is: + +\begin{equation} +V_{source} + V_{cathode} = e \Gamma A R +\end{equation} + +Where $V_{source}$ is driven the potential, $V_{cathode}$ is the potential at cathode, +$\Gamma$ is the charged flux to the boundary, $e$ is the charge elemental, $A$ is the cross-sectional area of the plasma, and +$R$ is the ballast resistance. When converting the density to log form and applying a scaling factor of the mesh / voltage, +`CircuitDirichletPotential` is defined as + +\begin{equation} +V_{source} + V_{cathode} = e N_{A} \Gamma \frac{A}{l_{c}^2} \frac{R}{V_{c}} +\end{equation} + +Where $N_{A}$ is Avogadro's number, $l_{c}$ is the scaling factor of the mesh, and $V_{c}$ is the scaling factor of the potential. + + +The charged flux is supplied as a [Postprocessor](syntax/Postprocessors/index.md) (usually the [`SideCurrent`](/postprocessors/SideCurrent.md) Postprocessor). ## Example Input File Syntax diff --git a/doc/content/source/bcs/DCIonBC.md b/doc/content/source/bcs/DCIonBC.md index 50cf86c5a97..c8a1310de9b 100644 --- a/doc/content/source/bcs/DCIonBC.md +++ b/doc/content/source/bcs/DCIonBC.md @@ -1,20 +1,45 @@ # DCIonBC -!alert construction title=Undocumented Class -The DCIonBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/DCIonBC ## Overview -!! Replace these lines with information regarding the DCIonBC object. +`DCIonBC` is an electric field driven outflow boundary condition. `DCIonBC` assumes the electrostatic approximation for the electric field. + +The electrostatic electric field driven outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = a \ \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $\mu_{j}$ is the mobility coefficient, $n_{j}$ is the density, and $V$ is +the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. When converting the density to logarithmic form and applying a scaling +factor of the mesh, the strong form for `DCIonBC` is defined as + +\begin{equation} +a = +\begin{cases} +1, & \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = a \ \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) +\end{equation} + +Where $N_{j}$ is the molar density of the specie in logarithmic form and +$l_{c}$ is the scaling factor of the mesh. + ## Example Input File Syntax -!! Describe and include an example of how to use the DCIonBC object. +An example of how to use `DCIonBC` can be found in the +test file `mean_en.i`. + +!listing test/tests/1d_dc/mean_en.i block=BCs/OHm_physical !syntax parameters /BCs/DCIonBC diff --git a/doc/content/source/bcs/DriftDiffusionDoNothingBC.md b/doc/content/source/bcs/DriftDiffusionDoNothingBC.md index f054810c3db..b20f4d25ba6 100644 --- a/doc/content/source/bcs/DriftDiffusionDoNothingBC.md +++ b/doc/content/source/bcs/DriftDiffusionDoNothingBC.md @@ -10,7 +10,25 @@ documentation clear for users. ## Overview -!! Replace these lines with information regarding the DriftDiffusionDoNothingBC object. +`DriftDiffusionDoNothingBC` is an outflow boundary condition where the outflow at the +boundary is equal to the bulk dift-diffusion equations. +`DriftDiffusionDoNothingBC` assumes the electrostatic approximation for the electric field. + +The outflow is defined as + +\begin{equation} +\Gamma_{j} \cdot \textbf{n} = \text{sign}_{j} \mu_{j} n_{j} \ \text{-} \nabla (V) \cdot \textbf{n} - D_{j} \nabla (n_{j}) \cdot \textbf{n} +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species, $\text{-}1$ for negatively charged species and $\text{0}$ for neutral species), $\mu_{j}$ is the mobility coefficient, $D_{j}$ is the diffusion coefficient, $n_{j}$ is the density, and $V$ is +the potential. When converting the density to logarithmic form and applying a scaling factor of the mesh, the strong form for `DriftDiffusionDoNothingBC` is defined as + +\begin{equation} +\Gamma_{j} \cdot \textbf{n} = \text{sign}_{j} \mu_{j} \exp(N_{j}) \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} - D_{j} \exp(N_{j}) \nabla (N_{j} / l_{c}) \cdot \textbf{n} +\end{equation} + +Where $N_{j}$ is the molar density of the specie in logarithmic form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/EconomouDielectricBC.md b/doc/content/source/bcs/EconomouDielectricBC.md index 764c6e7d932..11985c74b90 100644 --- a/doc/content/source/bcs/EconomouDielectricBC.md +++ b/doc/content/source/bcs/EconomouDielectricBC.md @@ -1,20 +1,33 @@ # EconomouDielectricBC -!alert construction title=Undocumented Class -The EconomouDielectricBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/EconomouDielectricBC ## Overview -!! Replace these lines with information regarding the EconomouDielectricBC object. +`EconomouDielectricBC` is an type of [`PenaltyDirichletBC`](/bcs/ADPenaltyDirichletBC.md) for the potential on the boundary of a grounded ideal dielectric. + +The potential at the boundary of a grounded ideal dielectric is defined as + +\begin{equation} +\frac{\epsilon_{i}}{d_{i}}\frac{\partial V_{i}}{\partial t} = e(\Gamma_{+} \cdot \textbf{n} -\Gamma_{e} \cdot \textbf{n})+\epsilon_{0}\frac{\partial (E \cdot \textbf{n}) }{\partial t} \\[10pt] +E = \text{-} \nabla (V)\\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{1}{4}\sqrt{\frac{8 k T_{e}}{\pi m_{e}}} \ n_e - \gamma \Gamma_{+} \cdot \textbf{n} \\[10pt] +\Gamma_{+} \cdot \textbf{n} = a \ \mu_{+} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{+} \\[10pt] +a = +\begin{cases} +1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} +\end{equation} + +Where $\epsilon_{i}$ is the permittivity of the dielectric, $d_{i}$ is the thickness of the dielectric, $V_{i}$ is the voltage on the dielectric, $\textbf{n}$ is the normal to the boundary, $e$ is the elemental charge, $\epsilon_{0}$ is the permittivity of free space, and $E$ is the E-field normal to the dielectric. $\Gamma_{e}$ and $\Gamma_{+}$ are the electron and ion outflow flux and are defined with the [`SakiyamaElectronDiffusionBC`](/bcs/SakiyamaElectronDiffusionBC.md), [`SakiyamaSecondaryElectronBC`](/bcs/SakiyamaSecondaryElectronBC.md) and [`SakiyamaIonAdvectionBC`](/bcs/SakiyamaIonAdvectionBC.md) (please refer to those BC's for more information on the fluxes). ## Example Input File Syntax -!! Describe and include an example of how to use the EconomouDielectricBC object. +An example of how to use `EconomouDielectricBC` can be found in the +test file `2D_RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/potential_Dielectric !syntax parameters /BCs/EconomouDielectricBC diff --git a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md index d3606523ea4..84aa731b540 100644 --- a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md +++ b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md @@ -10,7 +10,25 @@ documentation clear for users. ## Overview -!! Replace these lines with information regarding the ElectronAdvectionDoNothingBC object. +`ElectronAdvectionDoNothingBC` is an outflow boundary condition where the outflow at the +boundary is equal to the bulk election advection equation. +`ElectronAdvectionDoNothingBC` assumes the electrostatic approximation for the electric field. + +The outflow is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = \text{-} \mu_{e} n_{e} \ \text{-} \nabla (V) \cdot \textbf{n} +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $\mu_{e}$ is the mobility coefficient, $n_{e}$ is the electron density, and $V$ is the potential. When converting the density to logarithmic form and applying a scaling +factor of the mesh, the strong form for `ElectronAdvectionDoNothingBC` is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = \text{-} \mu_{e} \exp(N_{e}) \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} +\end{equation} + +Where $N_{j}$ is the molar density of the specie in logarithmic form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md b/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md index 930de58d90a..1d3e71ca396 100644 --- a/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md +++ b/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md @@ -10,7 +10,24 @@ documentation clear for users. ## Overview -!! Replace these lines with information regarding the ElectronDiffusionDoNothingBC object. +`ElectronDiffusionDoNothingBC` is an outflow boundary condition where the outflow at the +boundary is equal to the bulk election diffusion equation. + +The outflow is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = - D_{e} \nabla (n_{e}) \cdot \textbf{n} +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $D_{e}$ is the diffusion coefficient, and $n_{e}$ is the electron density. When converting the density to logarithmic form and applying a scaling +factor of the mesh, the strong form for `ElectronDiffusionDoNothingBC` is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = - D_{e} \exp(N_{e}) \nabla (N_{e} / l_{c}) \cdot \textbf{n} +\end{equation} + +Where $N_{e}$ is the molar density of the specie in logarithmic form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/ElectronTemperatureDirichletBC.md b/doc/content/source/bcs/ElectronTemperatureDirichletBC.md index 9d0c382fd35..182b74cd15f 100644 --- a/doc/content/source/bcs/ElectronTemperatureDirichletBC.md +++ b/doc/content/source/bcs/ElectronTemperatureDirichletBC.md @@ -1,20 +1,32 @@ # ElectronTemperatureDirichletBC -!alert construction title=Undocumented Class -The ElectronTemperatureDirichletBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/ElectronTemperatureDirichletBC ## Overview -!! Replace these lines with information regarding the ElectronTemperatureDirichletBC object. +`ElectronTemperatureDirichletBC` is an type of [`PenaltyDirichletBC`](/bcs/ADPenaltyDirichletBC.md) for the electron temperature on the boundary. + +The electron temperature at the boundary is defined as + +\begin{equation} +T_{e} = \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}} +\end{equation} + +Where $T_{e}$ is the electron temperature, $n_{\varepsilon}$ is the electron mean energy density, and $n_{e}$ is the electron density. When converting the density to logarithmic form, +`ElectronTemperatureDirichletBC` is defined as + +\begin{equation} +T_{e} = \frac{2}{3} \exp (N_{\varepsilon} - N_{e}) +\end{equation} + +Where $N$ is the molar density of the species in logarithmic form. ## Example Input File Syntax -!! Describe and include an example of how to use the ElectronTemperatureDirichletBC object. +An example of how to use `ElectronTemperatureDirichletBC` can be found in the +test file `2D_RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/RF_Plasma_actions.i block=BCs/mean_en_physical_right !syntax parameters /BCs/ElectronTemperatureDirichletBC diff --git a/doc/content/source/bcs/FieldEmissionBC.md b/doc/content/source/bcs/FieldEmissionBC.md index 0f69277d1eb..d1d59d60ca5 100644 --- a/doc/content/source/bcs/FieldEmissionBC.md +++ b/doc/content/source/bcs/FieldEmissionBC.md @@ -1,20 +1,60 @@ # FieldEmissionBC -!alert construction title=Undocumented Class -The FieldEmissionBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/FieldEmissionBC ## Overview -!! Replace these lines with information regarding the FieldEmissionBC object. +`FieldEmissionBC` is the outflow boundary condition assuming the the electron current density is defined by field emission. + +Using a Fowler-Nordheim calculation for the field emission, the electron current density is defined as + +\begin{equation} +a = +\begin{cases} +1, & \nabla (V) \cdot \textbf{n} > 0\\ +0, & \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\textbf{J}_{\textbf{e}} \cdot \textbf{n} = a \ \phi^{-1} \ F^{2} \exp \left[\text{-}v(f) \ b \ \phi^{3/2} / F \right] \\[10pt] +F = \left( 1-a \right) \gamma \left( \text{-} \nabla V \right) \cdot \textbf{n} \\[10pt] +a = 1.541434e\text{-}6 A \ eV \ V^{-2} \\[10pt] +b = 6.830890e9 eV^{-3/2} \ V \ m^{-1} \\[10pt] +v(f) = 1 - f + \frac{1}{6}f\ln f \\[10pt] +f = c \frac{F}{\phi^{2}} \\[10pt] +c = 1.439964e\text{-}9 \ eV^{2} \ V^{-1} \ m +\end{equation} + +Where $\textbf{J}_{\textbf{e}}$ is the electron current density, $a$ is the first Fowler–Nordheim constant, $\phi$ is the local work function, $F$ is the local field, $b$ is the second Fowler–Nordheim constant, $v(f)$ is a correction factor that depends on the scaled barrier field ($f$), $\textbf{n}$ is the normal of the boundary, $\gamma$ is the field enhancement factor, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. With the electron current density, the outward electron flux is defined as + +\begin{equation} +\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V) n_{i} - D_{i} \nabla (n_{i}) \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a)}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/e - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\mu_{i}$ is the mobility coefficient of the ions, $\text{sign}_{i}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $n_{i}$ is the ion density, $D_{i}$ is the diffusion coefficient of ions, $e$ is the elemental charge, and $\gamma_{se}$ is the ion induced secondary electron coefficient. $r$ is defined as the fraction of particles reflected by the surface. + +When converting the density to log form and applying a scaling factor of the mesh and voltage, the changes to `FieldEmissionBC` are defined as + + +\begin{equation} +F = \left( 1-a \right) \gamma \left( \text{-} \nabla V / l_{c} \right) \cdot \textbf{n} \\[10pt] +a = 1.541434e\text{-}6 * V_{c}^{2} \\[10pt] +b = 6.830890e9 eV^{-3/2} / V_{c} \\[10pt] +c = 1.439964e\text{-}9 * V_{c}\\[10pt] +\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V / l_{c}) \exp(N_{i}) - D_{i} \exp(N_{i}) \nabla (N_{i} / l_{c}) \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a)}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/ (e / N_{A}) - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) +\end{equation} + +Where $N_{i}$ is the molar density of the specie in log form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. + + ## Example Input File Syntax -!! Describe and include an example of how to use the FieldEmissionBC object. +An example of how to use `FieldEmissionBC` can be found in the +test file `field_emission.i`. + +!listing test/tests/field_emission/field_emission.i block=BCs/FieldEmission_left + !syntax parameters /BCs/FieldEmissionBC diff --git a/doc/content/source/bcs/HagelaarElectronAdvectionBC.md b/doc/content/source/bcs/HagelaarElectronAdvectionBC.md index dc773ca90c1..99c77a24f93 100644 --- a/doc/content/source/bcs/HagelaarElectronAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarElectronAdvectionBC.md @@ -1,20 +1,46 @@ # HagelaarElectronAdvectionBC -!alert construction title=Undocumented Class -The HagelaarElectronAdvectionBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/HagelaarElectronAdvectionBC ## Overview -!! Replace these lines with information regarding the HagelaarElectronAdvectionBC object. +`HagelaarElectronAdvectionBC` is an electric field driven outflow boundary condition. +`HagelaarElectronAdvectionBC` assumes the electrostatic approximation for the electric field. + +The electrostatic electric field driven outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V) \cdot \textbf{n} \ n_{e} \right] +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $n$ is the normal of the boundary, +$\mu_{e}$ is the mobility coefficient, $n_{e}$ is the electron density, and $V$ is +the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +factor of the mesh, the strong form for `HagelaarElectronAdvectionBC` is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{e}) \right] +\end{equation} + +Where $N_{e}$ is the molar density of the specie in log form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the HagelaarElectronAdvectionBC object. +An example of how to use `HagelaarElectronAdvectionBC` can be found in the +test file `NonlocalPotentialBCWithSchottky.i`. + +!listing test/tests/1d_dc/NonlocalPotentialBCWithSchottky.i block=BCs/em_physical_right !syntax parameters /BCs/HagelaarElectronAdvectionBC diff --git a/doc/content/source/bcs/HagelaarElectronBC.md b/doc/content/source/bcs/HagelaarElectronBC.md index ada1e9bcac3..37d2c46d1df 100644 --- a/doc/content/source/bcs/HagelaarElectronBC.md +++ b/doc/content/source/bcs/HagelaarElectronBC.md @@ -1,20 +1,48 @@ # HagelaarElectronBC -!alert construction title=Undocumented Class -The HagelaarElectronBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/HagelaarElectronBC ## Overview -!! Replace these lines with information regarding the HagelaarElectronBC object. +`HagelaarElectronBC` is an electric field driven and thermal outflow boundary condition. +`HagelaarElectronBC` assumes the electrostatic approximation for the electric field. + +The electrostatic electric field and thermal driven outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V) \cdot \textbf{n} \ n_{e} + \frac{1}{2}v_{th,e}n_{e} \right] +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, +$\mu_{e}$ is the mobility coefficient, $n_{e}$ is the electron density, $V$ is +the potential, $v_{th,e}$ is the thermal velocity of the electrons, $e$ is the elementary charge, and $n_{\varepsilon}$ is the mean energy density. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +factor of the mesh, the strong form for `HagelaarElectronBC` is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{e}) + \frac{1}{2}v_{th,e}\exp(N_{e}) \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the HagelaarElectronBC object. +An example of how to use `HagelaarElectronBC` can be found in the +test file `mean_en.i`. + +!listing test/tests/1d_dc/mean_en.i block=BCs/em_physical_right !syntax parameters /BCs/HagelaarElectronBC diff --git a/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md b/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md index b3709d6c4b3..f92a7e8e755 100644 --- a/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md @@ -1,20 +1,44 @@ # HagelaarEnergyAdvectionBC -!alert construction title=Undocumented Class -The HagelaarEnergyAdvectionBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/HagelaarEnergyAdvectionBC ## Overview -!! Replace these lines with information regarding the HagelaarEnergyAdvectionBC object. +`HagelaarEnergyAdvectionBC` is an electric field driven outflow boundary condition with the addition of ion induced secondary electron energy. +`HagelaarEnergyAdvectionBC` assumes the electrostatic approximation for the electric field. + +The outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \frac{5}{3} \mu_{e} \text{-} \nabla (V) \cdot \textbf{n} \ n_{e} \ \epsilon \right] - \frac{5}{3} \epsilon_{\gamma} (1 - a_{e}) \gamma \left[ \mu_{+} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{+} \right] +\end{equation} + +Where $\Gamma_{\epsilon}$ is the outflow of the electron energy density normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $n_{+}$ is the mean energy density, $\mu_{j}$ is the mobility coefficient, $V$ is the potential, $\epsilon_{\gamma}$ is the energy of the secondary electron, and $\gamma$ is the ion induced secondary electron coefficient. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +factor of the mesh, the strong form for `HagelaarEnergyAdvectionBC` is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \frac{5}{3} \mu_{e} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{e}) \ \epsilon \right] - \frac{5}{3} \epsilon_{\gamma} (1 - a_{e}) \gamma \left[ \mu_{+} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{+}) \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the HagelaarEnergyAdvectionBC object. +An example of how to use `HagelaarEnergyAdvectionBC` can be found in the +test file `Input.i`. + +!listing test/tests/reflections/Schottky_300_V_5_um/Input.i block=BCs/mean_en_physical_left !syntax parameters /BCs/HagelaarEnergyAdvectionBC diff --git a/doc/content/source/bcs/HagelaarEnergyBC.md b/doc/content/source/bcs/HagelaarEnergyBC.md index 216d7c043b2..323e8d15cf7 100644 --- a/doc/content/source/bcs/HagelaarEnergyBC.md +++ b/doc/content/source/bcs/HagelaarEnergyBC.md @@ -1,20 +1,48 @@ # HagelaarEnergyBC -!alert construction title=Undocumented Class -The HagelaarEnergyBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/HagelaarEnergyBC ## Overview -!! Replace these lines with information regarding the HagelaarEnergyBC object. +`HagelaarEnergyBC` is an electric field driven and thermal outflow boundary condition. +`HagelaarEnergyBC` assumes the electrostatic approximation for the electric field. + +The electrostatic electric field and thermal driven outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{\epsilon} \ \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{\epsilon} \ \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\epsilon}}{n_{e}}} \\[10pt] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{\epsilon}}{1+r_{\epsilon}} \left[ -(2 a_{\epsilon}-1) \ \mu_{\epsilon} \text{-} \nabla (V) \cdot \textbf{n} \ n_{\epsilon} + \frac{5}{6}v_{th,e}n_{\epsilon} \right] +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, +$\mu_{\epsilon}$ is the mobility coefficient, $n_{\epsilon}$ is the mean energy density, $n_{e}$ is the electron density, $V$ is +the potential, $v_{th,e}$ is the thermal velocity of the electrons, and $e$ is the elementary charge. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +factor of the mesh, the strong form for `HagelaarEnergyBC` is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{\epsilon} \ \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{\epsilon} \ \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{\epsilon}}{1+r_{\epsilon}} \left[ -(2 a_{\epsilon}-1) \ \mu_{\epsilon} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{\epsilon}) + \frac{5}{6}v_{th,e}\exp(N_{\epsilon}) \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the HagelaarEnergyBC object. +An example of how to use `HagelaarEnergyBC` can be found in the +test file `mean_en.i`. + +!listing test/tests/1d_dc/mean_en.i block=BCs/mean_en_physical_right !syntax parameters /BCs/HagelaarEnergyBC diff --git a/doc/content/source/bcs/HagelaarIonAdvectionBC.md b/doc/content/source/bcs/HagelaarIonAdvectionBC.md index 12c8c716c18..885c6d04c83 100644 --- a/doc/content/source/bcs/HagelaarIonAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarIonAdvectionBC.md @@ -1,20 +1,45 @@ # HagelaarIonAdvectionBC -!alert construction title=Undocumented Class -The HagelaarIonAdvectionBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/HagelaarIonAdvectionBC ## Overview -!! Replace these lines with information regarding the HagelaarIonAdvectionBC object. +`HagelaarIonAdvectionBC` is an electric field driven outflow boundary condition. +`HagelaarIonAdvectionBC` assumes the electrostatic approximation for the electric field. + +The electrostatic electric field driven outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} \right] +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $n$ is the normal of the boundary, +$\mu_{j}$ is the mobility coefficient, $n_{j}$ is the ion density, and $V$ is +the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarIonAdvectionBC` is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the HagelaarIonAdvectionBC object. +An example of how to use `HagelaarIonAdvectionBC` can be found in the +test file `mean_en.i`. + +!listing test/tests/1d_dc/mean_en.i block=BCs/Arp_physical_right_advection !syntax parameters /BCs/HagelaarIonAdvectionBC diff --git a/doc/content/source/bcs/HagelaarIonDiffusionBC.md b/doc/content/source/bcs/HagelaarIonDiffusionBC.md index 6170300ef1a..42fb0175f13 100644 --- a/doc/content/source/bcs/HagelaarIonDiffusionBC.md +++ b/doc/content/source/bcs/HagelaarIonDiffusionBC.md @@ -1,20 +1,35 @@ # HagelaarIonDiffusionBC -!alert construction title=Undocumented Class -The HagelaarIonDiffusionBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/HagelaarIonDiffusionBC ## Overview -!! Replace these lines with information regarding the HagelaarIonDiffusionBC object. +`HagelaarIonDiffusionBC` is a thermal outflow boundary condition. + +The thermal driven outflow is defined as + +\begin{equation} +v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ \frac{1}{2}v_{th,j}n_{j} \right] +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{j}$ is the ion density, $v_{th,j}$ is the thermal velocity of the ions, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +factor of the mesh, the strong form for `HagelaarIonDiffusionBC` is defined as + +\begin{equation} +v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ \frac{1}{2}v_{th,j}\exp(N_{j}) \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the HagelaarIonDiffusionBC object. +An example of how to use `HagelaarIonDiffusionBC` can be found in the +test file `mean_en.i`. + +!listing test/tests/1d_dc/mean_en.i block=BCs/Arp_physical_right_diffusion !syntax parameters /BCs/HagelaarIonDiffusionBC diff --git a/doc/content/source/bcs/LogDensityDirichletBC.md b/doc/content/source/bcs/LogDensityDirichletBC.md index 2a1a480a7d8..96cb1f994cb 100644 --- a/doc/content/source/bcs/LogDensityDirichletBC.md +++ b/doc/content/source/bcs/LogDensityDirichletBC.md @@ -1,20 +1,26 @@ # LogDensityDirichletBC -!alert construction title=Undocumented Class -The LogDensityDirichletBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/LogDensityDirichletBC ## Overview -!! Replace these lines with information regarding the LogDensityDirichletBC object. +`LogDensityDirichletBC` is a Dirichlet boundary condition for molar density of the species in logarithmic form. + +The formulation of the density at the wall is: + +\begin{equation} +n_{j} = N_{A} \exp(N_{j}) +\end{equation} + +Where $n_{j}$ is the density, $N_{j}$ is the molar density of the specie in logarithmic form, and $N_{A}$ is Avogadro's +number. ## Example Input File Syntax -!! Describe and include an example of how to use the LogDensityDirichletBC object. +An example of how to use `LogDensityDirichletBC` can be found in the +test file `RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/RF_Plasma_actions.i block=BCs/Ar*_physical_right_diffusion !syntax parameters /BCs/LogDensityDirichletBC diff --git a/doc/content/source/bcs/LymberopoulosElectronBC.md b/doc/content/source/bcs/LymberopoulosElectronBC.md index ee6133c5016..59ac3cf2a48 100644 --- a/doc/content/source/bcs/LymberopoulosElectronBC.md +++ b/doc/content/source/bcs/LymberopoulosElectronBC.md @@ -1,20 +1,33 @@ # LymberopoulosElectronBC -!alert construction title=Undocumented Class -The LymberopoulosElectronBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/LymberopoulosElectronBC ## Overview -!! Replace these lines with information regarding the LymberopoulosElectronBC object. +`LymberopoulosElectronBC` is a thermal outflow boundary condition with the addition of ion induced secondary electron energy. + +The outflow is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = k_{s} n_{e} - \gamma \left[ \text{sign}_{i} \mu_{i} n_{i} \text{-} \nabla (V) \cdot \textbf{n} \right] +\end{equation} + +Where $\Gamma_{e}$ is the outflow of the electrons normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $n_{i}$ is the ion density, $k_{s}$ is thermal speed of the electrons, $\mu_{i}$ is the oion mobility coefficient, $\text{sign}_{i}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $V$ is the potential, and $\gamma$ is the ion induced secondary electron coefficient. When converting the density to log form and applying a scaling +factor of the mesh, the strong form for `LymberopoulosElectronBC` is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = k_{s} \exp(N_{e}) - \gamma \left[ \text{sign}_{i} \mu_{i} \exp(N_{i}) \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the LymberopoulosElectronBC object. +An example of how to use `LymberopoulosElectronBC` can be found in the +test file `RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/RF_Plasma_actions.i block=BCs/em_physical_right !syntax parameters /BCs/LymberopoulosElectronBC diff --git a/doc/content/source/bcs/LymberopoulosIonBC.md b/doc/content/source/bcs/LymberopoulosIonBC.md index 755a80ef045..54b9e329f4b 100644 --- a/doc/content/source/bcs/LymberopoulosIonBC.md +++ b/doc/content/source/bcs/LymberopoulosIonBC.md @@ -1,20 +1,32 @@ # LymberopoulosIonBC -!alert construction title=Undocumented Class -The LymberopoulosIonBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/LymberopoulosIonBC ## Overview -!! Replace these lines with information regarding the LymberopoulosIonBC object. +`LymberopoulosIonBC` is a thermal outflow boundary condition with the addition of ion induced secondary electron energy. + +The outflow is defined as + +\begin{equation} +\Gamma_{+} \cdot \textbf{n} = \mu_{+} n_{+} \text{-} \nabla (V) \cdot \textbf{n} +\end{equation} + +Where $\Gamma_{+}$ is the outflow of the ions normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{+}$ is the ion density, $\mu_{+}$ is the ion mobility coefficient, and $V$ is the potential. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `LymberopoulosIonBC` is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = \mu_{+} \exp(N_{+}) \text{-} \nabla (V / l_{c}) \cdot \textbf{n} +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and +$l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the LymberopoulosIonBC object. +An example of how to use `LymberopoulosIonBC` can be found in the +test file `RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/RF_Plasma_actions.i block=BCs/Ar+_physical_right_advection !syntax parameters /BCs/LymberopoulosIonBC diff --git a/doc/content/source/bcs/MatchedValueLogBC.md b/doc/content/source/bcs/MatchedValueLogBC.md new file mode 100644 index 00000000000..97c348c0f95 --- /dev/null +++ b/doc/content/source/bcs/MatchedValueLogBC.md @@ -0,0 +1,23 @@ +# MatchedValueLogBC + +!alert construction title=Undocumented Class +The MatchedValueLogBC has not been documented. The content listed below should be used as a starting point for +documenting the class, which includes the typical automatic documentation associated with a +MooseObject; however, what is contained is ultimately determined by what is necessary to make the +documentation clear for users. + +!syntax description /BCs/MatchedValueLogBC + +## Overview + +!! Replace these lines with information regarding the MatchedValueLogBC object. + +## Example Input File Syntax + +!! Describe and include an example of how to use the MatchedValueLogBC object. + +!syntax parameters /BCs/MatchedValueLogBC + +!syntax inputs /BCs/MatchedValueLogBC + +!syntax children /BCs/MatchedValueLogBC diff --git a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md index 1ba90522fb1..6a88a74e56a 100644 --- a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md +++ b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md @@ -10,11 +10,56 @@ documentation clear for users. ## Overview -!! Replace these lines with information regarding the NeumannCircuitVoltageMoles_KV object. +Note: add $n_{\gamma}$ + +`NeumannCircuitVoltageMoles_KV` is a Neumann boundary condition the equates the plasma and drive potential to the plasma current using Kirchoff’s voltage law for a circuit. + +The Kirchoff’s voltage law at the cathode is defined as + +\begin{equation} +V_{source} + V_{cathode} = e\left( \Gamma_{i} - \Gamma_{e} \right) AR +\end{equation} + +Where $V_{source}$ is driven the potential, $V_{cathode}$ is the potential at cathode, +$e$ is the charge elemental, $\Gamma$ is the flux of the electron or ions, $A$ is the cross-sectional area of the plasma, and $R$ is the ballast resistance. Within `NeumannCircuitVoltageMoles_KV`, the charged species' flux at the boundary are assumed to be: + +\begin{equation} +a = +\begin{cases} +1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V) \cdot \textbf{n} \ n_{e} + \frac{1}{2}v_{th,e}n_{e} \right] - (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{th,j}n_{j} \right] \\[10pt] +v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}} \\[10pt] +v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} +\end{equation} + +Where $\textbf{n}$ is the normal of the boundary, +$\mu$ is the mobility coefficient, $n$ is the specie density, $v_{th}$ is the thermal velocity of the species, $n_{\varepsilon}$ is the mean energy density of electrons, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. + +To convert this setup into a Neumann type BC, the set of equations are rearranged, so that this boundary condition solves for the grad potential normal for the boundary, such that: + +\begin{equation} +\nabla (V) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_{source}-V_{cathode} \right) + \frac{1}{2} e \left[ v_{th,e}n_{e} - \left[(1-a)\gamma - 1\right]v_{th,j}n_{j} \right] \ AR}{e \ \left[ (2a-1)\mu_{e} n_{e} - (2a_{j}-1)\left[(a-1)\gamma - 1\right]\mu_{j}n_{j} \right] AR} +\end{equation} + +When converting the density to log form and applying a scaling factor of the mesh and voltage, the strong form for `NeumannCircuitVoltageMoles_KV` is defined as + +\begin{equation} +v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] +\nabla (V / l_{c}) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_{source}-V_{cathode} \right) + \frac{1}{2} \frac{e N_{A}}{V_{c}} \left[ v_{th,e}\exp(N_{e}) - \left[(1-a)\gamma - 1\right]v_{th,j}\exp(N_{j}) \right] \ AR}{\frac{e N_{A}}{V_{c}} \left[ (2a-1)\mu_{e} \exp(N_{e}) - (2a_{j}-1)\left[(a-1)\gamma - 1\right]\mu_{j}\exp(N_{j}) \right] AR} +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. + ## Example Input File Syntax -!! Describe and include an example of how to use the NeumannCircuitVoltageMoles_KV object. +An example of how to use `NeumannCircuitVoltageMoles_KV` can be found in the +test file `mean_en.i`. + +!listing test/tests/1d_dc/mean_en.i block=BCs/potential_left !syntax parameters /BCs/NeumannCircuitVoltageMoles_KV diff --git a/doc/content/source/bcs/PenaltyCircuitPotential.md b/doc/content/source/bcs/PenaltyCircuitPotential.md index a2900f510d7..fbfd30d9308 100644 --- a/doc/content/source/bcs/PenaltyCircuitPotential.md +++ b/doc/content/source/bcs/PenaltyCircuitPotential.md @@ -10,7 +10,17 @@ documentation clear for users. ## Overview -!! Replace these lines with information regarding the PenaltyCircuitPotential object. +`PenaltyCircuitPotential` is a [`PenaltyDirichlBC`](/bcs/ADPenaltyDirichletBC.md) for a potential based on Kirchoff's voltage law. + +The formulation of the potential at the wall is: + +\begin{equation} +V_{source} + V_{cathode} = J \ A \ R +\end{equation} + +Where $V_{source}$ is driven the potential, $V_{cathode}$ is the potential at cathode, +$J$ is the current density, $A$ is the cross-sectional area of the plasma, and +$R$ is the ballast resistance. The current density is supplied through the [`CurrentDensityShapeSideUserObject`](/userobjects/CurrentDensityShapeSideUserObject.md). ## Example Input File Syntax diff --git a/doc/content/source/bcs/PotentialDriftOutflowBC.md b/doc/content/source/bcs/PotentialDriftOutflowBC.md index 261fd5eb725..862b4c18160 100644 --- a/doc/content/source/bcs/PotentialDriftOutflowBC.md +++ b/doc/content/source/bcs/PotentialDriftOutflowBC.md @@ -10,7 +10,21 @@ documentation clear for users. ## Overview -!! Replace these lines with information regarding the PotentialDriftOutflowBC object. +`PotentialDriftOutflowBC` is an electric field driven outflow boundary condition. +`PotentialDriftOutflowBC` assumes a mobility coefficient of unity, the electrostatic approximation for the electric field, and a non-scaled version of the specie's density. + +The electrostatic electric field driven outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \text{sign}_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \text{sign}_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = a \ \text{sign}_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} +\end{equation} + +When calculating with scaled densities and non-unity coefficients, please refer to [`HagelaarIonAdvectionBC`](/bcs/HagelaarIonAdvectionBC.md), [`DCIonBC`](/bcs/DCIonBC.md), or [`SakiyamaIonAdvectionBC`](/bcs/SakiyamaIonAdvectionBC.md). ## Example Input File Syntax diff --git a/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md b/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md index 2d43d0a3ada..89769a98f2a 100644 --- a/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md +++ b/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md @@ -1,20 +1,31 @@ # SakiyamaElectronDiffusionBC -!alert construction title=Undocumented Class -The SakiyamaElectronDiffusionBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/SakiyamaElectronDiffusionBC ## Overview -!! Replace these lines with information regarding the SakiyamaElectronDiffusionBC object. +`SakiyamaElectronDiffusionBC` is a thermal outflow boundary condition. + +The thermal driven outflow is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = \frac{1}{4}\sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}}n_{e} +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $e$ is the elementary charge, and $n_{\varepsilon}$ is the mean energy density. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaElectronDiffusionBC` is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = \frac{1}{4}\sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})}\exp(N_{e}) +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form. ## Example Input File Syntax -!! Describe and include an example of how to use the SakiyamaElectronDiffusionBC object. +An example of how to use `SakiyamaElectronDiffusionBC` can be found in the +test file `2D_RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/em_physical_diffusion !syntax parameters /BCs/SakiyamaElectronDiffusionBC diff --git a/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md b/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md index 03082d64742..faa9a7f7ed6 100644 --- a/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md +++ b/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md @@ -1,20 +1,31 @@ # SakiyamaEnergyDiffusionBC -!alert construction title=Undocumented Class -The SakiyamaEnergyDiffusionBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/SakiyamaEnergyDiffusionBC ## Overview -!! Replace these lines with information regarding the SakiyamaEnergyDiffusionBC object. +`SakiyamaEnergyDiffusionBC` is a thermal outflow boundary condition. + +The thermal driven outflow is defined as + +\begin{equation} +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1}{4}\sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\epsilon}}{n_{e}}}\frac{5}{3}n_{\epsilon} +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $e$ is the elementary charge, and $n_{\epsilon}$ is the mean energy density. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaEnergyDiffusionBC` is defined as + +\begin{equation} +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1}{4}\sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\epsilon} - N_{e})}\frac{5}{3}\exp (N_{\epsilon}) +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form. ## Example Input File Syntax -!! Describe and include an example of how to use the SakiyamaEnergyDiffusionBC object. +An example of how to use `SakiyamaEnergyDiffusionBC` can be found in the +test file `2D_RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/mean_en_physical_diffusion !syntax parameters /BCs/SakiyamaEnergyDiffusionBC diff --git a/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md b/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md index 7a36f91b902..55bcfc81235 100644 --- a/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md +++ b/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md @@ -1,20 +1,38 @@ # SakiyamaEnergySecondaryElectronBC -!alert construction title=Undocumented Class -The SakiyamaEnergySecondaryElectronBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/SakiyamaEnergySecondaryElectronBC ## Overview -!! Replace these lines with information regarding the SakiyamaEnergySecondaryElectronBC object. +`SakiyamaEnergySecondaryElectronBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. +`SakiyamaEnergySecondaryElectronBC` assumes the electrostatic approximation for the electric field. + +The ion induce secondary electron mean energy density outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{\epsilon} \cdot \textbf{n} = \gamma \frac{5}{3} \frac{n_{\epsilon}}{n_{e}} \left[a \ \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} \right] +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, +$\mu_{j}$ is the mobility coefficient, $n_{\epsilon}$ is the mean energy density, $n_{j}$ is the ion density, $\gamma$ is the secondary electron coefficient, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaEnergySecondaryElectronBC` is defined as + +\begin{equation} +\Gamma_{\epsilon} \cdot \textbf{n} = \gamma \frac{5}{3} \exp(N_{\epsilon}-N_{e}) \left[a \ \mu_{j} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the SakiyamaEnergySecondaryElectronBC object. +An example of how to use `SakiyamaEnergySecondaryElectronBC` can be found in the +test file `2D_RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/mean_en_Ar+_second_emissions !syntax parameters /BCs/SakiyamaEnergySecondaryElectronBC diff --git a/doc/content/source/bcs/SakiyamaIonAdvectionBC.md b/doc/content/source/bcs/SakiyamaIonAdvectionBC.md index 8e7eeaa7bfd..aa9627dffa7 100644 --- a/doc/content/source/bcs/SakiyamaIonAdvectionBC.md +++ b/doc/content/source/bcs/SakiyamaIonAdvectionBC.md @@ -1,20 +1,38 @@ # SakiyamaIonAdvectionBC -!alert construction title=Undocumented Class -The SakiyamaIonAdvectionBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/SakiyamaIonAdvectionBC ## Overview -!! Replace these lines with information regarding the SakiyamaIonAdvectionBC object. +`SakiyamaIonAdvectionBC` is an electric field driven outflow boundary condition. +`SakiyamaIonAdvectionBC` assumes the electrostatic approximation for the electric field. + +The ion induce secondary electron mean energy density outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = a \ \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, +$\mu_{j}$ is the mobility coefficient, $n_{j}$ is the specie density, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaIonAdvectionBC` is defined as + +\begin{equation} +\Gamma_{j} \cdot \textbf{n} = a \ \mu_{j} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the SakiyamaIonAdvectionBC object. +An example of how to use `SakiyamaIonAdvectionBC` can be found in the +test file `2D_RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/Ar+_physical_advection !syntax parameters /BCs/SakiyamaIonAdvectionBC diff --git a/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md b/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md index 1ff93a9f0b3..d498db5b698 100644 --- a/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md +++ b/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md @@ -1,20 +1,38 @@ # SakiyamaSecondaryElectronBC -!alert construction title=Undocumented Class -The SakiyamaSecondaryElectronBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/SakiyamaSecondaryElectronBC ## Overview -!! Replace these lines with information regarding the SakiyamaSecondaryElectronBC object. +`SakiyamaSecondaryElectronBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. +`SakiyamaSecondaryElectronBC` assumes the electrostatic approximation for the electric field. + +The ion induce secondary electron mean energy density outflow is defined as + +\begin{equation} +a = +\begin{cases} +1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \gamma \left[a \ \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} \right] +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, +$\mu_{j}$ is the mobility coefficient, $n_{j}$ is the ion density, $\gamma$ is the secondary electron coefficient, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaSecondaryElectronBC` is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = \gamma \left[a \ \mu_{j} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the SakiyamaSecondaryElectronBC object. +An example of how to use `SakiyamaEnergySecondaryElectronBC` can be found in the +test file `2D_RF_Plasma_actions.i`. + +!listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/em_Ar+_second_emissions !syntax parameters /BCs/SakiyamaSecondaryElectronBC diff --git a/doc/content/source/bcs/SecondaryElectronBC.md b/doc/content/source/bcs/SecondaryElectronBC.md index f496dd367a0..ea47f1b21a2 100644 --- a/doc/content/source/bcs/SecondaryElectronBC.md +++ b/doc/content/source/bcs/SecondaryElectronBC.md @@ -1,20 +1,41 @@ # SecondaryElectronBC -!alert construction title=Undocumented Class -The SecondaryElectronBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/SecondaryElectronBC ## Overview -!! Replace these lines with information regarding the SecondaryElectronBC object. +Note: add $n_{\gamma}$ + +`SecondaryElectronBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. +`SecondaryElectronBC` assumes the electrostatic approximation for the electric field. + +\begin{equation} +a = +\begin{cases} +1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{th,j}n_{j} \right] \\[10pt] +v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} +\end{equation} + +Where $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal of the boundary, +$\mu$ is the mobility coefficient, $n$ is the specie density, $v_{th}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronBC` is defined as + +\begin{equation} +\Gamma_{e} \cdot \textbf{n} = \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) + \frac{1}{2}v_{th,j}\exp(N_{j}) \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the SecondaryElectronBC object. +An example of how to use `SecondaryElectronBC` can be found in the +test file `mean_en.i`. + +!listing test/tests/1d_dc/mean_en.i block=BCs/sec_electrons_left !syntax parameters /BCs/SecondaryElectronBC diff --git a/doc/content/source/bcs/SecondaryElectronEnergyBC.md b/doc/content/source/bcs/SecondaryElectronEnergyBC.md index 8681acfcfbc..9cf03d6c6e6 100644 --- a/doc/content/source/bcs/SecondaryElectronEnergyBC.md +++ b/doc/content/source/bcs/SecondaryElectronEnergyBC.md @@ -1,20 +1,41 @@ # SecondaryElectronEnergyBC -!alert construction title=Undocumented Class -The SecondaryElectronEnergyBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/SecondaryElectronEnergyBC ## Overview -!! Replace these lines with information regarding the SecondaryElectronEnergyBC object. +Note: add $n_{\gamma}$ + +`SecondaryElectronEnergyBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. +`SecondaryElectronEnergyBC` assumes the electrostatic approximation for the electric field. + +\begin{equation} +a = +\begin{cases} +1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{5}{3} \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{th,j}n_{j} \right] \\[10pt] +v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} +\end{equation} + +Where $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal of the boundary, +$\mu$ is the mobility coefficient, $n$ is the specie density, $v_{th}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronEnergyBC` is defined as + +\begin{equation} +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{5}{3} \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) + \frac{1}{2}v_{th,j}\exp(N_{j}) \right] +\end{equation} + +Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the SecondaryElectronEnergyBC object. +An example of how to use `SecondaryElectronEnergyBC` can be found in the +test file `mean_en.i`. + +!listing test/tests/1d_dc/mean_en.i block=BCs/secondary_energy_left !syntax parameters /BCs/SecondaryElectronEnergyBC diff --git a/src/bcs/FieldEmissionBC.C b/src/bcs/FieldEmissionBC.C index 26a1bc06982..916faca44bd 100644 --- a/src/bcs/FieldEmissionBC.C +++ b/src/bcs/FieldEmissionBC.C @@ -26,6 +26,7 @@ FieldEmissionBC::validParams() params.addRequiredParam("potential_units", "The potential units."); params.addParam("tau", 1e-9, "The time constant for ramping the boundary condition."); params.addParam("relax", false, "Use relaxation for emission."); + params.addClassDescription("The electron flux boundary condition due to field emission"); return params; } @@ -66,8 +67,8 @@ FieldEmissionBC::FieldEmissionBC(const InputParameters & parameters) } FE_a = 1.541434E-6 * std::pow(_voltage_scaling, 2); // A eV/kV^2 (if _voltage_scaling == 1000) - FE_b = 6.830890E9 / _voltage_scaling; // kV/m-eV^1.5 (if _voltage_scaling == 1000) - FE_c = 1.439964E-9 * _voltage_scaling; // eV^2*m/kV (if _voltage_scaling == 1000) + FE_b = 6.830890E9 / _voltage_scaling; // kV/m-eV^1.5 (if _voltage_scaling == 1000) + FE_c = 1.439964E-9 * _voltage_scaling; // eV^2*m/kV (if _voltage_scaling == 1000) _ip.resize(_num_ions); _ip_var.resize(_num_ions); diff --git a/src/bcs/HagelaarEnergyBC.C b/src/bcs/HagelaarEnergyBC.C index e64b9f004e4..d8a1c0e69dc 100644 --- a/src/bcs/HagelaarEnergyBC.C +++ b/src/bcs/HagelaarEnergyBC.C @@ -20,6 +20,8 @@ HagelaarEnergyBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredCoupledVar("electrons", "The electron density in log form"); params.addRequiredParam("position_units", "Units of position."); + params.addClassDescription("Kinetic electron mean energy boundary condition" + "(Based on DOI:https://doi.org/10.1103/PhysRevE.62.1452)"); return params; } diff --git a/src/bcs/MatchedValueLogBC.C b/src/bcs/MatchedValueLogBC.C index f7808f05bd8..aefa99b0177 100644 --- a/src/bcs/MatchedValueLogBC.C +++ b/src/bcs/MatchedValueLogBC.C @@ -10,6 +10,8 @@ #include "MatchedValueLogBC.h" +registerMooseObject("ZapdosApp", MatchedValueLogBC); + InputParameters MatchedValueLogBC::validParams() { From 1772118627f995dd63c33ea8751e115ad4d59071 Mon Sep 17 00:00:00 2001 From: Corey DeChant <37221357+csdechant@users.noreply.github.com> Date: Tue, 25 Jun 2024 13:00:58 -0400 Subject: [PATCH 02/11] Apply suggestions from code review Co-authored-by: Grayson Gall <66559200+gsgall@users.noreply.github.com> --- .../source/bcs/CircuitDirichletPotential.md | 10 +++--- doc/content/source/bcs/DCIonBC.md | 6 ++-- .../source/bcs/DriftDiffusionDoNothingBC.md | 4 +-- .../source/bcs/EconomouDielectricBC.md | 2 +- .../bcs/ElectronAdvectionDoNothingBC.md | 6 ++-- .../bcs/ElectronDiffusionDoNothingBC.md | 4 +-- .../bcs/ElectronTemperatureDirichletBC.md | 2 +- doc/content/source/bcs/FieldEmissionBC.md | 8 ++--- .../source/bcs/HagelaarElectronAdvectionBC.md | 16 +++++++--- doc/content/source/bcs/HagelaarElectronBC.md | 22 +++++++++---- .../source/bcs/HagelaarEnergyAdvectionBC.md | 21 +++++++++--- doc/content/source/bcs/HagelaarEnergyBC.md | 22 +++++++++---- .../source/bcs/HagelaarIonAdvectionBC.md | 18 ++++++++--- .../source/bcs/HagelaarIonDiffusionBC.md | 13 ++++---- .../source/bcs/LogDensityDirichletBC.md | 2 +- .../source/bcs/LymberopoulosElectronBC.md | 14 ++++++-- doc/content/source/bcs/LymberopoulosIonBC.md | 16 +++++++--- .../bcs/NeumannCircuitVoltageMoles_KV.md | 32 ++++++++++--------- .../source/bcs/PenaltyCircuitPotential.md | 4 +-- .../source/bcs/PotentialDriftOutflowBC.md | 2 +- .../source/bcs/SakiyamaElectronDiffusionBC.md | 4 +-- .../source/bcs/SakiyamaEnergyDiffusionBC.md | 4 +-- .../bcs/SakiyamaEnergySecondaryElectronBC.md | 20 +++++++----- .../source/bcs/SakiyamaIonAdvectionBC.md | 14 ++++---- .../source/bcs/SakiyamaSecondaryElectronBC.md | 16 +++++----- doc/content/source/bcs/SecondaryElectronBC.md | 14 ++++---- .../source/bcs/SecondaryElectronEnergyBC.md | 18 ++++++----- 27 files changed, 192 insertions(+), 122 deletions(-) diff --git a/doc/content/source/bcs/CircuitDirichletPotential.md b/doc/content/source/bcs/CircuitDirichletPotential.md index 1051180d96c..2df48acd20d 100644 --- a/doc/content/source/bcs/CircuitDirichletPotential.md +++ b/doc/content/source/bcs/CircuitDirichletPotential.md @@ -15,16 +15,16 @@ documentation clear for users. The formulation of the potential at the wall is: \begin{equation} -V_{source} + V_{cathode} = e \Gamma A R +V_\text{source} + V_\text{cathode} = e \Gamma A R \end{equation} -Where $V_{source}$ is driven the potential, $V_{cathode}$ is the potential at cathode, -$\Gamma$ is the charged flux to the boundary, $e$ is the charge elemental, $A$ is the cross-sectional area of the plasma, and -$R$ is the ballast resistance. When converting the density to log form and applying a scaling factor of the mesh / voltage, +Where $V_\text{source}$ is driven the potential, $V_\text{cathode}$ is the potential at cathode, +$\Gamma$ is the charged flux to the boundary, $e$ is the elemental charge, $A$ is the cross-sectional area of the plasma, and +$R$ is the ballast resistance. When converting the density to log form and applying a scaling factor for both the mesh and voltage, `CircuitDirichletPotential` is defined as \begin{equation} -V_{source} + V_{cathode} = e N_{A} \Gamma \frac{A}{l_{c}^2} \frac{R}{V_{c}} +V_\text{source} + V_\text{cathode} = e N_{A} \Gamma \frac{A}{l_{c}^2} \frac{R}{V_{c}} \end{equation} Where $N_{A}$ is Avogadro's number, $l_{c}$ is the scaling factor of the mesh, and $V_{c}$ is the scaling factor of the potential. diff --git a/doc/content/source/bcs/DCIonBC.md b/doc/content/source/bcs/DCIonBC.md index c8a1310de9b..1110064f696 100644 --- a/doc/content/source/bcs/DCIonBC.md +++ b/doc/content/source/bcs/DCIonBC.md @@ -17,8 +17,8 @@ a = \Gamma_{j} \cdot \textbf{n} = a \ \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $\mu_{j}$ is the mobility coefficient, $n_{j}$ is the density, and $V$ is -the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. When converting the density to logarithmic form and applying a scaling +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $\mu_{j}$ is the mobility coefficient, $n_{j}$ is the density, and $V$ is +the electrostatic potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. When converting the density to logarithmic form and applying a scaling factor of the mesh, the strong form for `DCIonBC` is defined as \begin{equation} @@ -30,7 +30,7 @@ a = \Gamma_{j} \cdot \textbf{n} = a \ \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) \end{equation} -Where $N_{j}$ is the molar density of the specie in logarithmic form and +Where $N_{j}$ is the molar density of the species in logarithmic form and $l_{c}$ is the scaling factor of the mesh. diff --git a/doc/content/source/bcs/DriftDiffusionDoNothingBC.md b/doc/content/source/bcs/DriftDiffusionDoNothingBC.md index b20f4d25ba6..34bcfdf3765 100644 --- a/doc/content/source/bcs/DriftDiffusionDoNothingBC.md +++ b/doc/content/source/bcs/DriftDiffusionDoNothingBC.md @@ -20,14 +20,14 @@ The outflow is defined as \Gamma_{j} \cdot \textbf{n} = \text{sign}_{j} \mu_{j} n_{j} \ \text{-} \nabla (V) \cdot \textbf{n} - D_{j} \nabla (n_{j}) \cdot \textbf{n} \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species, $\text{-}1$ for negatively charged species and $\text{0}$ for neutral species), $\mu_{j}$ is the mobility coefficient, $D_{j}$ is the diffusion coefficient, $n_{j}$ is the density, and $V$ is +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species, $\text{-}1$ for negatively charged species and $\text{0}$ for neutral species), $\mu_{j}$ is the mobility coefficient, $D_{j}$ is the diffusion coefficient, $n_{j}$ is the density, and $V$ is the potential. When converting the density to logarithmic form and applying a scaling factor of the mesh, the strong form for `DriftDiffusionDoNothingBC` is defined as \begin{equation} \Gamma_{j} \cdot \textbf{n} = \text{sign}_{j} \mu_{j} \exp(N_{j}) \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} - D_{j} \exp(N_{j}) \nabla (N_{j} / l_{c}) \cdot \textbf{n} \end{equation} -Where $N_{j}$ is the molar density of the specie in logarithmic form and +Where $N_{j}$ is the molar density of the species in logarithmic form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/EconomouDielectricBC.md b/doc/content/source/bcs/EconomouDielectricBC.md index 11985c74b90..6e6610f0d57 100644 --- a/doc/content/source/bcs/EconomouDielectricBC.md +++ b/doc/content/source/bcs/EconomouDielectricBC.md @@ -4,7 +4,7 @@ ## Overview -`EconomouDielectricBC` is an type of [`PenaltyDirichletBC`](/bcs/ADPenaltyDirichletBC.md) for the potential on the boundary of a grounded ideal dielectric. +`EconomouDielectricBC` is a type of [`PenaltyDirichletBC`](/bcs/ADPenaltyDirichletBC.md) for the potential on the boundary of a grounded ideal dielectric. The potential at the boundary of a grounded ideal dielectric is defined as diff --git a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md index 84aa731b540..ab3be4e1b60 100644 --- a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md +++ b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md @@ -17,14 +17,14 @@ boundary is equal to the bulk election advection equation. The outflow is defined as \begin{equation} -\Gamma_{e} \cdot \textbf{n} = \text{-} \mu_{e} n_{e} \ \text{-} \nabla (V) \cdot \textbf{n} +\Gamma_{e} \cdot \textbf{n} = \text{-} \mu_{e} n_{e} \left( \text{-} \nabla (V)\right) \cdot \textbf{n} \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $\mu_{e}$ is the mobility coefficient, $n_{e}$ is the electron density, and $V$ is the potential. When converting the density to logarithmic form and applying a scaling +Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $\mu_{e}$ is the mobility coefficient, $n_{e}$ is the electron density, and $V$ is the electric potential. When converting the density to logarithmic form and applying a scaling factor of the mesh, the strong form for `ElectronAdvectionDoNothingBC` is defined as \begin{equation} -\Gamma_{e} \cdot \textbf{n} = \text{-} \mu_{e} \exp(N_{e}) \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} +\Gamma_{e} \cdot \textbf{n} = \text{-} \mu_{e} \exp(N_{e}) \left( \text{-} \nabla (V / l_{c}) \right) \cdot \textbf{n} \end{equation} Where $N_{j}$ is the molar density of the specie in logarithmic form and diff --git a/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md b/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md index 1d3e71ca396..6fd48159035 100644 --- a/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md +++ b/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md @@ -19,14 +19,14 @@ The outflow is defined as \Gamma_{e} \cdot \textbf{n} = - D_{e} \nabla (n_{e}) \cdot \textbf{n} \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $D_{e}$ is the diffusion coefficient, and $n_{e}$ is the electron density. When converting the density to logarithmic form and applying a scaling +Where $\Gamma_e \cdot \textbf{n}$ is the outflow normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $D_{e}$ is the diffusion coefficient, and $n_{e}$ is the electron density. When converting the density to logarithmic form and applying a scaling factor of the mesh, the strong form for `ElectronDiffusionDoNothingBC` is defined as \begin{equation} \Gamma_{e} \cdot \textbf{n} = - D_{e} \exp(N_{e}) \nabla (N_{e} / l_{c}) \cdot \textbf{n} \end{equation} -Where $N_{e}$ is the molar density of the specie in logarithmic form and +Where $N_{e}$ is the molar density of the species in logarithmic form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/ElectronTemperatureDirichletBC.md b/doc/content/source/bcs/ElectronTemperatureDirichletBC.md index 182b74cd15f..7870e98499c 100644 --- a/doc/content/source/bcs/ElectronTemperatureDirichletBC.md +++ b/doc/content/source/bcs/ElectronTemperatureDirichletBC.md @@ -4,7 +4,7 @@ ## Overview -`ElectronTemperatureDirichletBC` is an type of [`PenaltyDirichletBC`](/bcs/ADPenaltyDirichletBC.md) for the electron temperature on the boundary. +`ElectronTemperatureDirichletBC` is a type of [`PenaltyDirichletBC`](/bcs/ADPenaltyDirichletBC.md) for the electron temperature. The electron temperature at the boundary is defined as diff --git a/doc/content/source/bcs/FieldEmissionBC.md b/doc/content/source/bcs/FieldEmissionBC.md index d1d59d60ca5..77886de9c75 100644 --- a/doc/content/source/bcs/FieldEmissionBC.md +++ b/doc/content/source/bcs/FieldEmissionBC.md @@ -4,7 +4,7 @@ ## Overview -`FieldEmissionBC` is the outflow boundary condition assuming the the electron current density is defined by field emission. +`FieldEmissionBC` is an outflow boundary condition that assumes the electron current density is defined by field emission. Using a Fowler-Nordheim calculation for the field emission, the electron current density is defined as @@ -23,16 +23,16 @@ f = c \frac{F}{\phi^{2}} \\[10pt] c = 1.439964e\text{-}9 \ eV^{2} \ V^{-1} \ m \end{equation} -Where $\textbf{J}_{\textbf{e}}$ is the electron current density, $a$ is the first Fowler–Nordheim constant, $\phi$ is the local work function, $F$ is the local field, $b$ is the second Fowler–Nordheim constant, $v(f)$ is a correction factor that depends on the scaled barrier field ($f$), $\textbf{n}$ is the normal of the boundary, $\gamma$ is the field enhancement factor, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. With the electron current density, the outward electron flux is defined as +Where $\textbf{J}_{\textbf{e}}$ is the electron current density, $a$ is the first Fowler–Nordheim constant, $\phi$ is the local work function, $F$ is the local field, $b$ is the second Fowler–Nordheim constant, $v(f)$ is a correction factor that depends on the scaled barrier field ($f$), $\textbf{n}$ is the normal vector of the boundary, $\gamma$ is the field enhancement factor, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. With the electron current density, the outward electron flux is defined as \begin{equation} \Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V) n_{i} - D_{i} \nabla (n_{i}) \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a)}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/e - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\mu_{i}$ is the mobility coefficient of the ions, $\text{sign}_{i}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $n_{i}$ is the ion density, $D_{i}$ is the diffusion coefficient of ions, $e$ is the elemental charge, and $\gamma_{se}$ is the ion induced secondary electron coefficient. $r$ is defined as the fraction of particles reflected by the surface. +Where $\Gamma$ is the outflow normal to the boundary, $\mu_{i}$ is the mobility coefficient of the ions, $\text{sign}_{i}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $n_{i}$ is the ion density, $D_{i}$ is the diffusion coefficient of ions, $e$ is the elemental charge, and $\gamma_{se}$ is the ion induced secondary electron emission coefficient. $r$ is defined as the fraction of particles reflected by the surface. -When converting the density to log form and applying a scaling factor of the mesh and voltage, the changes to `FieldEmissionBC` are defined as +When converting the density to log form and applying a scaling factor of the mesh and voltage, the strong form is given by \begin{equation} diff --git a/doc/content/source/bcs/HagelaarElectronAdvectionBC.md b/doc/content/source/bcs/HagelaarElectronAdvectionBC.md index 99c77a24f93..edeab8d038f 100644 --- a/doc/content/source/bcs/HagelaarElectronAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarElectronAdvectionBC.md @@ -15,12 +15,14 @@ a = 1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V) \cdot \textbf{n} \ n_{e} \right] +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} +\left( \text{-} \nabla (V) \right) + \cdot \textbf{n} \ n_{e} \right] \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $n$ is the normal of the boundary, +Where $\Gamma_e \cdot \textbf{n}$ is the outflow normal to the boundary, $n$ is the normal vector of the boundary, $\mu_{e}$ is the mobility coefficient, $n_{e}$ is the electron density, and $V$ is -the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +the electric potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarElectronAdvectionBC` is defined as \begin{equation} @@ -29,10 +31,14 @@ a = 1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{e}) \right] +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} + \left( + \text{-} \nabla (V / l_{c}) +\right) + \cdot \textbf{n} \ \exp(N_{e}) \right] \end{equation} -Where $N_{e}$ is the molar density of the specie in log form and +Where $N_{e}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/HagelaarElectronBC.md b/doc/content/source/bcs/HagelaarElectronBC.md index 37d2c46d1df..700615a24e7 100644 --- a/doc/content/source/bcs/HagelaarElectronBC.md +++ b/doc/content/source/bcs/HagelaarElectronBC.md @@ -15,13 +15,17 @@ a = 1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}} \\[10pt] -\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V) \cdot \textbf{n} \ n_{e} + \frac{1}{2}v_{th,e}n_{e} \right] +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} +\left( +\text{-} \nabla (V) +\right) +\cdot \textbf{n} \ n_{e} + \frac{1}{2}v_{\text{th},e}n_{e} \right] \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, +Where $\Gamma_e \cdot \textbf{n}$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $\mu_{e}$ is the mobility coefficient, $n_{e}$ is the electron density, $V$ is -the potential, $v_{th,e}$ is the thermal velocity of the electrons, $e$ is the elementary charge, and $n_{\varepsilon}$ is the mean energy density. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +the electric potential, v_{\text{th},e} is the thermal velocity of the electrons, $e$ is the elementary charge, and $n_{\varepsilon}$ is the mean energy density. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r_e$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarElectronBC` is defined as \begin{equation} @@ -30,11 +34,15 @@ a = 1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] -\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{e}) + \frac{1}{2}v_{th,e}\exp(N_{e}) \right] +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} +\left( \text{-} \nabla (V / l_{c}) \right) +\cdot \textbf{n} \ \exp(N_{e}) + \frac{1}{2} +v_{\text{th},e} +\exp(N_{e}) \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md b/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md index f92a7e8e755..ccaf6dd9637 100644 --- a/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md @@ -15,10 +15,15 @@ a = 1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \frac{5}{3} \mu_{e} \text{-} \nabla (V) \cdot \textbf{n} \ n_{e} \ \epsilon \right] - \frac{5}{3} \epsilon_{\gamma} (1 - a_{e}) \gamma \left[ \mu_{+} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{+} \right] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \frac{5}{3} \mu_{e} \text{-} \nabla (V) \cdot \textbf{n} \ n_{e} \ \epsilon \right] - \frac{5}{3} \epsilon_{\gamma} (1 - a_{e}) \gamma \left[ \mu_{+} \ +\left( +\text{-} \nabla (V) +\right) +\cdot \textbf{n} \ n_{+} \right] \end{equation} -Where $\Gamma_{\epsilon}$ is the outflow of the electron energy density normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $n_{+}$ is the mean energy density, $\mu_{j}$ is the mobility coefficient, $V$ is the potential, $\epsilon_{\gamma}$ is the energy of the secondary electron, and $\gamma$ is the ion induced secondary electron coefficient. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling + +Where $\Gamma_{\epsilon} \cdot \textbf{n}$ is the outflow of the electron energy density normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $n_{e}$ is the electron density, $n_{+}$ is the mean energy density, $\mu_{j}$ is the mobility coefficient, $V$ is the electric potential, $\epsilon_{\gamma}$ is the energy of the secondary electron, and $\gamma$ is the ion induced secondary electron coefficient. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarEnergyAdvectionBC` is defined as \begin{equation} @@ -27,10 +32,18 @@ a = 1, & \mu_{e} \ \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{e} \ \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \frac{5}{3} \mu_{e} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{e}) \ \epsilon \right] - \frac{5}{3} \epsilon_{\gamma} (1 - a_{e}) \gamma \left[ \mu_{+} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{+}) \right] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \frac{5}{3} \mu_{e} +\left( + \text{-} \nabla (V / l_{c}) +\right) + \cdot \textbf{n} \ \exp(N_{e}) \ \epsilon \right] - \frac{5}{3} \epsilon_{\gamma} (1 - a_{e}) \gamma \left[ \mu_{+} \ + \left( + \text{-} \nabla (V / l_{c}) + \right) + \cdot \textbf{n} \ \exp(N_{+}) \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/HagelaarEnergyBC.md b/doc/content/source/bcs/HagelaarEnergyBC.md index 323e8d15cf7..79ac886ce53 100644 --- a/doc/content/source/bcs/HagelaarEnergyBC.md +++ b/doc/content/source/bcs/HagelaarEnergyBC.md @@ -15,13 +15,17 @@ a = 1, & \mu_{\epsilon} \ \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{\epsilon} \ \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\epsilon}}{n_{e}}} \\[10pt] -\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{\epsilon}}{1+r_{\epsilon}} \left[ -(2 a_{\epsilon}-1) \ \mu_{\epsilon} \text{-} \nabla (V) \cdot \textbf{n} \ n_{\epsilon} + \frac{5}{6}v_{th,e}n_{\epsilon} \right] +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\epsilon}}{n_{e}}} \\[10pt] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{\epsilon}}{1+r_{\epsilon}} \left[ -(2 a_{\epsilon}-1) \ \mu_{\epsilon} +\left( + \text{-} \nabla (V) + \right) + \cdot \textbf{n} \ n_{\epsilon} + \frac{5}{6}v_{\text{th},e}n_{\epsilon} \right] \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, +Where $\Gamma_\epsilon \cdot \textbf{n} $ is the outflow normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $\mu_{\epsilon}$ is the mobility coefficient, $n_{\epsilon}$ is the mean energy density, $n_{e}$ is the electron density, $V$ is -the potential, $v_{th,e}$ is the thermal velocity of the electrons, and $e$ is the elementary charge. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +the electric potential, $v_{\text{th},e}$ is the thermal velocity of the electrons, and $e$ is the elementary charge. $a$ is defined such that the outflow is only defined when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles that are reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarEnergyBC` is defined as \begin{equation} @@ -30,11 +34,15 @@ a = 1, & \mu_{\epsilon} \ \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{\epsilon} \ \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] -\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{\epsilon}}{1+r_{\epsilon}} \left[ -(2 a_{\epsilon}-1) \ \mu_{\epsilon} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{\epsilon}) + \frac{5}{6}v_{th,e}\exp(N_{\epsilon}) \right] +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1-r_{\epsilon}}{1+r_{\epsilon}} \left[ -(2 a_{\epsilon}-1) \ \mu_{\epsilon} +\left( +\text{-} \nabla (V / l_{c}) +\right) +\cdot \textbf{n} \ \exp(N_{\epsilon}) + \frac{5}{6}v_{\text{th},e}\exp(N_{\epsilon}) \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and +Where $N_{\epsilon}$ is the molar energy density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/HagelaarIonAdvectionBC.md b/doc/content/source/bcs/HagelaarIonAdvectionBC.md index 885c6d04c83..73cbfb7570f 100644 --- a/doc/content/source/bcs/HagelaarIonAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarIonAdvectionBC.md @@ -15,12 +15,16 @@ a = 1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} \right] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} +\left( + \text{-} \nabla (V) +\right) +\cdot \textbf{n} \ n_{j} \right] \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $n$ is the normal of the boundary, +Where $\Gamma_j \cdot \textbf{n}$ is the flux normal to the boundary, $n$ is the normal vector of the boundary, $\mu_{j}$ is the mobility coefficient, $n_{j}$ is the ion density, and $V$ is -the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarIonAdvectionBC` is defined as +the electric potential. $a$ is defined such that the outflow is only non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarIonAdvectionBC` is defined as \begin{equation} a = @@ -28,10 +32,14 @@ a = 1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ 0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) \right] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} +\left( +\text{-} \nabla (V / l_{c}) +\right) + \cdot \textbf{n} \ \exp(N_{j}) \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/HagelaarIonDiffusionBC.md b/doc/content/source/bcs/HagelaarIonDiffusionBC.md index 42fb0175f13..b3e81118ea3 100644 --- a/doc/content/source/bcs/HagelaarIonDiffusionBC.md +++ b/doc/content/source/bcs/HagelaarIonDiffusionBC.md @@ -9,19 +9,20 @@ The thermal driven outflow is defined as \begin{equation} -v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ \frac{1}{2}v_{th,j}n_{j} \right] +v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ \frac{1}{2} +v_{\text{th},j}n_{j} \right] \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{j}$ is the ion density, $v_{th,j}$ is the thermal velocity of the ions, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +Where $\Gamma_j \cdot \textbf{n}$ is the outflow normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $n_{j}$ is the ion density, $v_{\text{th},j}$ is the thermal velocity of the ions, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarIonDiffusionBC` is defined as \begin{equation} -v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ \frac{1}{2}v_{th,j}\exp(N_{j}) \right] +v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ \frac{1}{2}v_{\text{th},j}\exp(N_{j}) \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/LogDensityDirichletBC.md b/doc/content/source/bcs/LogDensityDirichletBC.md index 96cb1f994cb..06f4187b239 100644 --- a/doc/content/source/bcs/LogDensityDirichletBC.md +++ b/doc/content/source/bcs/LogDensityDirichletBC.md @@ -12,7 +12,7 @@ The formulation of the density at the wall is: n_{j} = N_{A} \exp(N_{j}) \end{equation} -Where $n_{j}$ is the density, $N_{j}$ is the molar density of the specie in logarithmic form, and $N_{A}$ is Avogadro's +Where $n_{j}$ is the density, $N_{j}$ is the molar density of the species in logarithmic form, and $N_{A}$ is Avogadro's number. ## Example Input File Syntax diff --git a/doc/content/source/bcs/LymberopoulosElectronBC.md b/doc/content/source/bcs/LymberopoulosElectronBC.md index 59ac3cf2a48..99ad7fa273b 100644 --- a/doc/content/source/bcs/LymberopoulosElectronBC.md +++ b/doc/content/source/bcs/LymberopoulosElectronBC.md @@ -9,17 +9,25 @@ The outflow is defined as \begin{equation} -\Gamma_{e} \cdot \textbf{n} = k_{s} n_{e} - \gamma \left[ \text{sign}_{i} \mu_{i} n_{i} \text{-} \nabla (V) \cdot \textbf{n} \right] +\Gamma_{e} \cdot \textbf{n} = k_{s} n_{e} - \gamma \left[ \text{sign}_{i} \mu_{i} n_{i} +\left( + \text{-} \nabla (V) +\right) +\cdot \textbf{n} \right] \end{equation} Where $\Gamma_{e}$ is the outflow of the electrons normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $n_{i}$ is the ion density, $k_{s}$ is thermal speed of the electrons, $\mu_{i}$ is the oion mobility coefficient, $\text{sign}_{i}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $V$ is the potential, and $\gamma$ is the ion induced secondary electron coefficient. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `LymberopoulosElectronBC` is defined as \begin{equation} -\Gamma_{e} \cdot \textbf{n} = k_{s} \exp(N_{e}) - \gamma \left[ \text{sign}_{i} \mu_{i} \exp(N_{i}) \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \right] +\Gamma_{e} \cdot \textbf{n} = k_{s} \exp(N_{e}) - \gamma \left[ \text{sign}_{i} \mu_{i} \exp(N_{i}) +\left( + \text{-} \nabla (V / l_{c}) + \right) + \cdot \textbf{n} \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/LymberopoulosIonBC.md b/doc/content/source/bcs/LymberopoulosIonBC.md index 54b9e329f4b..78b2fef094e 100644 --- a/doc/content/source/bcs/LymberopoulosIonBC.md +++ b/doc/content/source/bcs/LymberopoulosIonBC.md @@ -9,16 +9,24 @@ The outflow is defined as \begin{equation} -\Gamma_{+} \cdot \textbf{n} = \mu_{+} n_{+} \text{-} \nabla (V) \cdot \textbf{n} +\Gamma_{+} \cdot \textbf{n} = \mu_{+} n_{+} +\left( +\text{-} \nabla (V) +\right) + \cdot \textbf{n} \end{equation} -Where $\Gamma_{+}$ is the outflow of the ions normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{+}$ is the ion density, $\mu_{+}$ is the ion mobility coefficient, and $V$ is the potential. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `LymberopoulosIonBC` is defined as +Where $\Gamma_{+} \cdot \textbf{n}$ is the flux of ions normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $n_{+}$ is the ion density, $\mu_{+}$ is the ion mobility coefficient, and $V$ is the electric potential. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `LymberopoulosIonBC` is defined as \begin{equation} -\Gamma_{e} \cdot \textbf{n} = \mu_{+} \exp(N_{+}) \text{-} \nabla (V / l_{c}) \cdot \textbf{n} +\Gamma_{e} \cdot \textbf{n} = \mu_{+} \exp(N_{+}) +\left( +\text{-} \nabla (V / l_{c}) +\right) +\cdot \textbf{n} \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md index 6a88a74e56a..cca4fabfb0a 100644 --- a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md +++ b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md @@ -17,41 +17,43 @@ Note: add $n_{\gamma}$ The Kirchoff’s voltage law at the cathode is defined as \begin{equation} -V_{source} + V_{cathode} = e\left( \Gamma_{i} - \Gamma_{e} \right) AR +V_\text{source} + V_\text{cathode} = e\left( \Gamma_{i} - \Gamma_{e} \right) AR \end{equation} -Where $V_{source}$ is driven the potential, $V_{cathode}$ is the potential at cathode, -$e$ is the charge elemental, $\Gamma$ is the flux of the electron or ions, $A$ is the cross-sectional area of the plasma, and $R$ is the ballast resistance. Within `NeumannCircuitVoltageMoles_KV`, the charged species' flux at the boundary are assumed to be: +Where $V_\text{source}$ is the driven potential, $V_\text{cathode}$ is the potential at cathode, +$e$ is the elemental charge , $\Gamma_i$ and $\Gamma_e$ are fluxes ions and electrons respectively, $A$ is the cross-sectional area of the plasma, and $R$ is the ballast resistance. Within `NeumannCircuitVoltageMoles_KV`, the charged species' flux at the boundary are assumed to be given by: \begin{equation} a = \begin{cases} -1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +1, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \left( \text{-} \nabla (V) \right)\cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \text{-} \nabla (V) \cdot \textbf{n} \ n_{e} + \frac{1}{2}v_{th,e}n_{e} \right] - (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{th,j}n_{j} \right] \\[10pt] -v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}} \\[10pt] -v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} +\Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} +\left(\text{-} \nabla (V) \right) + \cdot \textbf{n} \ n_{e} + \frac{1}{2}v_{\text{th},e}n_{e} \right] - (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{\text{th},j}n_{j} \right] \\[10pt] +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}} \\[10pt] +v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \end{equation} -Where $\textbf{n}$ is the normal of the boundary, -$\mu$ is the mobility coefficient, $n$ is the specie density, $v_{th}$ is the thermal velocity of the species, $n_{\varepsilon}$ is the mean energy density of electrons, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. +Where $\textbf{n}$ is the normal vector of the boundary, +$\mu$ is the mobility coefficient, $n$ is the species density, $v_\text{th}$ is the thermal velocity of the species, $n_{\varepsilon}$ is the mean energy density of electrons, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. To convert this setup into a Neumann type BC, the set of equations are rearranged, so that this boundary condition solves for the grad potential normal for the boundary, such that: \begin{equation} -\nabla (V) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_{source}-V_{cathode} \right) + \frac{1}{2} e \left[ v_{th,e}n_{e} - \left[(1-a)\gamma - 1\right]v_{th,j}n_{j} \right] \ AR}{e \ \left[ (2a-1)\mu_{e} n_{e} - (2a_{j}-1)\left[(a-1)\gamma - 1\right]\mu_{j}n_{j} \right] AR} +\nabla (V) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_\text{source}-V_\text{cathode} \right) + \frac{1}{2} e \left[ v_{\text{th},e}n_{e} - \left[(1-a)\gamma - 1\right]v_{\text{th},j}n_{j} \right] \ AR}{e \ \left[ (2a-1)\mu_{e} n_{e} - (2a_{j}-1)\left[(a-1)\gamma - 1\right]\mu_{j}n_{j} \right] AR} \end{equation} When converting the density to log form and applying a scaling factor of the mesh and voltage, the strong form for `NeumannCircuitVoltageMoles_KV` is defined as \begin{equation} -v_{th,e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] -\nabla (V / l_{c}) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_{source}-V_{cathode} \right) + \frac{1}{2} \frac{e N_{A}}{V_{c}} \left[ v_{th,e}\exp(N_{e}) - \left[(1-a)\gamma - 1\right]v_{th,j}\exp(N_{j}) \right] \ AR}{\frac{e N_{A}}{V_{c}} \left[ (2a-1)\mu_{e} \exp(N_{e}) - (2a_{j}-1)\left[(a-1)\gamma - 1\right]\mu_{j}\exp(N_{j}) \right] AR} +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] +\nabla (V / l_{c}) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_{source}-V_{cathode} \right) + \frac{1}{2} \frac{e N_{A}}{V_{c}} \left[ v_{\text{th},e}\exp(N_{e}) - \left[(1-a)\gamma - 1\right]v_{\text{th},j}\exp(N_{j}) \right] \ AR}{\frac{e N_{A}}{V_{c}} \left[ (2a-1)\mu_{e} \exp(N_{e}) - (2a_{j}-1)\left[(a-1)\gamma - 1\right]\mu_{j}\exp(N_{j}) \right] AR} \end{equation} -Where $N_{j}$ is the molar density of the specie in log form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. +Where $N_{j}$ is the molar density of the species in log form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/PenaltyCircuitPotential.md b/doc/content/source/bcs/PenaltyCircuitPotential.md index fbfd30d9308..6a91d3b6a6f 100644 --- a/doc/content/source/bcs/PenaltyCircuitPotential.md +++ b/doc/content/source/bcs/PenaltyCircuitPotential.md @@ -15,10 +15,10 @@ documentation clear for users. The formulation of the potential at the wall is: \begin{equation} -V_{source} + V_{cathode} = J \ A \ R +V_\text{source} + V_\text{cathode} = J \ A \ R \end{equation} -Where $V_{source}$ is driven the potential, $V_{cathode}$ is the potential at cathode, +Where $V_\text{source}$ is driven the potential, $V_\text{cathode}$ is the potential at cathode, $J$ is the current density, $A$ is the cross-sectional area of the plasma, and $R$ is the ballast resistance. The current density is supplied through the [`CurrentDensityShapeSideUserObject`](/userobjects/CurrentDensityShapeSideUserObject.md). diff --git a/doc/content/source/bcs/PotentialDriftOutflowBC.md b/doc/content/source/bcs/PotentialDriftOutflowBC.md index 862b4c18160..8017537bad8 100644 --- a/doc/content/source/bcs/PotentialDriftOutflowBC.md +++ b/doc/content/source/bcs/PotentialDriftOutflowBC.md @@ -11,7 +11,7 @@ documentation clear for users. ## Overview `PotentialDriftOutflowBC` is an electric field driven outflow boundary condition. -`PotentialDriftOutflowBC` assumes a mobility coefficient of unity, the electrostatic approximation for the electric field, and a non-scaled version of the specie's density. +`PotentialDriftOutflowBC` assumes a mobility coefficient of unity, the electrostatic approximation for the electric field, and a non-scaled version of the species' density. The electrostatic electric field driven outflow is defined as diff --git a/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md b/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md index 89769a98f2a..e4ad5f86ace 100644 --- a/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md +++ b/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md @@ -12,13 +12,13 @@ The thermal driven outflow is defined as \Gamma_{e} \cdot \textbf{n} = \frac{1}{4}\sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}}n_{e} \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $e$ is the elementary charge, and $n_{\varepsilon}$ is the mean energy density. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaElectronDiffusionBC` is defined as +Where $\Gamma_e \cdot \textbf{n}$ is the flux normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $n_{e}$ is the electron density, $e$ is the elementary charge, and $n_{\varepsilon}$ is the mean energy density. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaElectronDiffusionBC` is defined as \begin{equation} \Gamma_{e} \cdot \textbf{n} = \frac{1}{4}\sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})}\exp(N_{e}) \end{equation} -Where $N_{j}$ is the molar density of the specie in log form. +Where $N_{j}$ is the molar density of the species in log form. ## Example Input File Syntax diff --git a/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md b/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md index faa9a7f7ed6..eba8c9a4b14 100644 --- a/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md +++ b/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md @@ -12,13 +12,13 @@ The thermal driven outflow is defined as \Gamma_{\epsilon} \cdot \textbf{n} = \frac{1}{4}\sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\epsilon}}{n_{e}}}\frac{5}{3}n_{\epsilon} \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $e$ is the elementary charge, and $n_{\epsilon}$ is the mean energy density. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaEnergyDiffusionBC` is defined as +Where $\Gamma_\varepsilon \cdot \textbf{n}$ is the flux normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $n_{e}$ is the electron density, $e$ is the elementary charge, and $n_{\epsilon}$ is the mean energy density. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaEnergyDiffusionBC` is defined as \begin{equation} \Gamma_{\epsilon} \cdot \textbf{n} = \frac{1}{4}\sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\epsilon} - N_{e})}\frac{5}{3}\exp (N_{\epsilon}) \end{equation} -Where $N_{j}$ is the molar density of the specie in log form. +Where $N_{j}$ is the molar density of the species in log form. ## Example Input File Syntax diff --git a/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md b/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md index 55bcfc81235..c6d40feeb64 100644 --- a/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md +++ b/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md @@ -7,25 +7,29 @@ `SakiyamaEnergySecondaryElectronBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. `SakiyamaEnergySecondaryElectronBC` assumes the electrostatic approximation for the electric field. -The ion induce secondary electron mean energy density outflow is defined as +The ion induced secondary electron mean energy density outflow is defined as \begin{equation} a = \begin{cases} -1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +1, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{\epsilon} \cdot \textbf{n} = \gamma \frac{5}{3} \frac{n_{\epsilon}}{n_{e}} \left[a \ \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} \right] +\Gamma_{\epsilon} \cdot \textbf{n} = \gamma \frac{5}{3} \frac{n_{\epsilon}}{n_{e}} \left[a \ \mu_{j} +\left( \text{-} \nabla (V) \right) +\cdot \textbf{n} \ n_{j} \right] \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, -$\mu_{j}$ is the mobility coefficient, $n_{\epsilon}$ is the mean energy density, $n_{j}$ is the ion density, $\gamma$ is the secondary electron coefficient, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaEnergySecondaryElectronBC` is defined as +Where $\Gamma_\epsilon \cdot \textbf{n}$ is the flux normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, +$\mu_{j}$ is the mobility coefficient, $n_{\epsilon}$ is the mean energy density, $n_{j}$ is the ion density, $\gamma$ is the secondary electron coefficient, and $V$ is the electric potential. $a$ is defined such that the outflow is only non-zero when the drift velocity is directed towards the wall and zero otherwise. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaEnergySecondaryElectronBC` is defined as \begin{equation} -\Gamma_{\epsilon} \cdot \textbf{n} = \gamma \frac{5}{3} \exp(N_{\epsilon}-N_{e}) \left[a \ \mu_{j} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) \right] +\Gamma_{\epsilon} \cdot \textbf{n} = \gamma \frac{5}{3} \exp(N_{\epsilon}-N_{e}) \left[a \ \mu_{j} +\left( \text{-} \nabla (V / l_{c}) \right) +\cdot \textbf{n} \ \exp(N_{j}) \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/SakiyamaIonAdvectionBC.md b/doc/content/source/bcs/SakiyamaIonAdvectionBC.md index aa9627dffa7..e1ff8225617 100644 --- a/doc/content/source/bcs/SakiyamaIonAdvectionBC.md +++ b/doc/content/source/bcs/SakiyamaIonAdvectionBC.md @@ -7,25 +7,25 @@ `SakiyamaIonAdvectionBC` is an electric field driven outflow boundary condition. `SakiyamaIonAdvectionBC` assumes the electrostatic approximation for the electric field. -The ion induce secondary electron mean energy density outflow is defined as +The ion induced secondary electron mean energy density outflow is defined as \begin{equation} a = \begin{cases} -1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +1, & \mu_{j} \left( \text{-} \nabla (V) \right)\cdot \textbf{n} > 0\\ +0, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = a \ \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} +\Gamma_{j} \cdot \textbf{n} = a \ \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \ n_{j} \end{equation} Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, -$\mu_{j}$ is the mobility coefficient, $n_{j}$ is the specie density, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaIonAdvectionBC` is defined as +$\mu_{j}$ is the mobility coefficient, $n_{j}$ is the species density, and $V$ is the electric potential. $a$ is defined such that the outflow is only non-zero when the drift velocity is directed towards the wall and zero otherwise. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaIonAdvectionBC` is defined as \begin{equation} -\Gamma_{j} \cdot \textbf{n} = a \ \mu_{j} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) +\Gamma_{j} \cdot \textbf{n} = a \ \mu_{j} \left( \text{-} \nabla (V / l_{c})\right) \cdot \textbf{n} \ \exp(N_{j}) \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md b/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md index d498db5b698..96d3338cc94 100644 --- a/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md +++ b/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md @@ -7,25 +7,25 @@ `SakiyamaSecondaryElectronBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. `SakiyamaSecondaryElectronBC` assumes the electrostatic approximation for the electric field. -The ion induce secondary electron mean energy density outflow is defined as +The ion induced secondary electron mean energy density outflow is defined as \begin{equation} a = \begin{cases} -1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +1, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{e} \cdot \textbf{n} = \gamma \left[a \ \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} \right] +\Gamma_{e} \cdot \textbf{n} = \gamma \left[a \ \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \ n_{j} \right] \end{equation} -Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, -$\mu_{j}$ is the mobility coefficient, $n_{j}$ is the ion density, $\gamma$ is the secondary electron coefficient, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaSecondaryElectronBC` is defined as +Where $\Gamma_e \cdot \textbf{n}$ is the flux normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, +$\mu_{j}$ is the mobility coefficient, $n_{j}$ is the ion density, $\gamma$ is the secondary electron coefficient, and $V$ is the electric potential. $a$ is defined such that the outflow is only non-zero when the drift velocity is directed towards the wall and zero otherwise. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SakiyamaSecondaryElectronBC` is defined as \begin{equation} -\Gamma_{e} \cdot \textbf{n} = \gamma \left[a \ \mu_{j} \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) \right] +\Gamma_{e} \cdot \textbf{n} = \gamma \left[a \ \mu_{j} \left( \text{-} \nabla (V / l_{c}) \right) \cdot \textbf{n} \ \exp(N_{j}) \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/SecondaryElectronBC.md b/doc/content/source/bcs/SecondaryElectronBC.md index ea47f1b21a2..b422c5fdb63 100644 --- a/doc/content/source/bcs/SecondaryElectronBC.md +++ b/doc/content/source/bcs/SecondaryElectronBC.md @@ -12,12 +12,14 @@ Note: add $n_{\gamma}$ \begin{equation} a = \begin{cases} -1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +1, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{th,j}n_{j} \right] \\[10pt] -v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} +\left( \text{-} \nabla (V) \right) + \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{\text{th},j}n_{j} \right] \\[10pt] +v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \end{equation} Where $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal of the boundary, @@ -25,10 +27,10 @@ $\mu$ is the mobility coefficient, $n$ is the specie density, $v_{th}$ is the th \begin{equation} \Gamma_{e} \cdot \textbf{n} = \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) + \frac{1}{2}v_{th,j}\exp(N_{j}) \right] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( \text{-} \nabla (V / l_{c}) \right) \cdot \textbf{n} \ \exp(N_{j}) + \frac{1}{2}v_{\text{th},j}\exp(N_{j}) \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/SecondaryElectronEnergyBC.md b/doc/content/source/bcs/SecondaryElectronEnergyBC.md index 9cf03d6c6e6..71abf6860e7 100644 --- a/doc/content/source/bcs/SecondaryElectronEnergyBC.md +++ b/doc/content/source/bcs/SecondaryElectronEnergyBC.md @@ -12,23 +12,25 @@ Note: add $n_{\gamma}$ \begin{equation} a = \begin{cases} -1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +1, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] \Gamma_{\epsilon} \cdot \textbf{n} = \frac{5}{3} \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{th,j}n_{j} \right] \\[10pt] -v_{th,j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} +\left( \text{-} \nabla (V) \right) +\cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{\text{th},j}n_{j} \right] \\[10pt] +v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \end{equation} -Where $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal of the boundary, -$\mu$ is the mobility coefficient, $n$ is the specie density, $v_{th}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronEnergyBC` is defined as +Where $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal vector of the boundary, +$\mu$ is the mobility coefficient, $n$ is the species density, $v_\text{th}}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronEnergyBC` is defined as \begin{equation} \Gamma_{\epsilon} \cdot \textbf{n} = \frac{5}{3} \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \text{-} \nabla (V / l_{c}) \cdot \textbf{n} \ \exp(N_{j}) + \frac{1}{2}v_{th,j}\exp(N_{j}) \right] +\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( \text{-} \nabla (V / l_{c}) \right) \cdot \textbf{n} \ \exp(N_{j}) + \frac{1}{2}v_{\text{th},j}\exp(N_{j}) \right] \end{equation} -Where $N_{j}$ is the molar density of the specie in log form and $l_{c}$ is the scaling factor of the mesh. +Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax From a0759891806b1e826dabdfcc6d759a96d198a098 Mon Sep 17 00:00:00 2001 From: csdechant Date: Wed, 23 Oct 2024 10:36:16 -0600 Subject: [PATCH 03/11] Addressing PR conversations --- .../source/bcs/CircuitDirichletPotential.md | 30 ++++++++++--- .../source/bcs/DriftDiffusionDoNothingBC.md | 25 ++++++++--- .../bcs/ElectronAdvectionDoNothingBC.md | 26 +++++++++--- .../bcs/ElectronDiffusionDoNothingBC.md | 25 ++++++++--- doc/content/source/bcs/FieldEmissionBC.md | 18 ++++---- .../source/bcs/LymberopoulosElectronBC.md | 3 +- doc/content/source/bcs/MatchedValueLogBC.md | 34 +++++++++++---- .../bcs/NeumannCircuitVoltageMoles_KV.md | 33 ++++++--------- .../source/bcs/PenaltyCircuitPotential.md | 8 +--- .../source/bcs/PotentialDriftOutflowBC.md | 34 +++++++++++---- doc/content/source/bcs/SchottkyEmissionBC.md | 42 +++++++++++++++---- doc/content/source/bcs/SecondaryElectronBC.md | 18 ++++---- .../source/bcs/SecondaryElectronEnergyBC.md | 18 ++++---- doc/content/source/bcs/TM0AntennaVertBC.md | 24 +++++++---- doc/content/source/bcs/TM0PECVertBC.md | 24 +++++++---- src/bcs/CircuitDirichletPotential.C | 2 +- src/bcs/EconomouDielectricBC.C | 2 +- src/bcs/FieldEmissionBC.C | 3 +- src/bcs/HagelaarElectronAdvectionBC.C | 2 +- src/bcs/HagelaarElectronBC.C | 2 +- src/bcs/HagelaarEnergyAdvectionBC.C | 2 +- src/bcs/HagelaarEnergyBC.C | 2 +- src/bcs/HagelaarIonAdvectionBC.C | 2 +- src/bcs/HagelaarIonDiffusionBC.C | 2 +- src/bcs/LogDensityDirichletBC.C | 2 +- src/bcs/LymberopoulosElectronBC.C | 2 +- src/bcs/LymberopoulosIonBC.C | 2 +- src/bcs/MatchedValueLogBC.C | 2 +- src/bcs/NeumannCircuitVoltageMoles_KV.C | 3 +- src/bcs/PotentialDriftOutflowBC.C | 2 + src/bcs/SakiyamaElectronDiffusionBC.C | 2 +- src/bcs/SakiyamaEnergyDiffusionBC.C | 2 +- src/bcs/SakiyamaEnergySecondaryElectronBC.C | 2 +- src/bcs/SakiyamaIonAdvectionBC.C | 2 +- src/bcs/SakiyamaSecondaryElectronBC.C | 2 +- src/bcs/SchottkyEmissionBC.C | 3 ++ src/bcs/SecondaryElectronBC.C | 2 + src/bcs/SecondaryElectronEnergyBC.C | 2 + src/bcs/TM0AntennaVertBC.C | 2 + src/bcs/TM0PECVertBC.C | 2 + 40 files changed, 275 insertions(+), 140 deletions(-) diff --git a/doc/content/source/bcs/CircuitDirichletPotential.md b/doc/content/source/bcs/CircuitDirichletPotential.md index 2df48acd20d..8e5127c1ada 100644 --- a/doc/content/source/bcs/CircuitDirichletPotential.md +++ b/doc/content/source/bcs/CircuitDirichletPotential.md @@ -1,11 +1,5 @@ # CircuitDirichletPotential -!alert construction title=Undocumented Class -The CircuitDirichletPotential has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/CircuitDirichletPotential ## Overview @@ -32,10 +26,34 @@ Where $N_{A}$ is Avogadro's number, $l_{c}$ is the scaling factor of the mesh, a The charged flux is supplied as a [Postprocessor](syntax/Postprocessors/index.md) (usually the [`SideCurrent`](/postprocessors/SideCurrent.md) Postprocessor). +!alert warning title=Untested Class +The CircuitDirichletPotential does not have a formalized test, yet. For this reason, +users should be aware of unforeseen bugs when using CircuitDirichletPotential. To +report a bug or discuss future contributions to Zapdos, please refer to the +[Zapdos GitHub Discussions page](https://github.com/shannon-lab/zapdos/discussions). +For standards of how to contribute to Zapdos and the MOOSE framework, +please refer to the [MOOSE Contributing page](framework/contributing.md). + ## Example Input File Syntax !! Describe and include an example of how to use the CircuitDirichletPotential object. +```text +[BCs] + [circuit_potential] + type = CircuitDirichletPotential + variable = potential + current = SideCurrent + position_units = 1.0 + potential_units = V + resist = 100 #in Ohms + surface = anode + surfuce_potential = 100 #in V + boundary = 'electrode' + [] +[] +``` + !syntax parameters /BCs/CircuitDirichletPotential !syntax inputs /BCs/CircuitDirichletPotential diff --git a/doc/content/source/bcs/DriftDiffusionDoNothingBC.md b/doc/content/source/bcs/DriftDiffusionDoNothingBC.md index 34bcfdf3765..3cf48a3d014 100644 --- a/doc/content/source/bcs/DriftDiffusionDoNothingBC.md +++ b/doc/content/source/bcs/DriftDiffusionDoNothingBC.md @@ -1,11 +1,5 @@ # DriftDiffusionDoNothingBC -!alert construction title=Undocumented Class -The DriftDiffusionDoNothingBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/DriftDiffusionDoNothingBC ## Overview @@ -30,10 +24,29 @@ the potential. When converting the density to logarithmic form and applying a sc Where $N_{j}$ is the molar density of the species in logarithmic form and $l_{c}$ is the scaling factor of the mesh. +!alert warning title=Untested Class +The DriftDiffusionDoNothingBC does not have a formalized test, yet. For this reason, +users should be aware of unforeseen bugs when using DriftDiffusionDoNothingBC. To +report a bug or discuss future contributions to Zapdos, please refer to the +[Zapdos GitHub Discussions page](https://github.com/shannon-lab/zapdos/discussions). +For standards of how to contribute to Zapdos and the MOOSE framework, +please refer to the [MOOSE Contributing page](framework/contributing.md). + ## Example Input File Syntax !! Describe and include an example of how to use the DriftDiffusionDoNothingBC object. +```text +[BCs] + [electron_gap_drift_diffusion] + type = DriftDiffusionDoNothingBC + variable = electrons + position_units = 1.0 + boundary = 'gap' + [] +[] +``` + !syntax parameters /BCs/DriftDiffusionDoNothingBC !syntax inputs /BCs/DriftDiffusionDoNothingBC diff --git a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md index ab3be4e1b60..cae7d808570 100644 --- a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md +++ b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md @@ -1,11 +1,5 @@ # ElectronAdvectionDoNothingBC -!alert construction title=Undocumented Class -The ElectronAdvectionDoNothingBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/ElectronAdvectionDoNothingBC ## Overview @@ -30,10 +24,30 @@ factor of the mesh, the strong form for `ElectronAdvectionDoNothingBC` is define Where $N_{j}$ is the molar density of the specie in logarithmic form and $l_{c}$ is the scaling factor of the mesh. +!alert warning title=Untested Class +The ElectronAdvectionDoNothingBC does not have a formalized test, yet. For this reason, +users should be aware of unforeseen bugs when using ElectronAdvectionDoNothingBC. To +report a bug or discuss future contributions to Zapdos, please refer to the +[Zapdos GitHub Discussions page](https://github.com/shannon-lab/zapdos/discussions). +For standards of how to contribute to Zapdos and the MOOSE framework, +please refer to the [MOOSE Contributing page](framework/contributing.md). + ## Example Input File Syntax !! Describe and include an example of how to use the ElectronAdvectionDoNothingBC object. +```text +[BCs] + [electron_gap_advection] + type = ElectronAdvectionDoNothingBC + variable = electrons + potential = potential + position_units = 1.0 + boundary = 'gap' + [] +[] +``` + !syntax parameters /BCs/ElectronAdvectionDoNothingBC !syntax inputs /BCs/ElectronAdvectionDoNothingBC diff --git a/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md b/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md index 6fd48159035..dd560bab0ab 100644 --- a/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md +++ b/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md @@ -1,11 +1,5 @@ # ElectronDiffusionDoNothingBC -!alert construction title=Undocumented Class -The ElectronDiffusionDoNothingBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/ElectronDiffusionDoNothingBC ## Overview @@ -29,10 +23,29 @@ factor of the mesh, the strong form for `ElectronDiffusionDoNothingBC` is define Where $N_{e}$ is the molar density of the species in logarithmic form and $l_{c}$ is the scaling factor of the mesh. +!alert warning title=Untested Class +The ElectronDiffusionDoNothingBC does not have a formalized test, yet. For this reason, +users should be aware of unforeseen bugs when using ElectronDiffusionDoNothingBC. To +report a bug or discuss future contributions to Zapdos, please refer to the +[Zapdos GitHub Discussions page](https://github.com/shannon-lab/zapdos/discussions). +For standards of how to contribute to Zapdos and the MOOSE framework, +please refer to the [MOOSE Contributing page](framework/contributing.md). + ## Example Input File Syntax !! Describe and include an example of how to use the ElectronDiffusionDoNothingBC object. +```text +[BCs] + [electron_gap_diffusion] + type = ElectronDiffusionDoNothingBC + variable = electrons + position_units = 1.0 + boundary = 'gap' + [] +[] +``` + !syntax parameters /BCs/ElectronDiffusionDoNothingBC !syntax inputs /BCs/ElectronDiffusionDoNothingBC diff --git a/doc/content/source/bcs/FieldEmissionBC.md b/doc/content/source/bcs/FieldEmissionBC.md index 77886de9c75..43f44d645fe 100644 --- a/doc/content/source/bcs/FieldEmissionBC.md +++ b/doc/content/source/bcs/FieldEmissionBC.md @@ -9,25 +9,25 @@ Using a Fowler-Nordheim calculation for the field emission, the electron current density is defined as \begin{equation} -a = +a_{e} = \begin{cases} 1, & \nabla (V) \cdot \textbf{n} > 0\\ 0, & \nabla (V) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] \textbf{J}_{\textbf{e}} \cdot \textbf{n} = a \ \phi^{-1} \ F^{2} \exp \left[\text{-}v(f) \ b \ \phi^{3/2} / F \right] \\[10pt] -F = \left( 1-a \right) \gamma \left( \text{-} \nabla V \right) \cdot \textbf{n} \\[10pt] -a = 1.541434e\text{-}6 A \ eV \ V^{-2} \\[10pt] -b = 6.830890e9 eV^{-3/2} \ V \ m^{-1} \\[10pt] +F = \left( 1-a_{e} \right) \gamma \left( \text{-} \nabla V \right) \cdot \textbf{n} \\[10pt] +a = 1.541434e\text{-}6 : \text{units of} \ A \ eV \ V^{-2} \\[10pt] +b = 6.830890e9 : \text{units of} \ V \ m^{-1} \ eV^{-3/2} \\[10pt] v(f) = 1 - f + \frac{1}{6}f\ln f \\[10pt] f = c \frac{F}{\phi^{2}} \\[10pt] -c = 1.439964e\text{-}9 \ eV^{2} \ V^{-1} \ m +c = 1.439964e\text{-}9 : \text{units of} \ eV^{2} \ V^{-1} \ m \end{equation} -Where $\textbf{J}_{\textbf{e}}$ is the electron current density, $a$ is the first Fowler–Nordheim constant, $\phi$ is the local work function, $F$ is the local field, $b$ is the second Fowler–Nordheim constant, $v(f)$ is a correction factor that depends on the scaled barrier field ($f$), $\textbf{n}$ is the normal vector of the boundary, $\gamma$ is the field enhancement factor, and $V$ is the potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. With the electron current density, the outward electron flux is defined as +Where $\textbf{J}_{\textbf{e}}$ is the electron current density, $a$ is the first Fowler–Nordheim constant, $\phi$ is the local work function, $F$ is the local field, $b$ is the second Fowler–Nordheim constant, $v(f)$ is a correction factor that depends on the scaled barrier field ($f$), $\textbf{n}$ is the normal vector of the boundary, $\gamma$ is the field enhancement factor, and $V$ is the potential. $a_{e}$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. With the electron current density, the outward electron flux is defined as \begin{equation} \Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V) n_{i} - D_{i} \nabla (n_{i}) \\[10pt] -\Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a)}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/e - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) +\Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a_{e})}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/e - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) \end{equation} Where $\Gamma$ is the outflow normal to the boundary, $\mu_{i}$ is the mobility coefficient of the ions, $\text{sign}_{i}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $n_{i}$ is the ion density, $D_{i}$ is the diffusion coefficient of ions, $e$ is the elemental charge, and $\gamma_{se}$ is the ion induced secondary electron emission coefficient. $r$ is defined as the fraction of particles reflected by the surface. @@ -38,7 +38,7 @@ When converting the density to log form and applying a scaling factor of the mes \begin{equation} F = \left( 1-a \right) \gamma \left( \text{-} \nabla V / l_{c} \right) \cdot \textbf{n} \\[10pt] a = 1.541434e\text{-}6 * V_{c}^{2} \\[10pt] -b = 6.830890e9 eV^{-3/2} / V_{c} \\[10pt] +b = 6.830890e9 / V_{c} \\[10pt] c = 1.439964e\text{-}9 * V_{c}\\[10pt] \Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V / l_{c}) \exp(N_{i}) - D_{i} \exp(N_{i}) \nabla (N_{i} / l_{c}) \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a)}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/ (e / N_{A}) - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) @@ -46,8 +46,6 @@ c = 1.439964e\text{-}9 * V_{c}\\[10pt] Where $N_{i}$ is the molar density of the specie in log form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. - - ## Example Input File Syntax An example of how to use `FieldEmissionBC` can be found in the diff --git a/doc/content/source/bcs/LymberopoulosElectronBC.md b/doc/content/source/bcs/LymberopoulosElectronBC.md index 99ad7fa273b..e7bdb47f207 100644 --- a/doc/content/source/bcs/LymberopoulosElectronBC.md +++ b/doc/content/source/bcs/LymberopoulosElectronBC.md @@ -16,8 +16,7 @@ The outflow is defined as \cdot \textbf{n} \right] \end{equation} -Where $\Gamma_{e}$ is the outflow of the electrons normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $n_{i}$ is the ion density, $k_{s}$ is thermal speed of the electrons, $\mu_{i}$ is the oion mobility coefficient, $\text{sign}_{i}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $V$ is the potential, and $\gamma$ is the ion induced secondary electron coefficient. When converting the density to log form and applying a scaling -factor of the mesh, the strong form for `LymberopoulosElectronBC` is defined as +Where $\Gamma_{e} \cdot \textbf{n}$ is the flux of the electrons normal to the boundary, $\textbf{n}$ is the normal of the boundary, $n_{e}$ is the electron density, $n_{i}$ is the ion density, $\mu_{i}$ is the ion mobility coefficient, $\text{sign}_{i}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $V$ is the electric potential, $\gamma$ is the ion induced secondary electron coefficient, and $k_{s}$ is electron surface recombination coefficient. For an electron sticking coefficient of unity, $k_{s}$ is equal to the thermal speed of the electrons. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `LymberopoulosElectronBC` is defined as \begin{equation} \Gamma_{e} \cdot \textbf{n} = k_{s} \exp(N_{e}) - \gamma \left[ \text{sign}_{i} \mu_{i} \exp(N_{i}) diff --git a/doc/content/source/bcs/MatchedValueLogBC.md b/doc/content/source/bcs/MatchedValueLogBC.md index 97c348c0f95..da8ef4ebe86 100644 --- a/doc/content/source/bcs/MatchedValueLogBC.md +++ b/doc/content/source/bcs/MatchedValueLogBC.md @@ -1,21 +1,41 @@ # MatchedValueLogBC -!alert construction title=Undocumented Class -The MatchedValueLogBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/MatchedValueLogBC ## Overview -!! Replace these lines with information regarding the MatchedValueLogBC object. +`MatchedValueLogBC` is based on Henry’s Law, such that `MatchedValueLogBC` matches a variable to the value of a coupled variable based on the ratio of liquid phase density to gas phase density, in the form of: + +\begin{equation} +H u = v +\end{equation} + +Where $u$ is our variable of interest, $v$ is the coupled variable we are trying to match, and $H$ is the ratio between variables. + +!alert warning title=Untested Class +The MatchedValueLogBC does not have a formalized test, yet. For this reason, +users should be aware of unforeseen bugs when using MatchedValueLogBC. To +report a bug or discuss future contributions to Zapdos, please refer to the +[Zapdos GitHub Discussions page](https://github.com/shannon-lab/zapdos/discussions). +For standards of how to contribute to Zapdos and the MOOSE framework, +please refer to the [MOOSE Contributing page](framework/contributing.md). ## Example Input File Syntax !! Describe and include an example of how to use the MatchedValueLogBC object. +```text +[BCs] + [liquid_surface] + type = MatchedValueLogBC + variable = O2_gas + v = O2_water + H = 1.3e-3 + boundary = 'water' + [] +[] +``` + !syntax parameters /BCs/MatchedValueLogBC !syntax inputs /BCs/MatchedValueLogBC diff --git a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md index cca4fabfb0a..63a70f6334e 100644 --- a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md +++ b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md @@ -1,17 +1,9 @@ # NeumannCircuitVoltageMoles_KV -!alert construction title=Undocumented Class -The NeumannCircuitVoltageMoles_KV has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/NeumannCircuitVoltageMoles_KV ## Overview -Note: add $n_{\gamma}$ - `NeumannCircuitVoltageMoles_KV` is a Neumann boundary condition the equates the plasma and drive potential to the plasma current using Kirchoff’s voltage law for a circuit. The Kirchoff’s voltage law at the cathode is defined as @@ -26,34 +18,35 @@ $e$ is the elemental charge , $\Gamma_i$ and $\Gamma_e$ are fluxes ions and elec \begin{equation} a = \begin{cases} -1, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \left( \text{-} \nabla (V) \right)\cdot \textbf{n} \leq 0\\ +1, & \mu_{e} \left( \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{i} \left( \text{-} \nabla (V) \right)\cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \left(\text{-} \nabla (V) \right) - \cdot \textbf{n} \ n_{e} + \frac{1}{2}v_{\text{th},e}n_{e} \right] - (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{\text{th},j}n_{j} \right] \\[10pt] + \cdot \textbf{n} \ \left( n_{e} - n_{\gamma} \right) + \frac{1}{2}v_{\text{th},e} \left( n_{e} - n_{\gamma} \right) \right] - (1 - a_{e}) \gamma \Gamma_{i} \cdot \textbf{n} \\[10pt] +\Gamma_{i} \cdot \textbf{n} = \frac{1-r_{i}}{1+r_{i}} \left[ (2 a_{i}-1) \ \mu_{i} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \ n_{i} + \frac{1}{2}v_{\text{th},i}n_{i} \right] \\[10pt] v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}} \\[10pt] -v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} +v_{\text{th},i} = \sqrt{\frac{8k_{B}T}{\pi m_{i}}} \\[10pt] +n_{\gamma} = (1 - a_{e}) \frac{\gamma \Gamma_{i} \cdot \textbf{n}}{\mu_{e} (\text{-}\nabla V) \cdot \textbf{n}} \end{equation} -Where $\textbf{n}$ is the normal vector of the boundary, -$\mu$ is the mobility coefficient, $n$ is the species density, $v_\text{th}$ is the thermal velocity of the species, $n_{\varepsilon}$ is the mean energy density of electrons, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. +Where the subscripts $e$, $j$ and $\varepsilon$ represents properties of electrons, ions and electron energy respectively, $\textbf{n}$ is the normal vector of the boundary, +$\mu$ is the mobility coefficient, $n$ is the species density, $v_\text{th}$ is the thermal velocity of the species, $n_{\varepsilon}$ is the mean energy density of electrons, $k_{B}$ is the Boltzmann constant, $T$ is the gas temperature, and $n_{\gamma}$ is electron density emitted by the surface. $a$ is defined such that the outflow is non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. -To convert this setup into a Neumann type BC, the set of equations are rearranged, so that this boundary condition solves for the grad potential normal for the boundary, such that: +To convert Kirchoff’s voltage law into a Neumann type BC, the set of equations are rearranged, so that this boundary condition solves for the potential flux normal for the boundary, such that: \begin{equation} -\nabla (V) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_\text{source}-V_\text{cathode} \right) + \frac{1}{2} e \left[ v_{\text{th},e}n_{e} - \left[(1-a)\gamma - 1\right]v_{\text{th},j}n_{j} \right] \ AR}{e \ \left[ (2a-1)\mu_{e} n_{e} - (2a_{j}-1)\left[(a-1)\gamma - 1\right]\mu_{j}n_{j} \right] AR} +\nabla (V) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_\text{source}-V_\text{cathode} \right) + \frac{1}{2} e \left[ v_{\text{th},e}\left( n_{e} - n_{\gamma} \right) - \left[(1-a)\gamma - 1\right]v_{\text{th},i}n_{i} \right] \ AR}{e \ \left[ (2a-1)\mu_{e} \left( n_{e} - n_{\gamma} \right) - (2a_{i}-1)\left[(a-1)\gamma - 1\right]\mu_{i}n_{i} \right] AR} \end{equation} -When converting the density to log form and applying a scaling factor of the mesh and voltage, the strong form for `NeumannCircuitVoltageMoles_KV` is defined as +When converting the density to logarithmic form and applying a scaling factor of the mesh and voltage, the strong form for `NeumannCircuitVoltageMoles_KV` is defined as \begin{equation} v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] -\nabla (V / l_{c}) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_{source}-V_{cathode} \right) + \frac{1}{2} \frac{e N_{A}}{V_{c}} \left[ v_{\text{th},e}\exp(N_{e}) - \left[(1-a)\gamma - 1\right]v_{\text{th},j}\exp(N_{j}) \right] \ AR}{\frac{e N_{A}}{V_{c}} \left[ (2a-1)\mu_{e} \exp(N_{e}) - (2a_{j}-1)\left[(a-1)\gamma - 1\right]\mu_{j}\exp(N_{j}) \right] AR} +\nabla (V / l_{c}) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_{source}-V_{cathode} \right) + \frac{1}{2} \frac{e N_{A}}{V_{c}} \left[ v_{\text{th},e}\left( \exp(N_{e}) - n_{\gamma} \right) - \left[(1-a)\gamma - 1\right]v_{\text{th},i}\exp(N_{i}) \right] \ AR}{\frac{e N_{A}}{V_{c}} \left[ (2a-1)\mu_{e} \left( \exp(N_{e}) - n_{\gamma} \right) - (2a_{i}-1)\left[(a-1)\gamma - 1\right]\mu_{i}\exp(N_{i}) \right] AR} \end{equation} -Where $N_{j}$ is the molar density of the species in log form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. +Where $N_{e}$, $N_{i}$ and $N_{\varepsilon}$ is the molar density of the electrons, ions and electron energy in logarithmic form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/PenaltyCircuitPotential.md b/doc/content/source/bcs/PenaltyCircuitPotential.md index 6a91d3b6a6f..3269f7cba19 100644 --- a/doc/content/source/bcs/PenaltyCircuitPotential.md +++ b/doc/content/source/bcs/PenaltyCircuitPotential.md @@ -1,11 +1,5 @@ # PenaltyCircuitPotential -!alert construction title=Undocumented Class -The PenaltyCircuitPotential has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/PenaltyCircuitPotential ## Overview @@ -24,7 +18,7 @@ $R$ is the ballast resistance. The current density is supplied through the [`Cur ## Example Input File Syntax -!! Describe and include an example of how to use the PenaltyCircuitPotential object. +!listing test/tests/1d_dc/NonlocalPotentialBCWithSchottky.i block=BCs/potential_left !syntax parameters /BCs/PenaltyCircuitPotential diff --git a/doc/content/source/bcs/PotentialDriftOutflowBC.md b/doc/content/source/bcs/PotentialDriftOutflowBC.md index 8017537bad8..5681aa926a4 100644 --- a/doc/content/source/bcs/PotentialDriftOutflowBC.md +++ b/doc/content/source/bcs/PotentialDriftOutflowBC.md @@ -1,11 +1,5 @@ # PotentialDriftOutflowBC -!alert construction title=Undocumented Class -The PotentialDriftOutflowBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/PotentialDriftOutflowBC ## Overview @@ -18,18 +12,40 @@ The electrostatic electric field driven outflow is defined as \begin{equation} a = \begin{cases} -1, & \text{sign}_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ -0, & \text{sign}_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +1, & \text{sign}_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \text{sign}_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{j} \cdot \textbf{n} = a \ \text{sign}_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \ n_{j} +\Gamma_{j} \cdot \textbf{n} = a \ \text{sign}_{j} \left( \text{-} \nabla (V)\right) \cdot \textbf{n} \ n_{j} \end{equation} +Where $\Gamma_{j}$ is the flux assuming drift-diffusion formulation, $\textbf{n}$ is the normal vector of the boundary, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), +$V$ is the potential, and $n_{j}$ is the density. + When calculating with scaled densities and non-unity coefficients, please refer to [`HagelaarIonAdvectionBC`](/bcs/HagelaarIonAdvectionBC.md), [`DCIonBC`](/bcs/DCIonBC.md), or [`SakiyamaIonAdvectionBC`](/bcs/SakiyamaIonAdvectionBC.md). +!alert warning title=Untested Class +The PotentialDriftOutflowBC does not have a formalized test, yet. For this reason, +users should be aware of unforeseen bugs when using PotentialDriftOutflowBC. To +report a bug or discuss future contributions to Zapdos, please refer to the +[Zapdos GitHub Discussions page](https://github.com/shannon-lab/zapdos/discussions). +For standards of how to contribute to Zapdos and the MOOSE framework, +please refer to the [MOOSE Contributing page](framework/contributing.md). + ## Example Input File Syntax !! Describe and include an example of how to use the PotentialDriftOutflowBC object. +```text +[BCs] + [Ion_electrode] + type = PotentialDriftOutflowBC + variable = ions + potential = potential + boundary = 'electrode' + [] +[] +``` + !syntax parameters /BCs/PotentialDriftOutflowBC !syntax inputs /BCs/PotentialDriftOutflowBC diff --git a/doc/content/source/bcs/SchottkyEmissionBC.md b/doc/content/source/bcs/SchottkyEmissionBC.md index 6958787626c..8f99c54c61b 100644 --- a/doc/content/source/bcs/SchottkyEmissionBC.md +++ b/doc/content/source/bcs/SchottkyEmissionBC.md @@ -1,20 +1,46 @@ # SchottkyEmissionBC -!alert construction title=Undocumented Class -The SchottkyEmissionBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/SchottkyEmissionBC ## Overview -!! Replace these lines with information regarding the SchottkyEmissionBC object. +`SchottkyEmissionBC` is an outflow boundary condition that assumes the electron current density is defined by field ehanced thermionic emission, Schottky emission. + +Using a Richardson equation for the field emission, the electron current density is defined as + +\begin{equation} +a_{e} = +\begin{cases} +1, & \nabla (V) \cdot \textbf{n} > 0\\ +0, & \nabla (V) \cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +\textbf{J}_{\textbf{e}} \cdot \textbf{n} = A_{G} T^{2} \exp\left( \frac{\text{-} \left( \phi - \Delta \phi \right) }{ k_{B} T} \right) \\[10pt] +F = \left( 1-a_{e} \right) \gamma \left( \text{-} \nabla V \right) \cdot \textbf{n} \\[10pt] +\Delta \phi = \sqrt{\frac{e^{3} F}{4 \pi \epsilon_{0}}} +\end{equation} + +Where $\textbf{J}_{\textbf{e}}$ is the electron current density, $A_{G}$ is the Richardson coefficient, $T$ is the temperature of the cathode, $k_{B}$ is Boltzmann constant in units of eV/K, $\phi$ is the local work function, $\Delta \phi$ is the difference in the work funtion due to the electric field, $F$ is the local field, $\textbf{n}$ is the normal vector of the boundary, $\gamma$ is the field enhancement factor, and $V$ is the potential. $a_{e}$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. With the electron current density, the outward electron flux is defined as + +\begin{equation} +\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V) n_{i} - D_{i} \nabla (n_{i}) \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a_{e})}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/e - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) +\end{equation} + +Where $\Gamma$ is the outflow normal to the boundary, $\mu_{i}$ is the mobility coefficient of the ions, $\text{sign}_{i}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $n_{i}$ is the ion density, $D_{i}$ is the diffusion coefficient of ions, $e$ is the elemental charge, and $\gamma_{se}$ is the ion induced secondary electron emission coefficient. $r$ is defined as the fraction of particles reflected by the surface. + +When converting the density to logarithmic form and applying a scaling factor of the mesh and voltage, the strong form is given by + +\begin{equation} +F = \left( 1-a \right) \gamma \left( \text{-} \nabla V / l_{c} \right) \cdot \textbf{n} \\[10pt] +\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V / l_{c}) \exp(N_{i}) - D_{i} \exp(N_{i}) \nabla (N_{i} / l_{c}) \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a)}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/ (e / N_{A}) - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) +\end{equation} + +Where $N_{i}$ is the molar density of the specie in logarithmic form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -!! Describe and include an example of how to use the SchottkyEmissionBC object. +!listing test/tests/1d_dc/NonlocalPotentialBCWithSchottky.i block=BCs/Emission_left !syntax parameters /BCs/SchottkyEmissionBC diff --git a/doc/content/source/bcs/SecondaryElectronBC.md b/doc/content/source/bcs/SecondaryElectronBC.md index b422c5fdb63..98ba2eaba23 100644 --- a/doc/content/source/bcs/SecondaryElectronBC.md +++ b/doc/content/source/bcs/SecondaryElectronBC.md @@ -4,33 +4,33 @@ ## Overview -Note: add $n_{\gamma}$ - `SecondaryElectronBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. `SecondaryElectronBC` assumes the electrostatic approximation for the electric field. \begin{equation} a = \begin{cases} -1, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} > 0\\ +1, & \mu_{e} \left( \nabla (V) \right) \cdot \textbf{n} > 0\\ 0, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{e} \cdot \textbf{n} = \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +\Gamma_{e} \cdot \textbf{n} = \frac{1 - r_{e}}{1 + r_{e}} \frac{\text{-}1}{2} v_{\text{th},e} n_{\gamma} - \frac{2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] \Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{\text{th},j}n_{j} \right] \\[10pt] -v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}} \\[10pt] +v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \\[10pt] +n_{\gamma} = (1 - a_{e}) \frac{\gamma \Gamma_{i} \cdot \textbf{n}}{\mu_{e} (\text{-}\nabla V) \cdot \textbf{n}} \end{equation} -Where $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal of the boundary, -$\mu$ is the mobility coefficient, $n$ is the specie density, $v_{th}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronBC` is defined as +Where the subscripts $e$, $j$ and $\varepsilon$ represents properties of electrons, ions and electron energy respectively, $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal vector of the boundary, +$\mu$ is the mobility coefficient, $n$ is the species density, $v_{th}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, $T$ is the gas temperature, and $n_{\gamma}$ is electron density emitted by the surface. $a$ is defined such that the outflow is non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronBC` is defined as \begin{equation} -\Gamma_{e} \cdot \textbf{n} = \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] \Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( \text{-} \nabla (V / l_{c}) \right) \cdot \textbf{n} \ \exp(N_{j}) + \frac{1}{2}v_{\text{th},j}\exp(N_{j}) \right] \end{equation} -Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. +Where $N_{e}$, $N_{i}$ and $N_{\varepsilon}$ is the molar density of the electrons, ions and electron energy in logarithmic form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/SecondaryElectronEnergyBC.md b/doc/content/source/bcs/SecondaryElectronEnergyBC.md index 71abf6860e7..95f096b9710 100644 --- a/doc/content/source/bcs/SecondaryElectronEnergyBC.md +++ b/doc/content/source/bcs/SecondaryElectronEnergyBC.md @@ -4,33 +4,33 @@ ## Overview -Note: add $n_{\gamma}$ - `SecondaryElectronEnergyBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. `SecondaryElectronEnergyBC` assumes the electrostatic approximation for the electric field. \begin{equation} a = \begin{cases} -1, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} > 0\\ +1, & \mu_{e} \left( \nabla (V) \right) \cdot \textbf{n} > 0\\ 0, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] -\Gamma_{\epsilon} \cdot \textbf{n} = \frac{5}{3} \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +\Gamma_{\epsilon} \cdot \textbf{n} = \frac{1 - r_{e}}{1 + r_{e}} \frac{\text{-}5}{6} v_{\text{th},e} n_{\gamma} \varepsilon_{\gamma} - \frac{5}{3} \frac{2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] \Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \ n_{j} + \frac{1}{2}v_{\text{th},j}n_{j} \right] \\[10pt] -v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}}} \\[10pt] +v_{\text{th},j} = \sqrt{\frac{8k_{B}T}{\pi m_{j}}} \\[10pt] +n_{\gamma} = (1 - a_{e}) \frac{\gamma \Gamma_{i} \cdot \textbf{n}}{\mu_{e} (\text{-}\nabla V) \cdot \textbf{n}} \end{equation} -Where $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal vector of the boundary, -$\mu$ is the mobility coefficient, $n$ is the species density, $v_\text{th}}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, and $T$ is the gas temperature. $a$ is defined such that the outflow is non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronEnergyBC` is defined as +Where the subscripts $e$, $j$ and $\varepsilon$ represents properties of electrons, ions and electron energy respectively, $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal vector of the boundary, +$\mu$ is the mobility coefficient, $n$ is the species density, $v_\text{th}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, $T$ is the gas temperature, $n_{\gamma}$ is electron density emitted by the surface, and $\varepsilon_{\gamma}$ is the energy of the secondary electrons. $a$ is defined such that the outflow is non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronEnergyBC` is defined as \begin{equation} -\Gamma_{\epsilon} \cdot \textbf{n} = \frac{5}{3} \frac{-2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] +v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] \Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( \text{-} \nabla (V / l_{c}) \right) \cdot \textbf{n} \ \exp(N_{j}) + \frac{1}{2}v_{\text{th},j}\exp(N_{j}) \right] \end{equation} -Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the scaling factor of the mesh. +Where $N_{e}$, $N_{i}$ and $N_{\varepsilon}$ is the molar density of the electrons, ions and electron energy in logarithmic form and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/TM0AntennaVertBC.md b/doc/content/source/bcs/TM0AntennaVertBC.md index 6da157da0e1..0783cff2303 100644 --- a/doc/content/source/bcs/TM0AntennaVertBC.md +++ b/doc/content/source/bcs/TM0AntennaVertBC.md @@ -1,20 +1,28 @@ # TM0AntennaVertBC -!alert construction title=Undocumented Class -The TM0AntennaVertBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/TM0AntennaVertBC ## Overview -!! Replace these lines with information regarding the TM0AntennaVertBC object. +`TM0AntennaVertBC` is the boundary condition of the azimuthal component of the magnetizing field for a simple vertical antenna. `TM0AntennaVertBC` assumes an axisymmetric transverse magnetic (TM) wave, an incoming electric field of unity, and negligible current density compared to the displacement current. + +The boundary condition of the azimuthal component of the magnetizing field normal to the antenna surface is + +\begin{equation} + \textbf{n} \times \left( \nabla \times \textbf{H} \right) = j \omega \epsilon \textbf{E} +\end{equation} + +Where $\textbf{H}$ is the magnetizing field, $\textbf{n}$ is the normal vector of the boundary, $\epsilon$ is the material permittivity, $\omega$ is the drive frequency of the system, $\textbf{E}$ is the electric field, and $j = \sqrt{-1}$. By assuming the normal of azimuthal component of the magnetizing field to the surface is purely in the axial direction and an incoming electric field of unity (such that $\textbf{E} = (1 - j)$), the integrated boundary condition simplifies to + +\begin{equation} + \nabla \text{H}_{\theta} \cdot \textbf{n} = \frac{\text{-} \text{H}_{\theta}}{r} + \omega \epsilon +\end{equation} + +Where $H_{\phi}$ is the azimuthal component of the magnetizing field and $r$ is the radial distance from the axial centerline. ## Example Input File Syntax -!! Describe and include an example of how to use the TM0AntennaVertBC object. +!listing test/tests/TM10_circular_wg/TM_steady_dieletric.i block=BCs/launcher !syntax parameters /BCs/TM0AntennaVertBC diff --git a/doc/content/source/bcs/TM0PECVertBC.md b/doc/content/source/bcs/TM0PECVertBC.md index a5450c0dc3f..8c88d09c9c3 100644 --- a/doc/content/source/bcs/TM0PECVertBC.md +++ b/doc/content/source/bcs/TM0PECVertBC.md @@ -1,20 +1,28 @@ # TM0PECVertBC -!alert construction title=Undocumented Class -The TM0PECVertBC has not been documented. The content listed below should be used as a starting point for -documenting the class, which includes the typical automatic documentation associated with a -MooseObject; however, what is contained is ultimately determined by what is necessary to make the -documentation clear for users. - !syntax description /BCs/TM0PECVertBC ## Overview -!! Replace these lines with information regarding the TM0PECVertBC object. +`TM0PECVertBC` is a perfect electric conductor boundary condition of the azimuthal component of the magnetizing field. `TM0PECVertBC` assumes an axisymmetric transverse magnetic (TM) wave. + +The perfect electric conductor boundary condition of the azimuthal component of the magnetizing field normal to the antenna surface is + +\begin{equation} + \textbf{n} \times \left( \nabla \times \textbf{H} \right) = 0 +\end{equation} + +Where $\textbf{H}$ is the magnetizing field and $\textbf{n}$ is the normal vector of the boundary. By assuming the normal of azimuthal component of the magnetizing field to the surface is purely in the axial direction, the integrated boundary condition simplifies to + +\begin{equation} + \nabla \text{H}_{\theta} \cdot \textbf{n} = \frac{\text{-} \text{H}_{\theta}}{r} +\end{equation} + +Where $H_{\phi}$ is the azimuthal component of the magnetizing field and $r$ is the radial distance from the axial centerline. ## Example Input File Syntax -!! Describe and include an example of how to use the TM0PECVertBC object. +!listing test/tests/TM10_circular_wg/TM_steady_dieletric.i block=BCs/vert_wall !syntax parameters /BCs/TM0PECVertBC diff --git a/src/bcs/CircuitDirichletPotential.C b/src/bcs/CircuitDirichletPotential.C index d841fbc33c8..5403bc1abc2 100644 --- a/src/bcs/CircuitDirichletPotential.C +++ b/src/bcs/CircuitDirichletPotential.C @@ -36,7 +36,7 @@ CircuitDirichletPotential::validParams() "For 1D calculations, an area has to be passed. This area also must " "match the units convention of position_units."); params.addClassDescription("Dirichlet circuit boundary condition for potential" - "(The current is given through an UserObject)"); + " (The current is given through an UserObject)"); return params; } diff --git a/src/bcs/EconomouDielectricBC.C b/src/bcs/EconomouDielectricBC.C index 09fa908ebe8..4e9ca075c66 100644 --- a/src/bcs/EconomouDielectricBC.C +++ b/src/bcs/EconomouDielectricBC.C @@ -30,7 +30,7 @@ EconomouDielectricBC::validParams() params.addRequiredParam("potential_units", "The potential units."); params.addClassDescription("Dielectric boundary condition" - "(Based on DOI: https://doi.org/10.1116/1.579300)"); + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/FieldEmissionBC.C b/src/bcs/FieldEmissionBC.C index 916faca44bd..3d5b3b8d71b 100644 --- a/src/bcs/FieldEmissionBC.C +++ b/src/bcs/FieldEmissionBC.C @@ -26,7 +26,8 @@ FieldEmissionBC::validParams() params.addRequiredParam("potential_units", "The potential units."); params.addParam("tau", 1e-9, "The time constant for ramping the boundary condition."); params.addParam("relax", false, "Use relaxation for emission."); - params.addClassDescription("The electron flux boundary condition due to field emission"); + params.addClassDescription("The electron flux boundary condition due to field emission" + " (Based on the works by Forbes [1](https://doi.org/10.1063/1.2354582) and [2](https://doi.org/10.1116/1.2827505))"); return params; } diff --git a/src/bcs/HagelaarElectronAdvectionBC.C b/src/bcs/HagelaarElectronAdvectionBC.C index e8f10209beb..aedd5473a3d 100644 --- a/src/bcs/HagelaarElectronAdvectionBC.C +++ b/src/bcs/HagelaarElectronAdvectionBC.C @@ -20,7 +20,7 @@ HagelaarElectronAdvectionBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Kinetic advective electron boundary condition" - "(Based on DOI:https://doi.org/10.1103/PhysRevE.62.1452)"); + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/HagelaarElectronBC.C b/src/bcs/HagelaarElectronBC.C index cc8d111f01e..d9889ffddb0 100644 --- a/src/bcs/HagelaarElectronBC.C +++ b/src/bcs/HagelaarElectronBC.C @@ -22,7 +22,7 @@ HagelaarElectronBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Kinetic electron boundary condition" - "(Based on DOI:https://doi.org/10.1103/PhysRevE.62.1452)"); + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/HagelaarEnergyAdvectionBC.C b/src/bcs/HagelaarEnergyAdvectionBC.C index 50bc857bb1c..af0345299ca 100644 --- a/src/bcs/HagelaarEnergyAdvectionBC.C +++ b/src/bcs/HagelaarEnergyAdvectionBC.C @@ -25,7 +25,7 @@ HagelaarEnergyAdvectionBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addRequiredParam("secondary_electron_energy", "The secondary electron energy in eV"); params.addClassDescription("Kinetic advective electron energy boundary condition" - "(Based on DOI:https://doi.org/10.1063/1.2715745)"); + " (Based on work of [Sakiyama et al.](https://doi.org/10.1063/1.2715745))"); return params; } diff --git a/src/bcs/HagelaarEnergyBC.C b/src/bcs/HagelaarEnergyBC.C index d8a1c0e69dc..e7d13f592eb 100644 --- a/src/bcs/HagelaarEnergyBC.C +++ b/src/bcs/HagelaarEnergyBC.C @@ -21,7 +21,7 @@ HagelaarEnergyBC::validParams() params.addRequiredCoupledVar("electrons", "The electron density in log form"); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Kinetic electron mean energy boundary condition" - "(Based on DOI:https://doi.org/10.1103/PhysRevE.62.1452)"); + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/HagelaarIonAdvectionBC.C b/src/bcs/HagelaarIonAdvectionBC.C index 1410971dcaa..1097c414415 100644 --- a/src/bcs/HagelaarIonAdvectionBC.C +++ b/src/bcs/HagelaarIonAdvectionBC.C @@ -20,7 +20,7 @@ HagelaarIonAdvectionBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Kinetic advective ion boundary condition" - "(Based on DOI:https://doi.org/10.1103/PhysRevE.62.1452)"); + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/HagelaarIonDiffusionBC.C b/src/bcs/HagelaarIonDiffusionBC.C index ed0c5680bd0..db2a2abda4f 100644 --- a/src/bcs/HagelaarIonDiffusionBC.C +++ b/src/bcs/HagelaarIonDiffusionBC.C @@ -21,7 +21,7 @@ HagelaarIonDiffusionBC::validParams() params.addParam( "user_velocity", -1., "Optional parameter if user wants to specify the thermal velocity."); params.addClassDescription("Kinetic electron boundary condition" - "(Based on DOI:https://doi.org/10.1103/PhysRevE.62.1452)"); + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/LogDensityDirichletBC.C b/src/bcs/LogDensityDirichletBC.C index 3c77a8deca9..6134bddd492 100644 --- a/src/bcs/LogDensityDirichletBC.C +++ b/src/bcs/LogDensityDirichletBC.C @@ -18,7 +18,7 @@ LogDensityDirichletBC::validParams() InputParameters params = ADNodalBC::validParams(); params.addRequiredParam("value", "Value of the BC"); params.addClassDescription("Density Dirichlet boundary condition" - "(Densities must be in log form and in moles/m^3)"); + " (Densities must be in log form and in moles/m$^3$)"); return params; } diff --git a/src/bcs/LymberopoulosElectronBC.C b/src/bcs/LymberopoulosElectronBC.C index 1aca762cd96..bd7c0546f61 100644 --- a/src/bcs/LymberopoulosElectronBC.C +++ b/src/bcs/LymberopoulosElectronBC.C @@ -23,7 +23,7 @@ LymberopoulosElectronBC::validParams() params.addRequiredCoupledVar("ions", "A list of ion densities in log form"); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Simpified kinetic electron boundary condition" - "(Based on DOI: https://doi.org/10.1063/1.352926)"); + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1063/1.352926))"); return params; } diff --git a/src/bcs/LymberopoulosIonBC.C b/src/bcs/LymberopoulosIonBC.C index bed8a58b5a3..f8a602cf671 100644 --- a/src/bcs/LymberopoulosIonBC.C +++ b/src/bcs/LymberopoulosIonBC.C @@ -19,7 +19,7 @@ LymberopoulosIonBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Simpified kinetic ion boundary condition" - "(Based on DOI: https://doi.org/10.1063/1.352926)"); + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1063/1.352926))"); return params; } diff --git a/src/bcs/MatchedValueLogBC.C b/src/bcs/MatchedValueLogBC.C index aefa99b0177..22f5da9c3c2 100644 --- a/src/bcs/MatchedValueLogBC.C +++ b/src/bcs/MatchedValueLogBC.C @@ -20,7 +20,7 @@ MatchedValueLogBC::validParams() params.addRequiredCoupledVar("v", "The variable whose value we are to match."); params.addClassDescription( "Henry’s Law like thermodynamic boundary condition for specifying a specie" - "concentration ratio at the gas-liquid interface"); + " concentration ratio at the gas-liquid interface"); return params; } diff --git a/src/bcs/NeumannCircuitVoltageMoles_KV.C b/src/bcs/NeumannCircuitVoltageMoles_KV.C index 75eb4114877..39bba8b4bc6 100644 --- a/src/bcs/NeumannCircuitVoltageMoles_KV.C +++ b/src/bcs/NeumannCircuitVoltageMoles_KV.C @@ -34,7 +34,8 @@ NeumannCircuitVoltageMoles_KV::validParams() params.addRequiredParam("r", "The reflection coefficient applied to both electrons and ions"); params.addRequiredParam("position_units", "Units of position."); - + params.addClassDescription( + "A Neumann boundary condition based on Kirchhoff's law of voltage"); return params; } diff --git a/src/bcs/PotentialDriftOutflowBC.C b/src/bcs/PotentialDriftOutflowBC.C index f0fcce3a38b..e88b0ad0341 100644 --- a/src/bcs/PotentialDriftOutflowBC.C +++ b/src/bcs/PotentialDriftOutflowBC.C @@ -23,6 +23,8 @@ PotentialDriftOutflowBC::validParams() "potential", "The gradient of the potential will be used to compute the advection velocity."); params.addParam("charge_sign", charge_sign, "The sign of the charged particle."); + params.addClassDescription( + "The drift flux boundary condition"); return params; } diff --git a/src/bcs/SakiyamaElectronDiffusionBC.C b/src/bcs/SakiyamaElectronDiffusionBC.C index cdb1443738c..a09a4f1229c 100644 --- a/src/bcs/SakiyamaElectronDiffusionBC.C +++ b/src/bcs/SakiyamaElectronDiffusionBC.C @@ -19,7 +19,7 @@ SakiyamaElectronDiffusionBC::validParams() params.addRequiredCoupledVar("electron_energy", "The mean electron energy density in log form"); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Kinetic electron boundary condition" - "(Based on DOI: https://doi.org/10.1116/1.579300)"); + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/SakiyamaEnergyDiffusionBC.C b/src/bcs/SakiyamaEnergyDiffusionBC.C index e6b0bb81601..b0f2b752aa9 100644 --- a/src/bcs/SakiyamaEnergyDiffusionBC.C +++ b/src/bcs/SakiyamaEnergyDiffusionBC.C @@ -19,7 +19,7 @@ SakiyamaEnergyDiffusionBC::validParams() params.addRequiredCoupledVar("electrons", "The electron density in log form"); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Kinetic advective electron energy boundary condition" - "(Based on DOI: https://doi.org/10.1116/1.579300)"); + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/SakiyamaEnergySecondaryElectronBC.C b/src/bcs/SakiyamaEnergySecondaryElectronBC.C index 25aabf43d91..5e3737b70a4 100644 --- a/src/bcs/SakiyamaEnergySecondaryElectronBC.C +++ b/src/bcs/SakiyamaEnergySecondaryElectronBC.C @@ -29,7 +29,7 @@ SakiyamaEnergySecondaryElectronBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Kinetic secondary electron for mean electron energy boundary condition" - "(Based on DOI: https://doi.org/10.1116/1.579300)"); + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/SakiyamaIonAdvectionBC.C b/src/bcs/SakiyamaIonAdvectionBC.C index 9987e893b14..c9516d45d54 100644 --- a/src/bcs/SakiyamaIonAdvectionBC.C +++ b/src/bcs/SakiyamaIonAdvectionBC.C @@ -19,7 +19,7 @@ SakiyamaIonAdvectionBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Kinetic advective ion boundary condition" - "(Based on DOI: https://doi.org/10.1116/1.579300)"); + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/SakiyamaSecondaryElectronBC.C b/src/bcs/SakiyamaSecondaryElectronBC.C index df09e6477bc..d4dd60c2ae9 100644 --- a/src/bcs/SakiyamaSecondaryElectronBC.C +++ b/src/bcs/SakiyamaSecondaryElectronBC.C @@ -22,7 +22,7 @@ SakiyamaSecondaryElectronBC::validParams() params.addRequiredParam>( "emission_coeffs", "A list of species-dependent secondary electron emission coefficients"); params.addClassDescription("Kinetic secondary electron boundary condition" - "(Based on DOI: https://doi.org/10.1116/1.579300)"); + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/SchottkyEmissionBC.C b/src/bcs/SchottkyEmissionBC.C index a0d07f748b7..41805253944 100644 --- a/src/bcs/SchottkyEmissionBC.C +++ b/src/bcs/SchottkyEmissionBC.C @@ -28,6 +28,9 @@ SchottkyEmissionBC::validParams() params.addRequiredParam("potential_units", "The potential units."); params.addParam("tau", 1e-9, "The time constant for ramping the boundary condition."); params.addParam("relax", false, "Use relaxation for emission."); + params.addClassDescription( + "The electron flux boundary condition due to field ehanced thermionic emission (Schottky emission)" + " (Based on work by [Go](https://iopscience.iop.org/article/10.1088/0022-3727/46/3/035202))"); return params; } diff --git a/src/bcs/SecondaryElectronBC.C b/src/bcs/SecondaryElectronBC.C index b6b960f63a1..3dcdd00634a 100644 --- a/src/bcs/SecondaryElectronBC.C +++ b/src/bcs/SecondaryElectronBC.C @@ -24,6 +24,8 @@ SecondaryElectronBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addRequiredParam>( "emission_coeffs", "A list of species-dependent secondary electron emission coefficients"); + params.addClassDescription( + "Kinetic secondary electron boundary condition"); return params; } diff --git a/src/bcs/SecondaryElectronEnergyBC.C b/src/bcs/SecondaryElectronEnergyBC.C index 609ef968a7a..b5cd61e1dfc 100644 --- a/src/bcs/SecondaryElectronEnergyBC.C +++ b/src/bcs/SecondaryElectronEnergyBC.C @@ -25,6 +25,8 @@ SecondaryElectronEnergyBC::validParams() params.addRequiredParam>( "emission_coeffs", "A species-dependent list of secondary electron emission coefficients"); params.addRequiredParam("secondary_electron_energy", "The secondary electron energy in eV"); + params.addClassDescription( + "Kinetic secondary electron for mean electron energy boundary condition"); return params; } diff --git a/src/bcs/TM0AntennaVertBC.C b/src/bcs/TM0AntennaVertBC.C index dc7cd0a9bed..7c407e505b8 100644 --- a/src/bcs/TM0AntennaVertBC.C +++ b/src/bcs/TM0AntennaVertBC.C @@ -20,6 +20,8 @@ TM0AntennaVertBC::validParams() params.addParam("eps_r", 1., "The relative permittivity."); params.addParam( "time_dependent", false, "Whether the antenna boundary condition should oscillate in time."); + params.addClassDescription( + "A simple vertical antenna BC of the azimuthal component of the magnetizing field."); return params; } diff --git a/src/bcs/TM0PECVertBC.C b/src/bcs/TM0PECVertBC.C index c03db7972b0..b40a892da11 100644 --- a/src/bcs/TM0PECVertBC.C +++ b/src/bcs/TM0PECVertBC.C @@ -16,6 +16,8 @@ InputParameters TM0PECVertBC::validParams() { InputParameters params = ADIntegratedBC::validParams(); + params.addClassDescription( + "A perfect electric conductor BC of the azimuthal component of the magnetizing field."); return params; } From e41809bddbbe2bc04f770948cd30dc68e4d79d79 Mon Sep 17 00:00:00 2001 From: csdechant Date: Wed, 23 Oct 2024 10:39:59 -0600 Subject: [PATCH 04/11] Addressing Clang format --- src/bcs/EconomouDielectricBC.C | 5 +++-- src/bcs/FieldEmissionBC.C | 6 ++++-- src/bcs/HagelaarElectronAdvectionBC.C | 5 +++-- src/bcs/HagelaarElectronBC.C | 5 +++-- src/bcs/HagelaarEnergyAdvectionBC.C | 5 +++-- src/bcs/HagelaarEnergyBC.C | 5 +++-- src/bcs/HagelaarIonAdvectionBC.C | 5 +++-- src/bcs/HagelaarIonDiffusionBC.C | 5 +++-- src/bcs/LymberopoulosElectronBC.C | 5 +++-- src/bcs/LymberopoulosIonBC.C | 5 +++-- src/bcs/NeumannCircuitVoltageMoles_KV.C | 3 +-- src/bcs/PotentialDriftOutflowBC.C | 3 +-- src/bcs/SakiyamaElectronDiffusionBC.C | 5 +++-- src/bcs/SakiyamaEnergyDiffusionBC.C | 5 +++-- src/bcs/SakiyamaIonAdvectionBC.C | 5 +++-- src/bcs/SakiyamaSecondaryElectronBC.C | 5 +++-- src/bcs/SchottkyEmissionBC.C | 3 ++- src/bcs/SecondaryElectronBC.C | 3 +-- 18 files changed, 48 insertions(+), 35 deletions(-) diff --git a/src/bcs/EconomouDielectricBC.C b/src/bcs/EconomouDielectricBC.C index 4e9ca075c66..bbb4b548224 100644 --- a/src/bcs/EconomouDielectricBC.C +++ b/src/bcs/EconomouDielectricBC.C @@ -29,8 +29,9 @@ EconomouDielectricBC::validParams() "The secondary electron emission coefficient for each ion provided in `ions`"); params.addRequiredParam("potential_units", "The potential units."); - params.addClassDescription("Dielectric boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + params.addClassDescription( + "Dielectric boundary condition" + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/FieldEmissionBC.C b/src/bcs/FieldEmissionBC.C index 3d5b3b8d71b..50f2a8a6089 100644 --- a/src/bcs/FieldEmissionBC.C +++ b/src/bcs/FieldEmissionBC.C @@ -26,8 +26,10 @@ FieldEmissionBC::validParams() params.addRequiredParam("potential_units", "The potential units."); params.addParam("tau", 1e-9, "The time constant for ramping the boundary condition."); params.addParam("relax", false, "Use relaxation for emission."); - params.addClassDescription("The electron flux boundary condition due to field emission" - " (Based on the works by Forbes [1](https://doi.org/10.1063/1.2354582) and [2](https://doi.org/10.1116/1.2827505))"); + params.addClassDescription( + "The electron flux boundary condition due to field emission" + " (Based on the works by Forbes [1](https://doi.org/10.1063/1.2354582) and " + "[2](https://doi.org/10.1116/1.2827505))"); return params; } diff --git a/src/bcs/HagelaarElectronAdvectionBC.C b/src/bcs/HagelaarElectronAdvectionBC.C index aedd5473a3d..e37ef3a7227 100644 --- a/src/bcs/HagelaarElectronAdvectionBC.C +++ b/src/bcs/HagelaarElectronAdvectionBC.C @@ -19,8 +19,9 @@ HagelaarElectronAdvectionBC::validParams() params.addRequiredParam("r", "The reflection coefficient"); params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription("Kinetic advective electron boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + params.addClassDescription( + "Kinetic advective electron boundary condition" + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/HagelaarElectronBC.C b/src/bcs/HagelaarElectronBC.C index d9889ffddb0..b473e0522cf 100644 --- a/src/bcs/HagelaarElectronBC.C +++ b/src/bcs/HagelaarElectronBC.C @@ -21,8 +21,9 @@ HagelaarElectronBC::validParams() params.addRequiredCoupledVar("electron_energy", "The mean electron energy density in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription("Kinetic electron boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + params.addClassDescription( + "Kinetic electron boundary condition" + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/HagelaarEnergyAdvectionBC.C b/src/bcs/HagelaarEnergyAdvectionBC.C index af0345299ca..4c1516eba2d 100644 --- a/src/bcs/HagelaarEnergyAdvectionBC.C +++ b/src/bcs/HagelaarEnergyAdvectionBC.C @@ -24,8 +24,9 @@ HagelaarEnergyAdvectionBC::validParams() "The species-dependent secondary electron emission coefficients for this boundary"); params.addRequiredParam("position_units", "Units of position."); params.addRequiredParam("secondary_electron_energy", "The secondary electron energy in eV"); - params.addClassDescription("Kinetic advective electron energy boundary condition" - " (Based on work of [Sakiyama et al.](https://doi.org/10.1063/1.2715745))"); + params.addClassDescription( + "Kinetic advective electron energy boundary condition" + " (Based on work of [Sakiyama et al.](https://doi.org/10.1063/1.2715745))"); return params; } diff --git a/src/bcs/HagelaarEnergyBC.C b/src/bcs/HagelaarEnergyBC.C index e7d13f592eb..4b39af8139e 100644 --- a/src/bcs/HagelaarEnergyBC.C +++ b/src/bcs/HagelaarEnergyBC.C @@ -20,8 +20,9 @@ HagelaarEnergyBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredCoupledVar("electrons", "The electron density in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription("Kinetic electron mean energy boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + params.addClassDescription( + "Kinetic electron mean energy boundary condition" + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/HagelaarIonAdvectionBC.C b/src/bcs/HagelaarIonAdvectionBC.C index 1097c414415..9a6150faa33 100644 --- a/src/bcs/HagelaarIonAdvectionBC.C +++ b/src/bcs/HagelaarIonAdvectionBC.C @@ -19,8 +19,9 @@ HagelaarIonAdvectionBC::validParams() params.addRequiredParam("r", "The reflection coefficient"); params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription("Kinetic advective ion boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + params.addClassDescription( + "Kinetic advective ion boundary condition" + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/HagelaarIonDiffusionBC.C b/src/bcs/HagelaarIonDiffusionBC.C index db2a2abda4f..555410c4aad 100644 --- a/src/bcs/HagelaarIonDiffusionBC.C +++ b/src/bcs/HagelaarIonDiffusionBC.C @@ -20,8 +20,9 @@ HagelaarIonDiffusionBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addParam( "user_velocity", -1., "Optional parameter if user wants to specify the thermal velocity."); - params.addClassDescription("Kinetic electron boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + params.addClassDescription( + "Kinetic electron boundary condition" + " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); return params; } diff --git a/src/bcs/LymberopoulosElectronBC.C b/src/bcs/LymberopoulosElectronBC.C index bd7c0546f61..a7a2dc5a6f0 100644 --- a/src/bcs/LymberopoulosElectronBC.C +++ b/src/bcs/LymberopoulosElectronBC.C @@ -22,8 +22,9 @@ LymberopoulosElectronBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredCoupledVar("ions", "A list of ion densities in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription("Simpified kinetic electron boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1063/1.352926))"); + params.addClassDescription( + "Simpified kinetic electron boundary condition" + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1063/1.352926))"); return params; } diff --git a/src/bcs/LymberopoulosIonBC.C b/src/bcs/LymberopoulosIonBC.C index f8a602cf671..a44ab0a1e88 100644 --- a/src/bcs/LymberopoulosIonBC.C +++ b/src/bcs/LymberopoulosIonBC.C @@ -18,8 +18,9 @@ LymberopoulosIonBC::validParams() InputParameters params = ADIntegratedBC::validParams(); params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription("Simpified kinetic ion boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1063/1.352926))"); + params.addClassDescription( + "Simpified kinetic ion boundary condition" + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1063/1.352926))"); return params; } diff --git a/src/bcs/NeumannCircuitVoltageMoles_KV.C b/src/bcs/NeumannCircuitVoltageMoles_KV.C index 39bba8b4bc6..c8a544128e8 100644 --- a/src/bcs/NeumannCircuitVoltageMoles_KV.C +++ b/src/bcs/NeumannCircuitVoltageMoles_KV.C @@ -34,8 +34,7 @@ NeumannCircuitVoltageMoles_KV::validParams() params.addRequiredParam("r", "The reflection coefficient applied to both electrons and ions"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "A Neumann boundary condition based on Kirchhoff's law of voltage"); + params.addClassDescription("A Neumann boundary condition based on Kirchhoff's law of voltage"); return params; } diff --git a/src/bcs/PotentialDriftOutflowBC.C b/src/bcs/PotentialDriftOutflowBC.C index e88b0ad0341..5d12990f9f4 100644 --- a/src/bcs/PotentialDriftOutflowBC.C +++ b/src/bcs/PotentialDriftOutflowBC.C @@ -23,8 +23,7 @@ PotentialDriftOutflowBC::validParams() "potential", "The gradient of the potential will be used to compute the advection velocity."); params.addParam("charge_sign", charge_sign, "The sign of the charged particle."); - params.addClassDescription( - "The drift flux boundary condition"); + params.addClassDescription("The drift flux boundary condition"); return params; } diff --git a/src/bcs/SakiyamaElectronDiffusionBC.C b/src/bcs/SakiyamaElectronDiffusionBC.C index a09a4f1229c..dc9b13a3bdf 100644 --- a/src/bcs/SakiyamaElectronDiffusionBC.C +++ b/src/bcs/SakiyamaElectronDiffusionBC.C @@ -18,8 +18,9 @@ SakiyamaElectronDiffusionBC::validParams() InputParameters params = ADIntegratedBC::validParams(); params.addRequiredCoupledVar("electron_energy", "The mean electron energy density in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription("Kinetic electron boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + params.addClassDescription( + "Kinetic electron boundary condition" + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/SakiyamaEnergyDiffusionBC.C b/src/bcs/SakiyamaEnergyDiffusionBC.C index b0f2b752aa9..0e90564053a 100644 --- a/src/bcs/SakiyamaEnergyDiffusionBC.C +++ b/src/bcs/SakiyamaEnergyDiffusionBC.C @@ -18,8 +18,9 @@ SakiyamaEnergyDiffusionBC::validParams() InputParameters params = ADIntegratedBC::validParams(); params.addRequiredCoupledVar("electrons", "The electron density in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription("Kinetic advective electron energy boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + params.addClassDescription( + "Kinetic advective electron energy boundary condition" + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/SakiyamaIonAdvectionBC.C b/src/bcs/SakiyamaIonAdvectionBC.C index c9516d45d54..8bf5ce02f29 100644 --- a/src/bcs/SakiyamaIonAdvectionBC.C +++ b/src/bcs/SakiyamaIonAdvectionBC.C @@ -18,8 +18,9 @@ SakiyamaIonAdvectionBC::validParams() InputParameters params = ADIntegratedBC::validParams(); params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription("Kinetic advective ion boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + params.addClassDescription( + "Kinetic advective ion boundary condition" + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/SakiyamaSecondaryElectronBC.C b/src/bcs/SakiyamaSecondaryElectronBC.C index d4dd60c2ae9..1c94bbcf2b6 100644 --- a/src/bcs/SakiyamaSecondaryElectronBC.C +++ b/src/bcs/SakiyamaSecondaryElectronBC.C @@ -21,8 +21,9 @@ SakiyamaSecondaryElectronBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addRequiredParam>( "emission_coeffs", "A list of species-dependent secondary electron emission coefficients"); - params.addClassDescription("Kinetic secondary electron boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + params.addClassDescription( + "Kinetic secondary electron boundary condition" + " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); return params; } diff --git a/src/bcs/SchottkyEmissionBC.C b/src/bcs/SchottkyEmissionBC.C index 41805253944..12a3d44c630 100644 --- a/src/bcs/SchottkyEmissionBC.C +++ b/src/bcs/SchottkyEmissionBC.C @@ -29,7 +29,8 @@ SchottkyEmissionBC::validParams() params.addParam("tau", 1e-9, "The time constant for ramping the boundary condition."); params.addParam("relax", false, "Use relaxation for emission."); params.addClassDescription( - "The electron flux boundary condition due to field ehanced thermionic emission (Schottky emission)" + "The electron flux boundary condition due to field ehanced thermionic emission (Schottky " + "emission)" " (Based on work by [Go](https://iopscience.iop.org/article/10.1088/0022-3727/46/3/035202))"); return params; } diff --git a/src/bcs/SecondaryElectronBC.C b/src/bcs/SecondaryElectronBC.C index 3dcdd00634a..f323f51410c 100644 --- a/src/bcs/SecondaryElectronBC.C +++ b/src/bcs/SecondaryElectronBC.C @@ -24,8 +24,7 @@ SecondaryElectronBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addRequiredParam>( "emission_coeffs", "A list of species-dependent secondary electron emission coefficients"); - params.addClassDescription( - "Kinetic secondary electron boundary condition"); + params.addClassDescription("Kinetic secondary electron boundary condition"); return params; } From 3fcb2cd7a271b532911ff06cb263d6de2e785489 Mon Sep 17 00:00:00 2001 From: Corey DeChant <37221357+csdechant@users.noreply.github.com> Date: Wed, 23 Oct 2024 12:01:35 -0600 Subject: [PATCH 05/11] Removing text before file example. Co-authored-by: Grayson Gall <66559200+gsgall@users.noreply.github.com> --- doc/content/source/bcs/DCIonBC.md | 3 --- doc/content/source/bcs/EconomouDielectricBC.md | 2 -- doc/content/source/bcs/ElectronTemperatureDirichletBC.md | 2 -- doc/content/source/bcs/FieldEmissionBC.md | 2 -- doc/content/source/bcs/HagelaarElectronAdvectionBC.md | 2 -- doc/content/source/bcs/HagelaarElectronBC.md | 2 -- doc/content/source/bcs/HagelaarEnergyAdvectionBC.md | 2 -- doc/content/source/bcs/HagelaarEnergyBC.md | 2 -- doc/content/source/bcs/HagelaarIonAdvectionBC.md | 3 --- doc/content/source/bcs/HagelaarIonDiffusionBC.md | 2 -- doc/content/source/bcs/LogDensityDirichletBC.md | 2 -- doc/content/source/bcs/LymberopoulosElectronBC.md | 2 -- doc/content/source/bcs/LymberopoulosIonBC.md | 2 -- doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md | 2 -- doc/content/source/bcs/SakiyamaElectronDiffusionBC.md | 2 -- doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md | 2 -- doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md | 2 -- doc/content/source/bcs/SakiyamaIonAdvectionBC.md | 2 -- doc/content/source/bcs/SakiyamaSecondaryElectronBC.md | 2 -- doc/content/source/bcs/SecondaryElectronBC.md | 2 -- doc/content/source/bcs/SecondaryElectronEnergyBC.md | 2 -- 21 files changed, 44 deletions(-) diff --git a/doc/content/source/bcs/DCIonBC.md b/doc/content/source/bcs/DCIonBC.md index 1110064f696..8863c1fcef3 100644 --- a/doc/content/source/bcs/DCIonBC.md +++ b/doc/content/source/bcs/DCIonBC.md @@ -36,9 +36,6 @@ $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -An example of how to use `DCIonBC` can be found in the -test file `mean_en.i`. - !listing test/tests/1d_dc/mean_en.i block=BCs/OHm_physical !syntax parameters /BCs/DCIonBC diff --git a/doc/content/source/bcs/EconomouDielectricBC.md b/doc/content/source/bcs/EconomouDielectricBC.md index 6e6610f0d57..8ee6621e3c6 100644 --- a/doc/content/source/bcs/EconomouDielectricBC.md +++ b/doc/content/source/bcs/EconomouDielectricBC.md @@ -24,8 +24,6 @@ Where $\epsilon_{i}$ is the permittivity of the dielectric, $d_{i}$ is the thick ## Example Input File Syntax -An example of how to use `EconomouDielectricBC` can be found in the -test file `2D_RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/potential_Dielectric diff --git a/doc/content/source/bcs/ElectronTemperatureDirichletBC.md b/doc/content/source/bcs/ElectronTemperatureDirichletBC.md index 7870e98499c..1993f4cb431 100644 --- a/doc/content/source/bcs/ElectronTemperatureDirichletBC.md +++ b/doc/content/source/bcs/ElectronTemperatureDirichletBC.md @@ -23,8 +23,6 @@ Where $N$ is the molar density of the species in logarithmic form. ## Example Input File Syntax -An example of how to use `ElectronTemperatureDirichletBC` can be found in the -test file `2D_RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/RF_Plasma_actions.i block=BCs/mean_en_physical_right diff --git a/doc/content/source/bcs/FieldEmissionBC.md b/doc/content/source/bcs/FieldEmissionBC.md index 43f44d645fe..8145b56b56f 100644 --- a/doc/content/source/bcs/FieldEmissionBC.md +++ b/doc/content/source/bcs/FieldEmissionBC.md @@ -48,8 +48,6 @@ Where $N_{i}$ is the molar density of the specie in log form, $N_{A}$ is Avogadr ## Example Input File Syntax -An example of how to use `FieldEmissionBC` can be found in the -test file `field_emission.i`. !listing test/tests/field_emission/field_emission.i block=BCs/FieldEmission_left diff --git a/doc/content/source/bcs/HagelaarElectronAdvectionBC.md b/doc/content/source/bcs/HagelaarElectronAdvectionBC.md index edeab8d038f..b145e8c9098 100644 --- a/doc/content/source/bcs/HagelaarElectronAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarElectronAdvectionBC.md @@ -43,8 +43,6 @@ $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -An example of how to use `HagelaarElectronAdvectionBC` can be found in the -test file `NonlocalPotentialBCWithSchottky.i`. !listing test/tests/1d_dc/NonlocalPotentialBCWithSchottky.i block=BCs/em_physical_right diff --git a/doc/content/source/bcs/HagelaarElectronBC.md b/doc/content/source/bcs/HagelaarElectronBC.md index 700615a24e7..dad1e3b4e18 100644 --- a/doc/content/source/bcs/HagelaarElectronBC.md +++ b/doc/content/source/bcs/HagelaarElectronBC.md @@ -47,8 +47,6 @@ $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -An example of how to use `HagelaarElectronBC` can be found in the -test file `mean_en.i`. !listing test/tests/1d_dc/mean_en.i block=BCs/em_physical_right diff --git a/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md b/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md index ccaf6dd9637..114550441eb 100644 --- a/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md @@ -48,8 +48,6 @@ $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -An example of how to use `HagelaarEnergyAdvectionBC` can be found in the -test file `Input.i`. !listing test/tests/reflections/Schottky_300_V_5_um/Input.i block=BCs/mean_en_physical_left diff --git a/doc/content/source/bcs/HagelaarEnergyBC.md b/doc/content/source/bcs/HagelaarEnergyBC.md index 79ac886ce53..7015f7a54e8 100644 --- a/doc/content/source/bcs/HagelaarEnergyBC.md +++ b/doc/content/source/bcs/HagelaarEnergyBC.md @@ -47,8 +47,6 @@ $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -An example of how to use `HagelaarEnergyBC` can be found in the -test file `mean_en.i`. !listing test/tests/1d_dc/mean_en.i block=BCs/mean_en_physical_right diff --git a/doc/content/source/bcs/HagelaarIonAdvectionBC.md b/doc/content/source/bcs/HagelaarIonAdvectionBC.md index 73cbfb7570f..94140a569bb 100644 --- a/doc/content/source/bcs/HagelaarIonAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarIonAdvectionBC.md @@ -44,9 +44,6 @@ $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -An example of how to use `HagelaarIonAdvectionBC` can be found in the -test file `mean_en.i`. - !listing test/tests/1d_dc/mean_en.i block=BCs/Arp_physical_right_advection !syntax parameters /BCs/HagelaarIonAdvectionBC diff --git a/doc/content/source/bcs/HagelaarIonDiffusionBC.md b/doc/content/source/bcs/HagelaarIonDiffusionBC.md index b3e81118ea3..fb7983ba66f 100644 --- a/doc/content/source/bcs/HagelaarIonDiffusionBC.md +++ b/doc/content/source/bcs/HagelaarIonDiffusionBC.md @@ -27,8 +27,6 @@ $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -An example of how to use `HagelaarIonDiffusionBC` can be found in the -test file `mean_en.i`. !listing test/tests/1d_dc/mean_en.i block=BCs/Arp_physical_right_diffusion diff --git a/doc/content/source/bcs/LogDensityDirichletBC.md b/doc/content/source/bcs/LogDensityDirichletBC.md index 06f4187b239..0813143b6f7 100644 --- a/doc/content/source/bcs/LogDensityDirichletBC.md +++ b/doc/content/source/bcs/LogDensityDirichletBC.md @@ -17,8 +17,6 @@ number. ## Example Input File Syntax -An example of how to use `LogDensityDirichletBC` can be found in the -test file `RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/RF_Plasma_actions.i block=BCs/Ar*_physical_right_diffusion diff --git a/doc/content/source/bcs/LymberopoulosElectronBC.md b/doc/content/source/bcs/LymberopoulosElectronBC.md index e7bdb47f207..5542081dd00 100644 --- a/doc/content/source/bcs/LymberopoulosElectronBC.md +++ b/doc/content/source/bcs/LymberopoulosElectronBC.md @@ -31,8 +31,6 @@ $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -An example of how to use `LymberopoulosElectronBC` can be found in the -test file `RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/RF_Plasma_actions.i block=BCs/em_physical_right diff --git a/doc/content/source/bcs/LymberopoulosIonBC.md b/doc/content/source/bcs/LymberopoulosIonBC.md index 78b2fef094e..48f063563be 100644 --- a/doc/content/source/bcs/LymberopoulosIonBC.md +++ b/doc/content/source/bcs/LymberopoulosIonBC.md @@ -31,8 +31,6 @@ $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax -An example of how to use `LymberopoulosIonBC` can be found in the -test file `RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/RF_Plasma_actions.i block=BCs/Ar+_physical_right_advection diff --git a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md index 63a70f6334e..9608f9fbb74 100644 --- a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md +++ b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md @@ -51,8 +51,6 @@ Where $N_{e}$, $N_{i}$ and $N_{\varepsilon}$ is the molar density of the electro ## Example Input File Syntax -An example of how to use `NeumannCircuitVoltageMoles_KV` can be found in the -test file `mean_en.i`. !listing test/tests/1d_dc/mean_en.i block=BCs/potential_left diff --git a/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md b/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md index e4ad5f86ace..a5d9c2b673c 100644 --- a/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md +++ b/doc/content/source/bcs/SakiyamaElectronDiffusionBC.md @@ -22,8 +22,6 @@ Where $N_{j}$ is the molar density of the species in log form. ## Example Input File Syntax -An example of how to use `SakiyamaElectronDiffusionBC` can be found in the -test file `2D_RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/em_physical_diffusion diff --git a/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md b/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md index eba8c9a4b14..c61b2af9083 100644 --- a/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md +++ b/doc/content/source/bcs/SakiyamaEnergyDiffusionBC.md @@ -22,8 +22,6 @@ Where $N_{j}$ is the molar density of the species in log form. ## Example Input File Syntax -An example of how to use `SakiyamaEnergyDiffusionBC` can be found in the -test file `2D_RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/mean_en_physical_diffusion diff --git a/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md b/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md index c6d40feeb64..fc7a4848e0f 100644 --- a/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md +++ b/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md @@ -33,8 +33,6 @@ Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the ## Example Input File Syntax -An example of how to use `SakiyamaEnergySecondaryElectronBC` can be found in the -test file `2D_RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/mean_en_Ar+_second_emissions diff --git a/doc/content/source/bcs/SakiyamaIonAdvectionBC.md b/doc/content/source/bcs/SakiyamaIonAdvectionBC.md index e1ff8225617..d3b6d73065c 100644 --- a/doc/content/source/bcs/SakiyamaIonAdvectionBC.md +++ b/doc/content/source/bcs/SakiyamaIonAdvectionBC.md @@ -29,8 +29,6 @@ Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the ## Example Input File Syntax -An example of how to use `SakiyamaIonAdvectionBC` can be found in the -test file `2D_RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/Ar+_physical_advection diff --git a/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md b/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md index 96d3338cc94..be9b9cc9c9f 100644 --- a/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md +++ b/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md @@ -29,8 +29,6 @@ Where $N_{j}$ is the molar density of the species in log form and $l_{c}$ is the ## Example Input File Syntax -An example of how to use `SakiyamaEnergySecondaryElectronBC` can be found in the -test file `2D_RF_Plasma_actions.i`. !listing test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i block=BCs/em_Ar+_second_emissions diff --git a/doc/content/source/bcs/SecondaryElectronBC.md b/doc/content/source/bcs/SecondaryElectronBC.md index 98ba2eaba23..1db25f7b4f2 100644 --- a/doc/content/source/bcs/SecondaryElectronBC.md +++ b/doc/content/source/bcs/SecondaryElectronBC.md @@ -34,8 +34,6 @@ Where $N_{e}$, $N_{i}$ and $N_{\varepsilon}$ is the molar density of the electro ## Example Input File Syntax -An example of how to use `SecondaryElectronBC` can be found in the -test file `mean_en.i`. !listing test/tests/1d_dc/mean_en.i block=BCs/sec_electrons_left diff --git a/doc/content/source/bcs/SecondaryElectronEnergyBC.md b/doc/content/source/bcs/SecondaryElectronEnergyBC.md index 95f096b9710..9135855df9d 100644 --- a/doc/content/source/bcs/SecondaryElectronEnergyBC.md +++ b/doc/content/source/bcs/SecondaryElectronEnergyBC.md @@ -34,8 +34,6 @@ Where $N_{e}$, $N_{i}$ and $N_{\varepsilon}$ is the molar density of the electro ## Example Input File Syntax -An example of how to use `SecondaryElectronEnergyBC` can be found in the -test file `mean_en.i`. !listing test/tests/1d_dc/mean_en.i block=BCs/secondary_energy_left From 42e6f1fd51334c2f4b9151abaff19ec475dbf8a5 Mon Sep 17 00:00:00 2001 From: csdechant Date: Wed, 23 Oct 2024 13:21:00 -0600 Subject: [PATCH 06/11] Correcting documentation typos --- doc/content/source/bcs/HagelaarEnergyBC.md | 2 +- doc/content/source/bcs/SecondaryElectronBC.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/content/source/bcs/HagelaarEnergyBC.md b/doc/content/source/bcs/HagelaarEnergyBC.md index 7015f7a54e8..260801896b4 100644 --- a/doc/content/source/bcs/HagelaarEnergyBC.md +++ b/doc/content/source/bcs/HagelaarEnergyBC.md @@ -23,7 +23,7 @@ v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\epsilon}}{n_{ \cdot \textbf{n} \ n_{\epsilon} + \frac{5}{6}v_{\text{th},e}n_{\epsilon} \right] \end{equation} -Where $\Gamma_\epsilon \cdot \textbf{n} $ is the outflow normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, +Where $\Gamma_{\epsilon} \cdot \textbf{n}$ is the outflow normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $\mu_{\epsilon}$ is the mobility coefficient, $n_{\epsilon}$ is the mean energy density, $n_{e}$ is the electron density, $V$ is the electric potential, $v_{\text{th},e}$ is the thermal velocity of the electrons, and $e$ is the elementary charge. $a$ is defined such that the outflow is only defined when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles that are reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarEnergyBC` is defined as diff --git a/doc/content/source/bcs/SecondaryElectronBC.md b/doc/content/source/bcs/SecondaryElectronBC.md index 1db25f7b4f2..108cae14679 100644 --- a/doc/content/source/bcs/SecondaryElectronBC.md +++ b/doc/content/source/bcs/SecondaryElectronBC.md @@ -23,7 +23,7 @@ n_{\gamma} = (1 - a_{e}) \frac{\gamma \Gamma_{i} \cdot \textbf{n}}{\mu_{e} (\tex \end{equation} Where the subscripts $e$, $j$ and $\varepsilon$ represents properties of electrons, ions and electron energy respectively, $\Gamma$ is the flux of the electron or ions, $\textbf{n}$ is the normal vector of the boundary, -$\mu$ is the mobility coefficient, $n$ is the species density, $v_{th}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, $T$ is the gas temperature, and $n_{\gamma}$ is electron density emitted by the surface. $a$ is defined such that the outflow is non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronBC` is defined as +$\mu$ is the mobility coefficient, $n$ is the species density, $v_\text{th}$ is the thermal velocity of the species, $k_{B}$ is the Boltzmann constant, $T$ is the gas temperature, and $n_{\gamma}$ is electron density emitted by the surface. $a$ is defined such that the outflow is non-zero when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `SecondaryElectronBC` is defined as \begin{equation} v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] From 6dd619c73a0ce9dffa13db292bde88c97ad24e0d Mon Sep 17 00:00:00 2001 From: csdechant Date: Wed, 23 Oct 2024 14:52:13 -0600 Subject: [PATCH 07/11] Adding bibtex references to class descriptions --- doc/content/bib/documentation.bib | 82 +++++++++++++++++++++ src/bcs/DCIonBC.C | 2 +- src/bcs/EconomouDielectricBC.C | 2 +- src/bcs/FieldEmissionBC.C | 3 +- src/bcs/HagelaarElectronAdvectionBC.C | 2 +- src/bcs/HagelaarElectronBC.C | 2 +- src/bcs/HagelaarEnergyAdvectionBC.C | 2 +- src/bcs/HagelaarEnergyBC.C | 2 +- src/bcs/HagelaarIonAdvectionBC.C | 2 +- src/bcs/HagelaarIonDiffusionBC.C | 2 +- src/bcs/LymberopoulosElectronBC.C | 2 +- src/bcs/LymberopoulosIonBC.C | 2 +- src/bcs/SakiyamaElectronDiffusionBC.C | 2 +- src/bcs/SakiyamaEnergyDiffusionBC.C | 2 +- src/bcs/SakiyamaEnergySecondaryElectronBC.C | 2 +- src/bcs/SakiyamaIonAdvectionBC.C | 2 +- src/bcs/SakiyamaSecondaryElectronBC.C | 2 +- src/bcs/SchottkyEmissionBC.C | 2 +- 18 files changed, 99 insertions(+), 18 deletions(-) diff --git a/doc/content/bib/documentation.bib b/doc/content/bib/documentation.bib index ed3008408d3..b4d82109243 100644 --- a/doc/content/bib/documentation.bib +++ b/doc/content/bib/documentation.bib @@ -22,3 +22,85 @@ @article{Gogolides1992 issn = {0009-2509}, doi = {10.1016/0009-2509(92)85133-V} } + +@article{hagelaar2000boundary, + title={Boundary conditions in fluid models of gas discharges}, + author={Hagelaar, GJM and De Hoog, FJ and Kroesen, GMW}, + journal={Physical Review E}, + volume={62}, + number={1}, + pages={1452}, + year={2000}, + publisher={APS}, + doi = {10.1103/PhysRevE.62.1452} +} + +@article{lymberopoulos1994modeling, + title={Modeling and simulation of glow discharge plasma reactors}, + author={Lymberopoulos, Dimitris P and Economou, Demetre J}, + journal={Journal of Vacuum Science \& Technology A: Vacuum, Surfaces, and Films}, + volume={12}, + number={4}, + pages={1229--1236}, + year={1994}, + publisher={American Vacuum Society}, + doi = {10.1116/1.579300} +} + +@article{forbes2006simple, + title={Simple good approximations for the special elliptic functions in standard Fowler-Nordheim tunneling theory for a Schottky-Nordheim barrier}, + author={Forbes, Richard G}, + journal={Applied physics letters}, + volume={89}, + number={11}, + year={2006}, + publisher={AIP Publishing}, + doi = {10.1063/1.2354582} +} + +@article{forbes2008physics, + title={Physics of generalized Fowler-Nordheim-type equations}, + author={Forbes, Richard G}, + journal={Journal of Vacuum Science \& Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena}, + volume={26}, + number={2}, + pages={788--793}, + year={2008}, + publisher={AIP Publishing}, + doi = {10.1116/1.2827505} +} + +@article{sakiyama2006corona, + title={Corona-glow transition in the atmospheric pressure RF-excited plasma needle}, + author={Sakiyama, Y and Graves, David B}, + journal={Journal of Physics D: Applied Physics}, + volume={39}, + number={16}, + pages={3644}, + year={2006}, + publisher={IOP Publishing}, + doi = {10.1088/0022-3727/39/16/018} +} + +@article{sakiyama2007nonthermal, + title={Nonthermal atmospheric rf plasma in one-dimensional spherical coordinates: asymmetric sheath structure and the discharge mechanism}, + author={Sakiyama, Yukinori and Graves, David B}, + journal={Journal of applied physics}, + volume={101}, + number={7}, + year={2007}, + publisher={AIP Publishing}, + doi = {https://doi.org/10.1063/1.2715745} +} + +@article{go2012theoretical, + title={Theoretical analysis of ion-enhanced thermionic emission for low-temperature, non-equilibrium gas discharges}, + author={Go, David B}, + journal={Journal of Physics D: Applied Physics}, + volume={46}, + number={3}, + pages={035202}, + year={2012}, + publisher={IOP Publishing}, + doi ={10.1088/0022-3727/46/3/035202} +} diff --git a/src/bcs/DCIonBC.C b/src/bcs/DCIonBC.C index 003d8cbab7d..80beec94bc5 100644 --- a/src/bcs/DCIonBC.C +++ b/src/bcs/DCIonBC.C @@ -19,7 +19,7 @@ DCIonBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription("Electric field driven outflow boundary condition" - "(Based on DOI:https://doi.org/10.1103/PhysRevE.62.1452)"); + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/EconomouDielectricBC.C b/src/bcs/EconomouDielectricBC.C index bbb4b548224..8012402d15e 100644 --- a/src/bcs/EconomouDielectricBC.C +++ b/src/bcs/EconomouDielectricBC.C @@ -31,7 +31,7 @@ EconomouDielectricBC::validParams() params.addClassDescription( "Dielectric boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + " (Based on [!cite](lymberopoulos1994modeling))"); return params; } diff --git a/src/bcs/FieldEmissionBC.C b/src/bcs/FieldEmissionBC.C index 50f2a8a6089..ef18b25b8fb 100644 --- a/src/bcs/FieldEmissionBC.C +++ b/src/bcs/FieldEmissionBC.C @@ -28,8 +28,7 @@ FieldEmissionBC::validParams() params.addParam("relax", false, "Use relaxation for emission."); params.addClassDescription( "The electron flux boundary condition due to field emission" - " (Based on the works by Forbes [1](https://doi.org/10.1063/1.2354582) and " - "[2](https://doi.org/10.1116/1.2827505))"); + " (Based on [!cite](forbes2006simple) and [!cite](forbes2008physics))"); return params; } diff --git a/src/bcs/HagelaarElectronAdvectionBC.C b/src/bcs/HagelaarElectronAdvectionBC.C index e37ef3a7227..058f5136300 100644 --- a/src/bcs/HagelaarElectronAdvectionBC.C +++ b/src/bcs/HagelaarElectronAdvectionBC.C @@ -21,7 +21,7 @@ HagelaarElectronAdvectionBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Kinetic advective electron boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarElectronBC.C b/src/bcs/HagelaarElectronBC.C index b473e0522cf..567f8d582a8 100644 --- a/src/bcs/HagelaarElectronBC.C +++ b/src/bcs/HagelaarElectronBC.C @@ -23,7 +23,7 @@ HagelaarElectronBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Kinetic electron boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarEnergyAdvectionBC.C b/src/bcs/HagelaarEnergyAdvectionBC.C index 4c1516eba2d..f66c1710c42 100644 --- a/src/bcs/HagelaarEnergyAdvectionBC.C +++ b/src/bcs/HagelaarEnergyAdvectionBC.C @@ -26,7 +26,7 @@ HagelaarEnergyAdvectionBC::validParams() params.addRequiredParam("secondary_electron_energy", "The secondary electron energy in eV"); params.addClassDescription( "Kinetic advective electron energy boundary condition" - " (Based on work of [Sakiyama et al.](https://doi.org/10.1063/1.2715745))"); + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarEnergyBC.C b/src/bcs/HagelaarEnergyBC.C index 4b39af8139e..1a704e818d0 100644 --- a/src/bcs/HagelaarEnergyBC.C +++ b/src/bcs/HagelaarEnergyBC.C @@ -22,7 +22,7 @@ HagelaarEnergyBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Kinetic electron mean energy boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarIonAdvectionBC.C b/src/bcs/HagelaarIonAdvectionBC.C index 9a6150faa33..8ee7d78168a 100644 --- a/src/bcs/HagelaarIonAdvectionBC.C +++ b/src/bcs/HagelaarIonAdvectionBC.C @@ -21,7 +21,7 @@ HagelaarIonAdvectionBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Kinetic advective ion boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarIonDiffusionBC.C b/src/bcs/HagelaarIonDiffusionBC.C index 555410c4aad..5acb5abd830 100644 --- a/src/bcs/HagelaarIonDiffusionBC.C +++ b/src/bcs/HagelaarIonDiffusionBC.C @@ -22,7 +22,7 @@ HagelaarIonDiffusionBC::validParams() "user_velocity", -1., "Optional parameter if user wants to specify the thermal velocity."); params.addClassDescription( "Kinetic electron boundary condition" - " (Based on work of [Hagelaar et al.](https://doi.org/10.1103/PhysRevE.62.1452))"); + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/LymberopoulosElectronBC.C b/src/bcs/LymberopoulosElectronBC.C index a7a2dc5a6f0..6ec65dde2e0 100644 --- a/src/bcs/LymberopoulosElectronBC.C +++ b/src/bcs/LymberopoulosElectronBC.C @@ -24,7 +24,7 @@ LymberopoulosElectronBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Simpified kinetic electron boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1063/1.352926))"); + " (Based on [!cite](Lymberopoulos1993))"); return params; } diff --git a/src/bcs/LymberopoulosIonBC.C b/src/bcs/LymberopoulosIonBC.C index a44ab0a1e88..48bc46dbd50 100644 --- a/src/bcs/LymberopoulosIonBC.C +++ b/src/bcs/LymberopoulosIonBC.C @@ -20,7 +20,7 @@ LymberopoulosIonBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Simpified kinetic ion boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1063/1.352926))"); + " (Based on [!cite](Lymberopoulos1993))"); return params; } diff --git a/src/bcs/SakiyamaElectronDiffusionBC.C b/src/bcs/SakiyamaElectronDiffusionBC.C index dc9b13a3bdf..b12a9303ab7 100644 --- a/src/bcs/SakiyamaElectronDiffusionBC.C +++ b/src/bcs/SakiyamaElectronDiffusionBC.C @@ -20,7 +20,7 @@ SakiyamaElectronDiffusionBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Kinetic electron boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + " (Based on [!cite](sakiyama2006corona))"); return params; } diff --git a/src/bcs/SakiyamaEnergyDiffusionBC.C b/src/bcs/SakiyamaEnergyDiffusionBC.C index 0e90564053a..e888ecf0988 100644 --- a/src/bcs/SakiyamaEnergyDiffusionBC.C +++ b/src/bcs/SakiyamaEnergyDiffusionBC.C @@ -20,7 +20,7 @@ SakiyamaEnergyDiffusionBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Kinetic advective electron energy boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + " (Based on [!cite](sakiyama2007nonthermal))"); return params; } diff --git a/src/bcs/SakiyamaEnergySecondaryElectronBC.C b/src/bcs/SakiyamaEnergySecondaryElectronBC.C index 5e3737b70a4..71248caf86f 100644 --- a/src/bcs/SakiyamaEnergySecondaryElectronBC.C +++ b/src/bcs/SakiyamaEnergySecondaryElectronBC.C @@ -29,7 +29,7 @@ SakiyamaEnergySecondaryElectronBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Kinetic secondary electron for mean electron energy boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + " (Based on [!cite](sakiyama2007nonthermal))"); return params; } diff --git a/src/bcs/SakiyamaIonAdvectionBC.C b/src/bcs/SakiyamaIonAdvectionBC.C index 8bf5ce02f29..845e6f4cfaf 100644 --- a/src/bcs/SakiyamaIonAdvectionBC.C +++ b/src/bcs/SakiyamaIonAdvectionBC.C @@ -20,7 +20,7 @@ SakiyamaIonAdvectionBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( "Kinetic advective ion boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + " (Based on [!cite](sakiyama2006corona))"); return params; } diff --git a/src/bcs/SakiyamaSecondaryElectronBC.C b/src/bcs/SakiyamaSecondaryElectronBC.C index 1c94bbcf2b6..8b586bd2262 100644 --- a/src/bcs/SakiyamaSecondaryElectronBC.C +++ b/src/bcs/SakiyamaSecondaryElectronBC.C @@ -23,7 +23,7 @@ SakiyamaSecondaryElectronBC::validParams() "emission_coeffs", "A list of species-dependent secondary electron emission coefficients"); params.addClassDescription( "Kinetic secondary electron boundary condition" - " (Based on work by [Lymberopoulos et al.](https://doi.org/10.1116/1.579300))"); + " (Based on [!cite](sakiyama2006corona))"); return params; } diff --git a/src/bcs/SchottkyEmissionBC.C b/src/bcs/SchottkyEmissionBC.C index 12a3d44c630..95cb435bf82 100644 --- a/src/bcs/SchottkyEmissionBC.C +++ b/src/bcs/SchottkyEmissionBC.C @@ -31,7 +31,7 @@ SchottkyEmissionBC::validParams() params.addClassDescription( "The electron flux boundary condition due to field ehanced thermionic emission (Schottky " "emission)" - " (Based on work by [Go](https://iopscience.iop.org/article/10.1088/0022-3727/46/3/035202))"); + " (Based on [!cite](go2012theoretical))"); return params; } From 6bb926c55984358c468ad5c8caeb0b24ea30e31f Mon Sep 17 00:00:00 2001 From: csdechant Date: Wed, 23 Oct 2024 15:24:46 -0600 Subject: [PATCH 08/11] Addressing BCs documentation for issue #260 and addressing Clang format --- src/bcs/EconomouDielectricBC.C | 5 ++--- src/bcs/HagelaarElectronAdvectionBC.C | 5 ++--- src/bcs/HagelaarElectronBC.C | 5 ++--- src/bcs/HagelaarEnergyAdvectionBC.C | 5 ++--- src/bcs/HagelaarEnergyBC.C | 5 ++--- src/bcs/HagelaarIonAdvectionBC.C | 5 ++--- src/bcs/HagelaarIonDiffusionBC.C | 5 ++--- src/bcs/LymberopoulosElectronBC.C | 5 ++--- src/bcs/LymberopoulosIonBC.C | 5 ++--- src/bcs/SakiyamaElectronDiffusionBC.C | 5 ++--- src/bcs/SakiyamaEnergyDiffusionBC.C | 5 ++--- src/bcs/SakiyamaIonAdvectionBC.C | 5 ++--- src/bcs/SakiyamaSecondaryElectronBC.C | 5 ++--- 13 files changed, 26 insertions(+), 39 deletions(-) diff --git a/src/bcs/EconomouDielectricBC.C b/src/bcs/EconomouDielectricBC.C index 8012402d15e..739f4fff08d 100644 --- a/src/bcs/EconomouDielectricBC.C +++ b/src/bcs/EconomouDielectricBC.C @@ -29,9 +29,8 @@ EconomouDielectricBC::validParams() "The secondary electron emission coefficient for each ion provided in `ions`"); params.addRequiredParam("potential_units", "The potential units."); - params.addClassDescription( - "Dielectric boundary condition" - " (Based on [!cite](lymberopoulos1994modeling))"); + params.addClassDescription("Dielectric boundary condition" + " (Based on [!cite](lymberopoulos1994modeling))"); return params; } diff --git a/src/bcs/HagelaarElectronAdvectionBC.C b/src/bcs/HagelaarElectronAdvectionBC.C index 058f5136300..c4f321591f4 100644 --- a/src/bcs/HagelaarElectronAdvectionBC.C +++ b/src/bcs/HagelaarElectronAdvectionBC.C @@ -19,9 +19,8 @@ HagelaarElectronAdvectionBC::validParams() params.addRequiredParam("r", "The reflection coefficient"); params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "Kinetic advective electron boundary condition" - " (Based on [!cite](hagelaar2000boundary))"); + params.addClassDescription("Kinetic advective electron boundary condition" + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarElectronBC.C b/src/bcs/HagelaarElectronBC.C index 567f8d582a8..2b480d6df16 100644 --- a/src/bcs/HagelaarElectronBC.C +++ b/src/bcs/HagelaarElectronBC.C @@ -21,9 +21,8 @@ HagelaarElectronBC::validParams() params.addRequiredCoupledVar("electron_energy", "The mean electron energy density in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "Kinetic electron boundary condition" - " (Based on [!cite](hagelaar2000boundary))"); + params.addClassDescription("Kinetic electron boundary condition" + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarEnergyAdvectionBC.C b/src/bcs/HagelaarEnergyAdvectionBC.C index f66c1710c42..81ba2524d60 100644 --- a/src/bcs/HagelaarEnergyAdvectionBC.C +++ b/src/bcs/HagelaarEnergyAdvectionBC.C @@ -24,9 +24,8 @@ HagelaarEnergyAdvectionBC::validParams() "The species-dependent secondary electron emission coefficients for this boundary"); params.addRequiredParam("position_units", "Units of position."); params.addRequiredParam("secondary_electron_energy", "The secondary electron energy in eV"); - params.addClassDescription( - "Kinetic advective electron energy boundary condition" - " (Based on [!cite](hagelaar2000boundary))"); + params.addClassDescription("Kinetic advective electron energy boundary condition" + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarEnergyBC.C b/src/bcs/HagelaarEnergyBC.C index 1a704e818d0..2d642fd29e4 100644 --- a/src/bcs/HagelaarEnergyBC.C +++ b/src/bcs/HagelaarEnergyBC.C @@ -20,9 +20,8 @@ HagelaarEnergyBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredCoupledVar("electrons", "The electron density in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "Kinetic electron mean energy boundary condition" - " (Based on [!cite](hagelaar2000boundary))"); + params.addClassDescription("Kinetic electron mean energy boundary condition" + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarIonAdvectionBC.C b/src/bcs/HagelaarIonAdvectionBC.C index 8ee7d78168a..4aa47dccc00 100644 --- a/src/bcs/HagelaarIonAdvectionBC.C +++ b/src/bcs/HagelaarIonAdvectionBC.C @@ -19,9 +19,8 @@ HagelaarIonAdvectionBC::validParams() params.addRequiredParam("r", "The reflection coefficient"); params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "Kinetic advective ion boundary condition" - " (Based on [!cite](hagelaar2000boundary))"); + params.addClassDescription("Kinetic advective ion boundary condition" + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/HagelaarIonDiffusionBC.C b/src/bcs/HagelaarIonDiffusionBC.C index 5acb5abd830..138ce954734 100644 --- a/src/bcs/HagelaarIonDiffusionBC.C +++ b/src/bcs/HagelaarIonDiffusionBC.C @@ -20,9 +20,8 @@ HagelaarIonDiffusionBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addParam( "user_velocity", -1., "Optional parameter if user wants to specify the thermal velocity."); - params.addClassDescription( - "Kinetic electron boundary condition" - " (Based on [!cite](hagelaar2000boundary))"); + params.addClassDescription("Kinetic electron boundary condition" + " (Based on [!cite](hagelaar2000boundary))"); return params; } diff --git a/src/bcs/LymberopoulosElectronBC.C b/src/bcs/LymberopoulosElectronBC.C index 6ec65dde2e0..05b52eb15d7 100644 --- a/src/bcs/LymberopoulosElectronBC.C +++ b/src/bcs/LymberopoulosElectronBC.C @@ -22,9 +22,8 @@ LymberopoulosElectronBC::validParams() params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredCoupledVar("ions", "A list of ion densities in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "Simpified kinetic electron boundary condition" - " (Based on [!cite](Lymberopoulos1993))"); + params.addClassDescription("Simpified kinetic electron boundary condition" + " (Based on [!cite](Lymberopoulos1993))"); return params; } diff --git a/src/bcs/LymberopoulosIonBC.C b/src/bcs/LymberopoulosIonBC.C index 48bc46dbd50..2f55ab3d2ee 100644 --- a/src/bcs/LymberopoulosIonBC.C +++ b/src/bcs/LymberopoulosIonBC.C @@ -18,9 +18,8 @@ LymberopoulosIonBC::validParams() InputParameters params = ADIntegratedBC::validParams(); params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "Simpified kinetic ion boundary condition" - " (Based on [!cite](Lymberopoulos1993))"); + params.addClassDescription("Simpified kinetic ion boundary condition" + " (Based on [!cite](Lymberopoulos1993))"); return params; } diff --git a/src/bcs/SakiyamaElectronDiffusionBC.C b/src/bcs/SakiyamaElectronDiffusionBC.C index b12a9303ab7..992320cb697 100644 --- a/src/bcs/SakiyamaElectronDiffusionBC.C +++ b/src/bcs/SakiyamaElectronDiffusionBC.C @@ -18,9 +18,8 @@ SakiyamaElectronDiffusionBC::validParams() InputParameters params = ADIntegratedBC::validParams(); params.addRequiredCoupledVar("electron_energy", "The mean electron energy density in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "Kinetic electron boundary condition" - " (Based on [!cite](sakiyama2006corona))"); + params.addClassDescription("Kinetic electron boundary condition" + " (Based on [!cite](sakiyama2006corona))"); return params; } diff --git a/src/bcs/SakiyamaEnergyDiffusionBC.C b/src/bcs/SakiyamaEnergyDiffusionBC.C index e888ecf0988..d0732738e44 100644 --- a/src/bcs/SakiyamaEnergyDiffusionBC.C +++ b/src/bcs/SakiyamaEnergyDiffusionBC.C @@ -18,9 +18,8 @@ SakiyamaEnergyDiffusionBC::validParams() InputParameters params = ADIntegratedBC::validParams(); params.addRequiredCoupledVar("electrons", "The electron density in log form"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "Kinetic advective electron energy boundary condition" - " (Based on [!cite](sakiyama2007nonthermal))"); + params.addClassDescription("Kinetic advective electron energy boundary condition" + " (Based on [!cite](sakiyama2007nonthermal))"); return params; } diff --git a/src/bcs/SakiyamaIonAdvectionBC.C b/src/bcs/SakiyamaIonAdvectionBC.C index 845e6f4cfaf..b113362b956 100644 --- a/src/bcs/SakiyamaIonAdvectionBC.C +++ b/src/bcs/SakiyamaIonAdvectionBC.C @@ -18,9 +18,8 @@ SakiyamaIonAdvectionBC::validParams() InputParameters params = ADIntegratedBC::validParams(); params.addRequiredCoupledVar("potential", "The electric potential"); params.addRequiredParam("position_units", "Units of position."); - params.addClassDescription( - "Kinetic advective ion boundary condition" - " (Based on [!cite](sakiyama2006corona))"); + params.addClassDescription("Kinetic advective ion boundary condition" + " (Based on [!cite](sakiyama2006corona))"); return params; } diff --git a/src/bcs/SakiyamaSecondaryElectronBC.C b/src/bcs/SakiyamaSecondaryElectronBC.C index 8b586bd2262..a20bbe352ee 100644 --- a/src/bcs/SakiyamaSecondaryElectronBC.C +++ b/src/bcs/SakiyamaSecondaryElectronBC.C @@ -21,9 +21,8 @@ SakiyamaSecondaryElectronBC::validParams() params.addRequiredParam("position_units", "Units of position."); params.addRequiredParam>( "emission_coeffs", "A list of species-dependent secondary electron emission coefficients"); - params.addClassDescription( - "Kinetic secondary electron boundary condition" - " (Based on [!cite](sakiyama2006corona))"); + params.addClassDescription("Kinetic secondary electron boundary condition" + " (Based on [!cite](sakiyama2006corona))"); return params; } From f9ee37f069e4652b829e9efc8ec67408a11a35a7 Mon Sep 17 00:00:00 2001 From: Corey DeChant <37221357+csdechant@users.noreply.github.com> Date: Tue, 5 Nov 2024 10:06:42 -0700 Subject: [PATCH 09/11] Apply suggestions from code review Co-authored-by: Grayson Gall <66559200+gsgall@users.noreply.github.com> --- doc/content/source/bcs/DriftDiffusionDoNothingBC.md | 4 ++-- doc/content/source/bcs/ElectronAdvectionDoNothingBC.md | 2 +- doc/content/source/bcs/ElectronDiffusionDoNothingBC.md | 2 +- doc/content/source/bcs/ElectronTemperatureDirichletBC.md | 2 +- doc/content/source/bcs/FieldEmissionBC.md | 6 +++--- doc/content/source/bcs/HagelaarElectronAdvectionBC.md | 2 +- doc/content/source/bcs/HagelaarElectronBC.md | 2 +- doc/content/source/bcs/HagelaarEnergyAdvectionBC.md | 2 +- doc/content/source/bcs/HagelaarIonAdvectionBC.md | 8 ++++---- doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md | 6 +++--- .../source/bcs/SakiyamaEnergySecondaryElectronBC.md | 2 +- doc/content/source/bcs/SakiyamaSecondaryElectronBC.md | 2 +- doc/content/source/bcs/SchottkyEmissionBC.md | 6 +++--- src/bcs/CircuitDirichletPotential.C | 2 +- src/bcs/MatchedValueLogBC.C | 2 +- 15 files changed, 25 insertions(+), 25 deletions(-) diff --git a/doc/content/source/bcs/DriftDiffusionDoNothingBC.md b/doc/content/source/bcs/DriftDiffusionDoNothingBC.md index 3cf48a3d014..d04c98e87d3 100644 --- a/doc/content/source/bcs/DriftDiffusionDoNothingBC.md +++ b/doc/content/source/bcs/DriftDiffusionDoNothingBC.md @@ -11,14 +11,14 @@ boundary is equal to the bulk dift-diffusion equations. The outflow is defined as \begin{equation} -\Gamma_{j} \cdot \textbf{n} = \text{sign}_{j} \mu_{j} n_{j} \ \text{-} \nabla (V) \cdot \textbf{n} - D_{j} \nabla (n_{j}) \cdot \textbf{n} +\Gamma_{j} \cdot \textbf{n} = \text{sign}_{j} \mu_{j} n_{j} \left( - \nabla (V) \right) \cdot \textbf{n} - D_{j} \nabla (n_{j}) \cdot \textbf{n} \end{equation} Where $\Gamma$ is the outflow normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species, $\text{-}1$ for negatively charged species and $\text{0}$ for neutral species), $\mu_{j}$ is the mobility coefficient, $D_{j}$ is the diffusion coefficient, $n_{j}$ is the density, and $V$ is the potential. When converting the density to logarithmic form and applying a scaling factor of the mesh, the strong form for `DriftDiffusionDoNothingBC` is defined as \begin{equation} -\Gamma_{j} \cdot \textbf{n} = \text{sign}_{j} \mu_{j} \exp(N_{j}) \ \text{-} \nabla (V / l_{c}) \cdot \textbf{n} - D_{j} \exp(N_{j}) \nabla (N_{j} / l_{c}) \cdot \textbf{n} +\Gamma_{j} \cdot \textbf{n} = \text{sign}_{j} \mu_{j} \exp(N_{j}) \left( - \nabla (V / l_{c})\right) \cdot \textbf{n} - D_{j} \exp(N_{j}) \nabla (N_{j} / l_{c}) \cdot \textbf{n} \end{equation} Where $N_{j}$ is the molar density of the species in logarithmic form and diff --git a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md index cae7d808570..fde6261e3d9 100644 --- a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md +++ b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md @@ -21,7 +21,7 @@ factor of the mesh, the strong form for `ElectronAdvectionDoNothingBC` is define \Gamma_{e} \cdot \textbf{n} = \text{-} \mu_{e} \exp(N_{e}) \left( \text{-} \nabla (V / l_{c}) \right) \cdot \textbf{n} \end{equation} -Where $N_{j}$ is the molar density of the specie in logarithmic form and +Where $N_{j}$ is the molar density of the species in logarithmic form and $l_{c}$ is the scaling factor of the mesh. !alert warning title=Untested Class diff --git a/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md b/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md index dd560bab0ab..d20d6113d5c 100644 --- a/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md +++ b/doc/content/source/bcs/ElectronDiffusionDoNothingBC.md @@ -5,7 +5,7 @@ ## Overview `ElectronDiffusionDoNothingBC` is an outflow boundary condition where the outflow at the -boundary is equal to the bulk election diffusion equation. +boundary is equal to the bulk electron diffusion equation. The outflow is defined as diff --git a/doc/content/source/bcs/ElectronTemperatureDirichletBC.md b/doc/content/source/bcs/ElectronTemperatureDirichletBC.md index 1993f4cb431..81bc8cf2a64 100644 --- a/doc/content/source/bcs/ElectronTemperatureDirichletBC.md +++ b/doc/content/source/bcs/ElectronTemperatureDirichletBC.md @@ -12,7 +12,7 @@ The electron temperature at the boundary is defined as T_{e} = \frac{2}{3} \frac{n_{\varepsilon}}{n_{e}} \end{equation} -Where $T_{e}$ is the electron temperature, $n_{\varepsilon}$ is the electron mean energy density, and $n_{e}$ is the electron density. When converting the density to logarithmic form, +Where $T_{e}$ is the electron temperature, $n_{\varepsilon}$ is the mean electron energy density, and $n_{e}$ is the electron density. When converting the density to logarithmic form, `ElectronTemperatureDirichletBC` is defined as \begin{equation} diff --git a/doc/content/source/bcs/FieldEmissionBC.md b/doc/content/source/bcs/FieldEmissionBC.md index 8145b56b56f..edf56155d50 100644 --- a/doc/content/source/bcs/FieldEmissionBC.md +++ b/doc/content/source/bcs/FieldEmissionBC.md @@ -26,7 +26,7 @@ c = 1.439964e\text{-}9 : \text{units of} \ eV^{2} \ V^{-1} \ m Where $\textbf{J}_{\textbf{e}}$ is the electron current density, $a$ is the first Fowler–Nordheim constant, $\phi$ is the local work function, $F$ is the local field, $b$ is the second Fowler–Nordheim constant, $v(f)$ is a correction factor that depends on the scaled barrier field ($f$), $\textbf{n}$ is the normal vector of the boundary, $\gamma$ is the field enhancement factor, and $V$ is the potential. $a_{e}$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. With the electron current density, the outward electron flux is defined as \begin{equation} -\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V) n_{i} - D_{i} \nabla (n_{i}) \\[10pt] +\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \left(- \nabla V\right) n_{i} - D_{i} \nabla (n_{i}) \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a_{e})}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/e - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) \end{equation} @@ -40,11 +40,11 @@ F = \left( 1-a \right) \gamma \left( \text{-} \nabla V / l_{c} \right) \cdot \t a = 1.541434e\text{-}6 * V_{c}^{2} \\[10pt] b = 6.830890e9 / V_{c} \\[10pt] c = 1.439964e\text{-}9 * V_{c}\\[10pt] -\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V / l_{c}) \exp(N_{i}) - D_{i} \exp(N_{i}) \nabla (N_{i} / l_{c}) \\[10pt] +\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \left( - \nabla V / l_{c}\right) \exp(N_{i}) - D_{i} \exp(N_{i}) \nabla (N_{i} / l_{c}) \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a)}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/ (e / N_{A}) - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) \end{equation} -Where $N_{i}$ is the molar density of the specie in log form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. +Where $N_{i}$ is the molar density of the species in log form, $N_{A}$ is Avogadro's number, $V_{c}$ is the scaling factor of the potential, and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/bcs/HagelaarElectronAdvectionBC.md b/doc/content/source/bcs/HagelaarElectronAdvectionBC.md index b145e8c9098..88debb276ec 100644 --- a/doc/content/source/bcs/HagelaarElectronAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarElectronAdvectionBC.md @@ -22,7 +22,7 @@ a = Where $\Gamma_e \cdot \textbf{n}$ is the outflow normal to the boundary, $n$ is the normal vector of the boundary, $\mu_{e}$ is the mobility coefficient, $n_{e}$ is the electron density, and $V$ is -the electric potential. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +the electric potential. $a$ is defined such that the outflow is only defined when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarElectronAdvectionBC` is defined as \begin{equation} diff --git a/doc/content/source/bcs/HagelaarElectronBC.md b/doc/content/source/bcs/HagelaarElectronBC.md index dad1e3b4e18..8cbd2bb891a 100644 --- a/doc/content/source/bcs/HagelaarElectronBC.md +++ b/doc/content/source/bcs/HagelaarElectronBC.md @@ -25,7 +25,7 @@ v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \frac{n_{\varepsilon}}{ Where $\Gamma_e \cdot \textbf{n}$ is the outflow normal to the boundary, $\textbf{n}$ is the normal of the boundary, $\mu_{e}$ is the mobility coefficient, $n_{e}$ is the electron density, $V$ is -the electric potential, v_{\text{th},e} is the thermal velocity of the electrons, $e$ is the elementary charge, and $n_{\varepsilon}$ is the mean energy density. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r_e$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +the electric potential, $v_{\text{th},e}$ is the thermal velocity of the electrons, $e$ is the elementary charge, and $n_{\varepsilon}$ is the mean energy density. $a$ is defined such that the outflow is only defined when the drift velocity is directed towards the wall and zero otherwise. $r_e$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarElectronBC` is defined as \begin{equation} diff --git a/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md b/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md index 114550441eb..e91e01a0b58 100644 --- a/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarEnergyAdvectionBC.md @@ -23,7 +23,7 @@ a = \end{equation} -Where $\Gamma_{\epsilon} \cdot \textbf{n}$ is the outflow of the electron energy density normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $n_{e}$ is the electron density, $n_{+}$ is the mean energy density, $\mu_{j}$ is the mobility coefficient, $V$ is the electric potential, $\epsilon_{\gamma}$ is the energy of the secondary electron, and $\gamma$ is the ion induced secondary electron coefficient. $a$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling +Where $\Gamma_{\epsilon} \cdot \textbf{n}$ is the outflow of the electron energy density normal to the boundary, $\textbf{n}$ is the normal vector of the boundary, $n_{e}$ is the electron density, $n_{+}$ is the mean energy density, $\mu_{j}$ is the mobility coefficient, $V$ is the electric potential, $\epsilon_{\gamma}$ is the energy of the secondary electron, and $\gamma$ is the ion induced secondary electron coefficient. $a$ is defined such that the outflow is only defined when the drift velocity is directed towards the wall and zero otherwise. $r$ is defined as the fraction of particles reflected by the surface. When converting the density to log form and applying a scaling factor of the mesh, the strong form for `HagelaarEnergyAdvectionBC` is defined as \begin{equation} diff --git a/doc/content/source/bcs/HagelaarIonAdvectionBC.md b/doc/content/source/bcs/HagelaarIonAdvectionBC.md index 94140a569bb..fdd2ef1959c 100644 --- a/doc/content/source/bcs/HagelaarIonAdvectionBC.md +++ b/doc/content/source/bcs/HagelaarIonAdvectionBC.md @@ -12,8 +12,8 @@ The electrostatic electric field driven outflow is defined as \begin{equation} a = \begin{cases} -1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +1, & \mu_{j} \left( -\nabla V \right) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \left( -\nabla V \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] \Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( @@ -29,8 +29,8 @@ the electric potential. $a$ is defined such that the outflow is only non-zero wh \begin{equation} a = \begin{cases} -1, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \ \text{-} \nabla (V) \cdot \textbf{n} \leq 0\\ +1, & \mu_{j} \left(- \nabla V \right) \cdot \textbf{n} > 0\\ +0, & \mu_{j} \left( - \nabla V \right) \cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] \Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} \left( diff --git a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md index 9608f9fbb74..9947adddd2f 100644 --- a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md +++ b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md @@ -4,7 +4,7 @@ ## Overview -`NeumannCircuitVoltageMoles_KV` is a Neumann boundary condition the equates the plasma and drive potential to the plasma current using Kirchoff’s voltage law for a circuit. +`NeumannCircuitVoltageMoles_KV` is a Neumann boundary condition that equates the plasma and drive potential to the plasma current using Kirchoff’s voltage law for a circuit. The Kirchoff’s voltage law at the cathode is defined as @@ -13,7 +13,7 @@ V_\text{source} + V_\text{cathode} = e\left( \Gamma_{i} - \Gamma_{e} \right) AR \end{equation} Where $V_\text{source}$ is the driven potential, $V_\text{cathode}$ is the potential at cathode, -$e$ is the elemental charge , $\Gamma_i$ and $\Gamma_e$ are fluxes ions and electrons respectively, $A$ is the cross-sectional area of the plasma, and $R$ is the ballast resistance. Within `NeumannCircuitVoltageMoles_KV`, the charged species' flux at the boundary are assumed to be given by: +$e$ is the elemental charge , $\Gamma_i$ and $\Gamma_e$ are the ion and and electron particle fluxes, respectively, $A$ is the cross-sectional area of the plasma, and $R$ is the ballast resistance. Within `NeumannCircuitVoltageMoles_KV`, the charged species' flux at the boundary is assumed to be given by: \begin{equation} a = @@ -39,7 +39,7 @@ To convert Kirchoff’s voltage law into a Neumann type BC, the set of equations \nabla (V) \cdot \textbf{n} =\frac{\frac{1+r}{1-r}\left( \text{-} V_\text{source}-V_\text{cathode} \right) + \frac{1}{2} e \left[ v_{\text{th},e}\left( n_{e} - n_{\gamma} \right) - \left[(1-a)\gamma - 1\right]v_{\text{th},i}n_{i} \right] \ AR}{e \ \left[ (2a-1)\mu_{e} \left( n_{e} - n_{\gamma} \right) - (2a_{i}-1)\left[(a-1)\gamma - 1\right]\mu_{i}n_{i} \right] AR} \end{equation} -When converting the density to logarithmic form and applying a scaling factor of the mesh and voltage, the strong form for `NeumannCircuitVoltageMoles_KV` is defined as +When converting the density to logarithmic-molar form and applying a scaling factor of the mesh and voltage, the strong form for `NeumannCircuitVoltageMoles_KV` is defined as \begin{equation} v_{\text{th},e} = \sqrt{\frac{8e}{\pi m_{e}} \frac{2}{3} \exp (N_{\varepsilon} - N_{e})} \\[10pt] diff --git a/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md b/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md index fc7a4848e0f..5251e7e98d6 100644 --- a/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md +++ b/doc/content/source/bcs/SakiyamaEnergySecondaryElectronBC.md @@ -4,7 +4,7 @@ ## Overview -`SakiyamaEnergySecondaryElectronBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. +`SakiyamaEnergySecondaryElectronBC` accounts for the mean electron energy density of secondary electrons induced by an ion flux outflow boundary condition. `SakiyamaEnergySecondaryElectronBC` assumes the electrostatic approximation for the electric field. The ion induced secondary electron mean energy density outflow is defined as diff --git a/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md b/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md index be9b9cc9c9f..1ae6e05d527 100644 --- a/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md +++ b/doc/content/source/bcs/SakiyamaSecondaryElectronBC.md @@ -4,7 +4,7 @@ ## Overview -`SakiyamaSecondaryElectronBC` is an electron mean energy density of secondary electrons induced by ion flux outflow boundary condition. +`SakiyamaSecondaryElectronBC` accounts for the mean electron energy density of secondary electrons induced by an ion flux outflow boundary condition. `SakiyamaSecondaryElectronBC` assumes the electrostatic approximation for the electric field. The ion induced secondary electron mean energy density outflow is defined as diff --git a/doc/content/source/bcs/SchottkyEmissionBC.md b/doc/content/source/bcs/SchottkyEmissionBC.md index 8f99c54c61b..4a8890ab22d 100644 --- a/doc/content/source/bcs/SchottkyEmissionBC.md +++ b/doc/content/source/bcs/SchottkyEmissionBC.md @@ -19,10 +19,10 @@ F = \left( 1-a_{e} \right) \gamma \left( \text{-} \nabla V \right) \cdot \textb \Delta \phi = \sqrt{\frac{e^{3} F}{4 \pi \epsilon_{0}}} \end{equation} -Where $\textbf{J}_{\textbf{e}}$ is the electron current density, $A_{G}$ is the Richardson coefficient, $T$ is the temperature of the cathode, $k_{B}$ is Boltzmann constant in units of eV/K, $\phi$ is the local work function, $\Delta \phi$ is the difference in the work funtion due to the electric field, $F$ is the local field, $\textbf{n}$ is the normal vector of the boundary, $\gamma$ is the field enhancement factor, and $V$ is the potential. $a_{e}$ is defined such that the outflow is only defined when the drift velocity is direct towards the wall and zero otherwise. With the electron current density, the outward electron flux is defined as +Where $\textbf{J}_{\textbf{e}}$ is the electron current density, $A_{G}$ is the Richardson coefficient, $T$ is the temperature of the cathode, $k_{B}$ is Boltzmann constant in units of eV/K, $\phi$ is the local work function, $\Delta \phi$ is the difference in the work funtion due to the electric field, $F$ is the local field, $\textbf{n}$ is the normal vector of the boundary, $\gamma$ is the field enhancement factor, and $V$ is the potential. $a_{e}$ is defined such that the outflow is only defined when the drift velocity is directed towards the wall and zero otherwise. With the electron current density, the outward electron flux is defined as \begin{equation} -\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V) n_{i} - D_{i} \nabla (n_{i}) \\[10pt] +\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \left( - \nabla V \right) n_{i} - D_{i} \nabla (n_{i}) \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a_{e})}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/e - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) \end{equation} @@ -32,7 +32,7 @@ When converting the density to logarithmic form and applying a scaling factor of \begin{equation} F = \left( 1-a \right) \gamma \left( \text{-} \nabla V / l_{c} \right) \cdot \textbf{n} \\[10pt] -\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \ \text{-} \nabla (V / l_{c}) \exp(N_{i}) - D_{i} \exp(N_{i}) \nabla (N_{i} / l_{c}) \\[10pt] +\Gamma_{i} \cdot \textbf{n} = \text{sign}_{i} \mu_{i} \left( - \nabla V / l_{c} \right) \exp(N_{i}) - D_{i} \exp(N_{i}) \nabla (N_{i} / l_{c}) \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{2 (1 - a)}{1 + r} (\text{-} (\textbf{J}_{\textbf{e}} \cdot \textbf{n})/ (e / N_{A}) - \gamma_{se} \Gamma_{i} \cdot \textbf{n}) \end{equation} diff --git a/src/bcs/CircuitDirichletPotential.C b/src/bcs/CircuitDirichletPotential.C index 5403bc1abc2..94b4df7b2c7 100644 --- a/src/bcs/CircuitDirichletPotential.C +++ b/src/bcs/CircuitDirichletPotential.C @@ -36,7 +36,7 @@ CircuitDirichletPotential::validParams() "For 1D calculations, an area has to be passed. This area also must " "match the units convention of position_units."); params.addClassDescription("Dirichlet circuit boundary condition for potential" - " (The current is given through an UserObject)"); + " (The current is given through a UserObject)"); return params; } diff --git a/src/bcs/MatchedValueLogBC.C b/src/bcs/MatchedValueLogBC.C index 22f5da9c3c2..d91e96ec656 100644 --- a/src/bcs/MatchedValueLogBC.C +++ b/src/bcs/MatchedValueLogBC.C @@ -19,7 +19,7 @@ MatchedValueLogBC::validParams() params.addRequiredParam("H", "The ratio of liquid phase density to gas phase density"); params.addRequiredCoupledVar("v", "The variable whose value we are to match."); params.addClassDescription( - "Henry’s Law like thermodynamic boundary condition for specifying a specie" + "Henry’s Law like thermodynamic boundary condition for specifying a species" " concentration ratio at the gas-liquid interface"); return params; } From 1d4e1b43b63bf38bad582f1c2ccea5e143e7cc83 Mon Sep 17 00:00:00 2001 From: Corey DeChant <37221357+csdechant@users.noreply.github.com> Date: Tue, 5 Nov 2024 10:10:06 -0700 Subject: [PATCH 10/11] Apply suggestions from code review Co-authored-by: Grayson Gall <66559200+gsgall@users.noreply.github.com> --- doc/content/source/bcs/CircuitDirichletPotential.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/doc/content/source/bcs/CircuitDirichletPotential.md b/doc/content/source/bcs/CircuitDirichletPotential.md index 8e5127c1ada..399e53691b0 100644 --- a/doc/content/source/bcs/CircuitDirichletPotential.md +++ b/doc/content/source/bcs/CircuitDirichletPotential.md @@ -13,8 +13,8 @@ V_\text{source} + V_\text{cathode} = e \Gamma A R \end{equation} Where $V_\text{source}$ is driven the potential, $V_\text{cathode}$ is the potential at cathode, -$\Gamma$ is the charged flux to the boundary, $e$ is the elemental charge, $A$ is the cross-sectional area of the plasma, and -$R$ is the ballast resistance. When converting the density to log form and applying a scaling factor for both the mesh and voltage, +$\Gamma$ is the charged particle flux at the boundary, $e$ is the elemental charge, $A$ is the cross-sectional area of the plasma, and +$R$ is the ballast resistance. When converting the density to log-molar form and applying a scaling factor for both the mesh and voltage, `CircuitDirichletPotential` is defined as \begin{equation} @@ -24,7 +24,7 @@ V_\text{source} + V_\text{cathode} = e N_{A} \Gamma \frac{A}{l_{c}^2} \frac{R}{V Where $N_{A}$ is Avogadro's number, $l_{c}$ is the scaling factor of the mesh, and $V_{c}$ is the scaling factor of the potential. -The charged flux is supplied as a [Postprocessor](syntax/Postprocessors/index.md) (usually the [`SideCurrent`](/postprocessors/SideCurrent.md) Postprocessor). +The charged particle flux is supplied as a [Postprocessor](syntax/Postprocessors/index.md) (usually the [`SideCurrent`](/postprocessors/SideCurrent.md) Postprocessor). !alert warning title=Untested Class The CircuitDirichletPotential does not have a formalized test, yet. For this reason, @@ -48,7 +48,7 @@ please refer to the [MOOSE Contributing page](framework/contributing.md). potential_units = V resist = 100 #in Ohms surface = anode - surfuce_potential = 100 #in V + surface_potential = 100 #in V boundary = 'electrode' [] [] From 0148c946a64f82036d24677ca0945202e2241eb6 Mon Sep 17 00:00:00 2001 From: csdechant Date: Tue, 5 Nov 2024 11:07:49 -0700 Subject: [PATCH 11/11] Grammar corrections and fixing documentation error --- doc/content/bib/documentation.bib | 1 + .../source/bcs/ElectronAdvectionDoNothingBC.md | 2 +- .../source/bcs/NeumannCircuitVoltageMoles_KV.md | 9 +++++++-- doc/content/source/bcs/SecondaryElectronBC.md | 11 ++++++++--- doc/content/source/bcs/SecondaryElectronEnergyBC.md | 9 +++++++-- doc/tutorial_pdf/Zapdos_Tutorial.tex | 4 ++-- src/bcs/ElectronAdvectionDoNothingBC.C | 4 ++-- src/bcs/ElectronDiffusionDoNothingBC.C | 4 ++-- 8 files changed, 30 insertions(+), 14 deletions(-) diff --git a/doc/content/bib/documentation.bib b/doc/content/bib/documentation.bib index ae8f7a9f472..9e3c9819103 100644 --- a/doc/content/bib/documentation.bib +++ b/doc/content/bib/documentation.bib @@ -53,6 +53,7 @@ @article{greenberg1993electron pages={8126--8133}, year={1993}, publisher={American Institute of Physics} +} @article{hagelaar2000boundary, diff --git a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md index fde6261e3d9..e2764790ff4 100644 --- a/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md +++ b/doc/content/source/bcs/ElectronAdvectionDoNothingBC.md @@ -5,7 +5,7 @@ ## Overview `ElectronAdvectionDoNothingBC` is an outflow boundary condition where the outflow at the -boundary is equal to the bulk election advection equation. +boundary is equal to the bulk electron advection equation. `ElectronAdvectionDoNothingBC` assumes the electrostatic approximation for the electric field. The outflow is defined as diff --git a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md index 9947adddd2f..dcd7c45b9bc 100644 --- a/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md +++ b/doc/content/source/bcs/NeumannCircuitVoltageMoles_KV.md @@ -16,10 +16,15 @@ Where $V_\text{source}$ is the driven potential, $V_\text{cathode}$ is the poten $e$ is the elemental charge , $\Gamma_i$ and $\Gamma_e$ are the ion and and electron particle fluxes, respectively, $A$ is the cross-sectional area of the plasma, and $R$ is the ballast resistance. Within `NeumannCircuitVoltageMoles_KV`, the charged species' flux at the boundary is assumed to be given by: \begin{equation} -a = +a_{e} = \begin{cases} 1, & \mu_{e} \left( \nabla (V) \right) \cdot \textbf{n} > 0\\ -0, & \mu_{i} \left( \text{-} \nabla (V) \right)\cdot \textbf{n} \leq 0\\ +0, & \mu_{e} \left( \nabla (V) \right)\cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +a_{i} = +\begin{cases} +1, & \mu_{i} \left( - \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{i} \left( - \nabla (V) \right)\cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{1-r_{e}}{1+r_{e}} \left[ -(2 a_{e}-1) \ \mu_{e} \left(\text{-} \nabla (V) \right) diff --git a/doc/content/source/bcs/SecondaryElectronBC.md b/doc/content/source/bcs/SecondaryElectronBC.md index 108cae14679..745ef7bfcf6 100644 --- a/doc/content/source/bcs/SecondaryElectronBC.md +++ b/doc/content/source/bcs/SecondaryElectronBC.md @@ -8,10 +8,15 @@ `SecondaryElectronBC` assumes the electrostatic approximation for the electric field. \begin{equation} -a = +a_{e} = \begin{cases} -1, & \mu_{e} \left( \nabla (V) \right) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ +1, & \mu_{e} \left( \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{e} \left( \nabla (V) \right)\cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +a_{i} = +\begin{cases} +1, & \mu_{i} \left( - \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{i} \left( - \nabla (V) \right)\cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] \Gamma_{e} \cdot \textbf{n} = \frac{1 - r_{e}}{1 + r_{e}} \frac{\text{-}1}{2} v_{\text{th},e} n_{\gamma} - \frac{2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] \Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} diff --git a/doc/content/source/bcs/SecondaryElectronEnergyBC.md b/doc/content/source/bcs/SecondaryElectronEnergyBC.md index 9135855df9d..7ad580ec29a 100644 --- a/doc/content/source/bcs/SecondaryElectronEnergyBC.md +++ b/doc/content/source/bcs/SecondaryElectronEnergyBC.md @@ -8,10 +8,15 @@ `SecondaryElectronEnergyBC` assumes the electrostatic approximation for the electric field. \begin{equation} -a = +a_{e} = \begin{cases} 1, & \mu_{e} \left( \nabla (V) \right) \cdot \textbf{n} > 0\\ -0, & \mu_{j} \left( \text{-} \nabla (V) \right) \cdot \textbf{n} \leq 0\\ +0, & \mu_{e} \left( \nabla (V) \right)\cdot \textbf{n} \leq 0\\ +\end{cases} \\[10pt] +a_{i} = +\begin{cases} +1, & \mu_{i} \left( - \nabla (V) \right) \cdot \textbf{n} > 0\\ +0, & \mu_{i} \left( - \nabla (V) \right)\cdot \textbf{n} \leq 0\\ \end{cases} \\[10pt] \Gamma_{\epsilon} \cdot \textbf{n} = \frac{1 - r_{e}}{1 + r_{e}} \frac{\text{-}5}{6} v_{\text{th},e} n_{\gamma} \varepsilon_{\gamma} - \frac{5}{3} \frac{2}{1+r} (1 - a_{e}) \gamma \Gamma_{j} \cdot \textbf{n} \\[10pt] \Gamma_{j} \cdot \textbf{n} = \frac{1-r_{j}}{1+r_{j}} \left[ (2 a_{j}-1) \ \mu_{j} diff --git a/doc/tutorial_pdf/Zapdos_Tutorial.tex b/doc/tutorial_pdf/Zapdos_Tutorial.tex index 8ca108ad2e4..cbab8f2fbd1 100644 --- a/doc/tutorial_pdf/Zapdos_Tutorial.tex +++ b/doc/tutorial_pdf/Zapdos_Tutorial.tex @@ -541,7 +541,7 @@ \begin{verbatim} [InterfaceKernels] - #Defining election advection to the water + #Defining electron advection to the water [em_advection] type = InterfaceAdvection mean_en_neighbor = mean_en @@ -552,7 +552,7 @@ position_units = ${dom1Scale} neighbor_position_units = ${dom0Scale} [] - #Defining election diffusion to the water + #Defining electron diffusion to the water [em_diffusion] type = InterfaceLogDiffusionElectrons mean_en_neighbor = mean_en diff --git a/src/bcs/ElectronAdvectionDoNothingBC.C b/src/bcs/ElectronAdvectionDoNothingBC.C index 12f0c89a3f5..9c53360fda4 100644 --- a/src/bcs/ElectronAdvectionDoNothingBC.C +++ b/src/bcs/ElectronAdvectionDoNothingBC.C @@ -19,8 +19,8 @@ ElectronAdvectionDoNothingBC::validParams() params.addRequiredCoupledVar( "potential", "The gradient of the potential will be used to compute the advection velocity."); params.addRequiredParam("position_units", "The units of position."); - params.addClassDescription("Boundary condition where the election advection flux at the boundary " - "is equal to the bulk election advection equation"); + params.addClassDescription("Boundary condition where the electron advection flux at the boundary " + "is equal to the bulk electron advection equation"); return params; } diff --git a/src/bcs/ElectronDiffusionDoNothingBC.C b/src/bcs/ElectronDiffusionDoNothingBC.C index 510354b9c02..778b13ff990 100644 --- a/src/bcs/ElectronDiffusionDoNothingBC.C +++ b/src/bcs/ElectronDiffusionDoNothingBC.C @@ -17,8 +17,8 @@ ElectronDiffusionDoNothingBC::validParams() { InputParameters params = ADIntegratedBC::validParams(); params.addRequiredParam("position_units", "Units of position"); - params.addClassDescription("Boundary condition where the election diffusion flux at the boundary " - "is equal to the bulk election diffusion equation"); + params.addClassDescription("Boundary condition where the electron diffusion flux at the boundary " + "is equal to the bulk electron diffusion equation"); return params; }