forked from ajbrock/BigGAN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BigGANdeep.py
534 lines (491 loc) · 22.4 KB
/
BigGANdeep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import numpy as np
import math
import functools
import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter as P
import layers
from sync_batchnorm import SynchronizedBatchNorm2d as SyncBatchNorm2d
# BigGAN-deep: uses a different resblock and pattern
# Architectures for G
# Attention is passed in in the format '32_64' to mean applying an attention
# block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64.
# Channel ratio is the ratio of
class GBlock(nn.Module):
def __init__(self, in_channels, out_channels,
which_conv=nn.Conv2d, which_bn=layers.bn, activation=None,
upsample=None, channel_ratio=4):
super(GBlock, self).__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.hidden_channels = self.in_channels // channel_ratio
self.which_conv, self.which_bn = which_conv, which_bn
self.activation = activation
# Conv layers
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels,
kernel_size=1, padding=0)
self.conv2 = self.which_conv(self.hidden_channels, self.hidden_channels)
self.conv3 = self.which_conv(self.hidden_channels, self.hidden_channels)
self.conv4 = self.which_conv(self.hidden_channels, self.out_channels,
kernel_size=1, padding=0)
# Batchnorm layers
self.bn1 = self.which_bn(self.in_channels)
self.bn2 = self.which_bn(self.hidden_channels)
self.bn3 = self.which_bn(self.hidden_channels)
self.bn4 = self.which_bn(self.hidden_channels)
# upsample layers
self.upsample = upsample
def forward(self, x, y):
# Project down to channel ratio
h = self.conv1(self.activation(self.bn1(x, y)))
# Apply next BN-ReLU
h = self.activation(self.bn2(h, y))
# Drop channels in x if necessary
if self.in_channels != self.out_channels:
x = x[:, :self.out_channels]
# Upsample both h and x at this point
if self.upsample:
h = self.upsample(h)
x = self.upsample(x)
# 3x3 convs
h = self.conv2(h)
h = self.conv3(self.activation(self.bn3(h, y)))
# Final 1x1 conv
h = self.conv4(self.activation(self.bn4(h, y)))
return h + x
def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'):
arch = {}
arch[256] = {'in_channels' : [ch * item for item in [16, 16, 8, 8, 4, 2]],
'out_channels' : [ch * item for item in [16, 8, 8, 4, 2, 1]],
'upsample' : [True] * 6,
'resolution' : [8, 16, 32, 64, 128, 256],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
for i in range(3,9)}}
arch[128] = {'in_channels' : [ch * item for item in [16, 16, 8, 4, 2]],
'out_channels' : [ch * item for item in [16, 8, 4, 2, 1]],
'upsample' : [True] * 5,
'resolution' : [8, 16, 32, 64, 128],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
for i in range(3,8)}}
arch[64] = {'in_channels' : [ch * item for item in [16, 16, 8, 4]],
'out_channels' : [ch * item for item in [16, 8, 4, 2]],
'upsample' : [True] * 4,
'resolution' : [8, 16, 32, 64],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
for i in range(3,7)}}
arch[32] = {'in_channels' : [ch * item for item in [4, 4, 4]],
'out_channels' : [ch * item for item in [4, 4, 4]],
'upsample' : [True] * 3,
'resolution' : [8, 16, 32],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
for i in range(3,6)}}
return arch
class Generator(nn.Module):
def __init__(self, G_ch=64, G_depth=2, dim_z=128, bottom_width=4, resolution=128,
G_kernel_size=3, G_attn='64', n_classes=1000,
num_G_SVs=1, num_G_SV_itrs=1,
G_shared=True, shared_dim=0, hier=False,
cross_replica=False, mybn=False,
G_activation=nn.ReLU(inplace=False),
G_lr=5e-5, G_B1=0.0, G_B2=0.999, adam_eps=1e-8,
BN_eps=1e-5, SN_eps=1e-12, G_mixed_precision=False, G_fp16=False,
G_init='ortho', skip_init=False, no_optim=False,
G_param='SN', norm_style='bn',
**kwargs):
super(Generator, self).__init__()
# Channel width mulitplier
self.ch = G_ch
# Number of resblocks per stage
self.G_depth = G_depth
# Dimensionality of the latent space
self.dim_z = dim_z
# The initial spatial dimensions
self.bottom_width = bottom_width
# Resolution of the output
self.resolution = resolution
# Kernel size?
self.kernel_size = G_kernel_size
# Attention?
self.attention = G_attn
# number of classes, for use in categorical conditional generation
self.n_classes = n_classes
# Use shared embeddings?
self.G_shared = G_shared
# Dimensionality of the shared embedding? Unused if not using G_shared
self.shared_dim = shared_dim if shared_dim > 0 else dim_z
# Hierarchical latent space?
self.hier = hier
# Cross replica batchnorm?
self.cross_replica = cross_replica
# Use my batchnorm?
self.mybn = mybn
# nonlinearity for residual blocks
self.activation = G_activation
# Initialization style
self.init = G_init
# Parameterization style
self.G_param = G_param
# Normalization style
self.norm_style = norm_style
# Epsilon for BatchNorm?
self.BN_eps = BN_eps
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# fp16?
self.fp16 = G_fp16
# Architecture dict
self.arch = G_arch(self.ch, self.attention)[resolution]
# Which convs, batchnorms, and linear layers to use
if self.G_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
else:
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
self.which_linear = nn.Linear
# We use a non-spectral-normed embedding here regardless;
# For some reason applying SN to G's embedding seems to randomly cripple G
self.which_embedding = nn.Embedding
bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared
else self.which_embedding)
self.which_bn = functools.partial(layers.ccbn,
which_linear=bn_linear,
cross_replica=self.cross_replica,
mybn=self.mybn,
input_size=(self.shared_dim + self.dim_z if self.G_shared
else self.n_classes),
norm_style=self.norm_style,
eps=self.BN_eps)
# Prepare model
# If not using shared embeddings, self.shared is just a passthrough
self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared
else layers.identity())
# First linear layer
self.linear = self.which_linear(self.dim_z + self.shared_dim, self.arch['in_channels'][0] * (self.bottom_width **2))
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
# while the inner loop is over a given block
self.blocks = []
for index in range(len(self.arch['out_channels'])):
self.blocks += [[GBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['in_channels'][index] if g_index==0 else self.arch['out_channels'][index],
which_conv=self.which_conv,
which_bn=self.which_bn,
activation=self.activation,
upsample=(functools.partial(F.interpolate, scale_factor=2)
if self.arch['upsample'][index] and g_index == (self.G_depth-1) else None))]
for g_index in range(self.G_depth)]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# output layer: batchnorm-relu-conv.
# Consider using a non-spectral conv here
self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1],
cross_replica=self.cross_replica,
mybn=self.mybn),
self.activation,
self.which_conv(self.arch['out_channels'][-1], 3))
# Initialize weights. Optionally skip init for testing.
if not skip_init:
self.init_weights()
# Set up optimizer
# If this is an EMA copy, no need for an optim, so just return now
if no_optim:
return
self.lr, self.B1, self.B2, self.adam_eps = G_lr, G_B1, G_B2, adam_eps
if G_mixed_precision:
print('Using fp16 adam in G...')
import utils
self.optim = utils.Adam16(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=0,
eps=self.adam_eps)
else:
self.optim = optim.Adam(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=0,
eps=self.adam_eps)
# LR scheduling, left here for forward compatibility
# self.lr_sched = {'itr' : 0}# if self.progressive else {}
# self.j = 0
# Initialize
def init_weights(self):
self.param_count = 0
for module in self.modules():
if (isinstance(module, nn.Conv2d)
or isinstance(module, nn.Linear)
or isinstance(module, nn.Embedding)):
if self.init == 'ortho':
init.orthogonal_(module.weight)
elif self.init == 'N02':
init.normal_(module.weight, 0, 0.02)
elif self.init in ['glorot', 'xavier']:
init.xavier_uniform_(module.weight)
else:
print('Init style not recognized...')
self.param_count += sum([p.data.nelement() for p in module.parameters()])
print('Param count for G''s initialized parameters: %d' % self.param_count)
# Note on this forward function: we pass in a y vector which has
# already been passed through G.shared to enable easy class-wise
# interpolation later. If we passed in the one-hot and then ran it through
# G.shared in this forward function, it would be harder to handle.
# NOTE: The z vs y dichotomy here is for compatibility with not-y
def forward(self, z, y):
# If hierarchical, concatenate zs and ys
if self.hier:
z = torch.cat([y, z], 1)
y = z
# First linear layer
h = self.linear(z)
# Reshape
h = h.view(h.size(0), -1, self.bottom_width, self.bottom_width)
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
# Second inner loop in case block has multiple layers
for block in blocklist:
h = block(h, y)
# Apply batchnorm-relu-conv-tanh at output
return torch.tanh(self.output_layer(h))
class DBlock(nn.Module):
def __init__(self, in_channels, out_channels, which_conv=layers.SNConv2d, wide=True,
preactivation=True, activation=None, downsample=None,
channel_ratio=4):
super(DBlock, self).__init__()
self.in_channels, self.out_channels = in_channels, out_channels
# If using wide D (as in SA-GAN and BigGAN), change the channel pattern
self.hidden_channels = self.out_channels // channel_ratio
self.which_conv = which_conv
self.preactivation = preactivation
self.activation = activation
self.downsample = downsample
# Conv layers
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels,
kernel_size=1, padding=0)
self.conv2 = self.which_conv(self.hidden_channels, self.hidden_channels)
self.conv3 = self.which_conv(self.hidden_channels, self.hidden_channels)
self.conv4 = self.which_conv(self.hidden_channels, self.out_channels,
kernel_size=1, padding=0)
self.learnable_sc = True if (in_channels != out_channels) else False
if self.learnable_sc:
self.conv_sc = self.which_conv(in_channels, out_channels - in_channels,
kernel_size=1, padding=0)
def shortcut(self, x):
if self.downsample:
x = self.downsample(x)
if self.learnable_sc:
x = torch.cat([x, self.conv_sc(x)], 1)
return x
def forward(self, x):
# 1x1 bottleneck conv
h = self.conv1(F.relu(x))
# 3x3 convs
h = self.conv2(self.activation(h))
h = self.conv3(self.activation(h))
# relu before downsample
h = self.activation(h)
# downsample
if self.downsample:
h = self.downsample(h)
# final 1x1 conv
h = self.conv4(h)
return h + self.shortcut(x)
# Discriminator architecture, same paradigm as G's above
def D_arch(ch=64, attention='64',ksize='333333', dilation='111111'):
arch = {}
arch[256] = {'in_channels' : [item * ch for item in [1, 2, 4, 8, 8, 16]],
'out_channels' : [item * ch for item in [2, 4, 8, 8, 16, 16]],
'downsample' : [True] * 6 + [False],
'resolution' : [128, 64, 32, 16, 8, 4, 4 ],
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
for i in range(2,8)}}
arch[128] = {'in_channels' : [item * ch for item in [1, 2, 4, 8, 16]],
'out_channels' : [item * ch for item in [2, 4, 8, 16, 16]],
'downsample' : [True] * 5 + [False],
'resolution' : [64, 32, 16, 8, 4, 4],
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
for i in range(2,8)}}
arch[64] = {'in_channels' : [item * ch for item in [1, 2, 4, 8]],
'out_channels' : [item * ch for item in [2, 4, 8, 16]],
'downsample' : [True] * 4 + [False],
'resolution' : [32, 16, 8, 4, 4],
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
for i in range(2,7)}}
arch[32] = {'in_channels' : [item * ch for item in [4, 4, 4]],
'out_channels' : [item * ch for item in [4, 4, 4]],
'downsample' : [True, True, False, False],
'resolution' : [16, 16, 16, 16],
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
for i in range(2,6)}}
return arch
class Discriminator(nn.Module):
def __init__(self, D_ch=64, D_wide=True, D_depth=2, resolution=128,
D_kernel_size=3, D_attn='64', n_classes=1000,
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
D_lr=2e-4, D_B1=0.0, D_B2=0.999, adam_eps=1e-8,
SN_eps=1e-12, output_dim=1, D_mixed_precision=False, D_fp16=False,
D_init='ortho', skip_init=False, D_param='SN', **kwargs):
super(Discriminator, self).__init__()
# Width multiplier
self.ch = D_ch
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
self.D_wide = D_wide
# How many resblocks per stage?
self.D_depth = D_depth
# Resolution
self.resolution = resolution
# Kernel size
self.kernel_size = D_kernel_size
# Attention?
self.attention = D_attn
# Number of classes
self.n_classes = n_classes
# Activation
self.activation = D_activation
# Initialization style
self.init = D_init
# Parameterization style
self.D_param = D_param
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# Fp16?
self.fp16 = D_fp16
# Architecture
self.arch = D_arch(self.ch, self.attention)[resolution]
# Which convs, batchnorms, and linear layers to use
# No option to turn off SN in D right now
if self.D_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_embedding = functools.partial(layers.SNEmbedding,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
# Prepare model
# Stem convolution
self.input_conv = self.which_conv(3, self.arch['in_channels'][0])
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
self.blocks = []
for index in range(len(self.arch['out_channels'])):
self.blocks += [[DBlock(in_channels=self.arch['in_channels'][index] if d_index==0 else self.arch['out_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv=self.which_conv,
wide=self.D_wide,
activation=self.activation,
preactivation=True,
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] and d_index==0 else None))
for d_index in range(self.D_depth)]]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# Linear output layer. The output dimension is typically 1, but may be
# larger if we're e.g. turning this into a VAE with an inference output
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
# Embedding for projection discrimination
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
# Initialize weights
if not skip_init:
self.init_weights()
# Set up optimizer
self.lr, self.B1, self.B2, self.adam_eps = D_lr, D_B1, D_B2, adam_eps
if D_mixed_precision:
print('Using fp16 adam in D...')
import utils
self.optim = utils.Adam16(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)
else:
self.optim = optim.Adam(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)
# LR scheduling, left here for forward compatibility
# self.lr_sched = {'itr' : 0}# if self.progressive else {}
# self.j = 0
# Initialize
def init_weights(self):
self.param_count = 0
for module in self.modules():
if (isinstance(module, nn.Conv2d)
or isinstance(module, nn.Linear)
or isinstance(module, nn.Embedding)):
if self.init == 'ortho':
init.orthogonal_(module.weight)
elif self.init == 'N02':
init.normal_(module.weight, 0, 0.02)
elif self.init in ['glorot', 'xavier']:
init.xavier_uniform_(module.weight)
else:
print('Init style not recognized...')
self.param_count += sum([p.data.nelement() for p in module.parameters()])
print('Param count for D''s initialized parameters: %d' % self.param_count)
def forward(self, x, y=None):
# Run input conv
h = self.input_conv(x)
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
# Apply global sum pooling as in SN-GAN
h = torch.sum(self.activation(h), [2, 3])
# Get initial class-unconditional output
out = self.linear(h)
# Get projection of final featureset onto class vectors and add to evidence
out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)
return out
# Parallelized G_D to minimize cross-gpu communication
# Without this, Generator outputs would get all-gathered and then rebroadcast.
class G_D(nn.Module):
def __init__(self, G, D):
super(G_D, self).__init__()
self.G = G
self.D = D
def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False,
split_D=False):
# If training G, enable grad tape
with torch.set_grad_enabled(train_G):
# Get Generator output given noise
G_z = self.G(z, self.G.shared(gy))
# Cast as necessary
if self.G.fp16 and not self.D.fp16:
G_z = G_z.float()
if self.D.fp16 and not self.G.fp16:
G_z = G_z.half()
# Split_D means to run D once with real data and once with fake,
# rather than concatenating along the batch dimension.
if split_D:
D_fake = self.D(G_z, gy)
if x is not None:
D_real = self.D(x, dy)
return D_fake, D_real
else:
if return_G_z:
return D_fake, G_z
else:
return D_fake
# If real data is provided, concatenate it with the Generator's output
# along the batch dimension for improved efficiency.
else:
D_input = torch.cat([G_z, x], 0) if x is not None else G_z
D_class = torch.cat([gy, dy], 0) if dy is not None else gy
# Get Discriminator output
D_out = self.D(D_input, D_class)
if x is not None:
return torch.split(D_out, [G_z.shape[0], x.shape[0]]) # D_fake, D_real
else:
if return_G_z:
return D_out, G_z
else:
return D_out