forked from huggingface/datasets
-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.py
173 lines (142 loc) · 5.42 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Lint as: python3
""" HuggingFace/Datasets is an open library of NLP datasets.
Note:
VERSION needs to be formatted following the MAJOR.MINOR.PATCH convention
(we need to follow this convention to be able to retrieve versioned scripts)
Simple check list for release from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
To create the package for pypi.
1. Change the version in __init__.py, setup.py as well as docs/source/conf.py.
2. Commit these changes with the message: "Release: VERSION"
3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' "
Push the tag to git: git push --tags origin master
4. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
First pin the SCRIPTS_VERSION to VERSION in __init__.py (but don't commit this change)
For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions.
Then change the SCRIPTS_VERSION back to to "master" in __init__.py (but don't commit this change)
5. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
You may have to specify the repository url, use the following command then:
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi datasets
6. Upload the final version to actual pypi:
twine upload dist/* -r pypi
7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
8. Update the documentation commit in .circleci/deploy.sh for the accurate documentation to be displayed
Update the version mapping in docs/source/_static/js/custom.js
9. Update README.md to redirect to correct documentation.
"""
import datetime
import itertools
import os
import sys
from setuptools import find_packages
from setuptools import setup
DOCLINES = __doc__.split('\n')
REQUIRED_PKGS = [
# We use numpy>=1.17 to have np.random.Generator (Dataset shuffling)
'numpy>=1.17',
# Backend and serialization. Minimum 0.17.1 to support extension array
'pyarrow>=0.17.1',
# For smart caching dataset processing
'dill',
# For performance gains with apache arrow
'pandas',
# for downloading datasets over HTTPS
'requests>=2.19.0',
# progress bars in download and scripts
# tqdm 4.50.0 introduced permission errors on windows
# see https://app.circleci.com/pipelines/github/huggingface/datasets/235/workflows/cfb6a39f-68eb-4802-8b17-2cd5e8ea7369/jobs/1111
"tqdm>=4.27,<4.50.0",
# dataclasses for Python versions that don't have it
"dataclasses;python_version<'3.7'",
# for fast hashing
"xxhash",
# for better multiprocessing
"multiprocess"
]
BENCHMARKS_REQUIRE = [
'numpy==1.18.5',
'tensorflow==2.3.0',
'torch==1.6.0',
'transformers==3.0.2',
]
TESTS_REQUIRE = [
'apache-beam',
'absl-py',
'bs4',
'conllu',
'elasticsearch',
'faiss-cpu',
'langdetect',
'lxml',
'mwparserfromhell',
'nltk',
'py7zr',
'pytest',
'pytest-xdist',
'tensorflow',
'torch',
'tldextract',
'transformers',
'xlrd==1.2.0', # pinning to keep the xlsx support. We should eventually use something else
'zstandard',
'rarfile',
]
if os.name == "nt": # windows
TESTS_REQUIRE.remove("faiss-cpu") # faiss doesn't exist on windows
QUALITY_REQUIRE = [
"black",
"isort",
"flake8==3.7.9",
]
EXTRAS_REQUIRE = {
'apache-beam': ['apache-beam'],
'tensorflow': ['tensorflow>=2.2.0'],
'tensorflow_gpu': ['tensorflow-gpu>=2.2.0'],
'torch': ['torch'],
'dev': TESTS_REQUIRE + QUALITY_REQUIRE,
'tests': TESTS_REQUIRE,
'quality': QUALITY_REQUIRE,
'benchmarks': BENCHMARKS_REQUIRE,
'docs': ["recommonmark", "sphinx==3.1.2", "sphinx-markdown-tables", "sphinx-rtd-theme==0.4.3", "sphinx-copybutton"]
}
setup(
name='datasets',
version="1.1.3",
description=DOCLINES[0],
long_description='\n'.join(DOCLINES[2:]),
author='HuggingFace Inc.',
author_email='[email protected]',
url='https://github.com/huggingface/datasets',
download_url='https://github.com/huggingface/datasets/tags',
license='Apache 2.0',
package_dir={"": "src"},
packages=find_packages("src"),
package_data={
'datasets': [
'scripts/templates/*',
],
},
scripts=["datasets-cli"],
install_requires=REQUIRED_PKGS,
extras_require=EXTRAS_REQUIRE,
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
keywords='datasets machine learning datasets metrics',
)