forked from withwsf/DIDI
-
Notifications
You must be signed in to change notification settings - Fork 1
/
data_prepare.py
455 lines (398 loc) · 21.4 KB
/
data_prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 07 20:59:55 2016
@author: wsf
"""
engine='python'
import pandas as pd
from datetime import datetime
import os
import itertools
import numpy as np
def get_time_slice(s):
'''
获得此时间处于哪个slice
输入:字符串
输出:int,time slice
'''
dt=datetime.strptime(s,'%Y-%m-%d %H:%M:%S')
init_time=datetime.combine(dt.date(),datetime.strptime('0:0:0','%H:%M:%S').time())
return int((dt-init_time).total_seconds()/600)+1
def get_time_region(s):
'''
获得此时间处于一个time slice的前半段还是后半段,用在舍弃天气数据时
输入:字符串
输出:int:1或者2,前半个时间段返回1,后半个返回2
'''
dt=datetime.strptime(s,'%Y-%m-%d %H:%M:%S')
init_time=datetime.combine(dt.date(),datetime.strptime('0:0:0','%H:%M:%S').time())
if ((dt-init_time).total_seconds()%600)>300:
return 2
else:
return 1
def get_weekofday(s):
'''
获得此时间处于周几
输入:字符串
输出:int,week of day,周一:1 周日:7
'''
ss=s.split(' ')[0].split('-')
mydate=datetime(int(ss[0]),int(ss[1]),int(ss[2]))
weekday=mydate.weekday()
return weekday+1
def get_date(s):
'''
输入:标准日期时间字符串
返回:日期
'''
return s.split(' ')[0]
def parse_weather(path,padding=True,search_range=12):
'''
参数:
path:天气文件的路径
padding:是否对数据缺失的time slice进行补充
search_range:用来替代缺失time slice的搜寻范围,如果超过search_range的时间内都没有数据,则不进行补充
返回:所有文件合并成的一个df文件
'''
files=os.listdir(path)
list_of_weathers=[]
for _file in files:
print _file
df=pd.read_csv(path+os.sep+_file,names=['Time','Weather','temperature','PM2.5'],sep='\t+')
df['time_slice']=df.Time.map(lambda x:get_time_slice(x))
df['date']=df.Time.map(lambda x:get_date(x))
df['region']=df.Time.map(lambda x:get_time_region(x))
df=df[df.region==1]
df.drop('Time',axis=1,inplace=True)
df.drop('region',axis=1,inplace=True)
if padding:#如果需要补充缺失值
#思路:求出所有可能record,然后与已有的record求差集,来得到缺失的record
all_time_slices=set(range(1,145))
cur_time_slices=set(df.time_slice.tolist())
diff_=list(all_time_slices-cur_time_slices)
if (144-len(diff_))!=len(df.index):#如果单个_file中time_slice不是唯一的,那么肯定存在错误
print "天气数据存在异常!!!"
print _file
list_of_temp_s=[]
for lost_ts in diff_:#对于每个缺失的时间片,如果在其search range内有record,则用距离最近的那个来代替缺失值
for time_delta in range(1,search_range+1):
if len(df[df.time_slice==(lost_ts+time_delta)].index)==1 or len(df[df.time_slice==(lost_ts-time_delta)].index)==1:
if len(df[df.time_slice==(lost_ts+time_delta)].index)==1:
ls=df[df.time_slice==(lost_ts+time_delta)].values.tolist()[0]
else:
ls=df[df.time_slice==(lost_ts-time_delta)].values.tolist()[0]
ls[3]=lost_ts#将符合条件的timeslice的值修改为缺失值,用来代替缺失值
temp_df=pd.DataFrame([ls],columns=['Weather','temperature','PM2.5','time_slice','date'])
list_of_temp_s.append(temp_df)
break
if len(list_of_temp_s)>0:
temp_df=pd.concat(list_of_temp_s,axis=0)
df=pd.concat([df,temp_df],axis=0)
list_of_weathers.append(df)
ret=pd.concat(list_of_weathers,axis=0)
return ret
def parse_traffic(path,padding=True,search_range=3):
'''
参数:
path:交通状况文件的路径
padding:是否对数据缺失的time slice进行补充
search_range:用来替代缺失time slice的搜寻范围,如果超过search_range的时间内都没有数据,则不进行补充
返回:所有文件合并成的一个df文件
'''
files=os.listdir(path)
list_of_traffics=[]
for _file in files:
print _file
df=pd.read_csv(path+os.sep+_file,sep='\t+',names=['district_id','tj_level1','tj_level2','tj_level3','tj_level4','Time'])
df['time_slice']=df.Time.map(lambda x:get_time_slice(x))
df['date']=df.Time.map(lambda x:get_date(x))
df.district_id=df.district_id.replace(dist_dict)
df.tj_level1=df.tj_level1.map(lambda x:x.split(':')[1])
df.tj_level2=df.tj_level2.map(lambda x:x.split(':')[1])
df.tj_level3=df.tj_level3.map(lambda x:x.split(':')[1])
df.tj_level4=df.tj_level4.map(lambda x:x.split(':')[1])
df.drop('Time',axis=1,inplace=True)
if padding:#如果需要补充缺失值
#思路:求出所有可能record,然后与已有的record求差集,来得到缺失的record
cur_record=set(zip(df.time_slice.tolist(),df.district_id.tolist()))
if len(cur_record)!=len(df.index):#如果单个_file中time_slice和district的组合不是唯一的,那么同一个时间段内有多份交通信息
print "交通数据存在异常!!!"
print _file
time_slices=range(1,145)
dist_ids=range(1,67)
all_combinations=set(list(itertools.product(time_slices,dist_ids)))
diff=all_combinations-cur_record
list_of_temp_df=[]
for lost_traffic in diff:
t_s=lost_traffic[0]
d_i=lost_traffic[1]
for time_delta in range(1,search_range+1):
up_df=df[(df.district_id==d_i)&(df.time_slice==(t_s+time_delta))]
down_df=df[(df.district_id==d_i)&(df.time_slice==(t_s-time_delta))]
if len(up_df.index)==1 or len(down_df.index)==1:
if len(up_df.index)==1:
ls=up_df.values.tolist()[0]
else:
ls=down_df.values.tolist()[0]
ls[5]=t_s
temp_df=pd.DataFrame([ls],columns=['district_id','tj_level1','tj_level2','tj_level3','tj_level4','time_slice','date'])
list_of_temp_df.append(temp_df)
break
if(len(list_of_temp_df)>0):
temp_df=pd.concat(list_of_temp_df,axis=0)
df=pd.concat([df,temp_df],axis=0)
list_of_traffics.append(df)
ret=pd.concat(list_of_traffics,axis=0)
return ret
def parse_train_order(path,padding=True):#暂时强制使用padding,所以padding参数无效
'''
输入:
path: 订单数据文件夹
padding:默认True,是否对没有数据的区域+时间组合进行补0操作
输出:
处理好的order订单
'''
files=os.listdir(path)
list_of_orders=[]
for _file in files:
print _file
df=pd.read_csv(path+os.sep+_file,sep='\t+',names=['order_id','driver_id','passenger_id','start_district_hash','dest_district_hash','Price','Time'])
df['time_slice']=df.Time.map(lambda x:get_time_slice(x))
df['date']=df.Time.map(lambda x:get_date(x))
df['district_id']=df.start_district_hash.replace(dist_dict)
df.dest_district_hash=df.dest_district_hash.replace(dist_dict)
total=df.groupby(['date','district_id','time_slice']).size()
total=total.rename("total")
'''使用total-offered来获取gap更好(更方便后去gap=0的情况)
df_gap=df[df.driver_id.isnull()]
gap=df_gap.groupby(['date','district_id','time_slice']).size()
gap=gap.rename("gap")
'''
df_offered=df[df.driver_id.notnull()]
offered=df_offered.groupby(['date','district_id','time_slice']).size()
offered=offered.rename("offered")
#将total中有但在offered中没有的纪录补0
offered_diff_index=total.index.difference(offered.index)
padded_offered=pd.Series(data=np.zeros(len(offered_diff_index)),index=offered_diff_index,name="offered")
offered=offered.append(padded_offered)
#计算供应率
rate=offered.divide(total)
rate=rate.rename("rate")
#计算gap
gap=total-offered
gap=gap.rename("gap")
#header
header=gap.reset_index()
header=header[header.time_slice>3]#从第四个时间段开始取数据
header['time_slice_minus_1']=header.time_slice-1#10min之前
header['time_slice_minus_2']=header.time_slice-2#20min之前
header['time_slice_minus_3']=header.time_slice-3#30min之前
#if padding: #如果gap存在,那么其前面30min中有数据缺失的话,全补为0
#get combination of all time_slice and district
districts=range(1,67)
time_slices=range(1,145)
today=[df.date.loc[0]]
all_combinations=list(itertools.product(today,districts,time_slices))
all_indexs = pd.MultiIndex.from_tuples(all_combinations, names=['date', 'district_id','time_slice'])
diff_indexs=all_indexs.difference(total.index)
padding=pd.Series(data=np.zeros(len(diff_indexs)),index=diff_indexs,name="total")
total=total.append(padding)
padding=padding.rename("gap")
gap=gap.append(padding)
padding=padding.rename("offered")
offered=offered.append(padding)
rate_padding=pd.Series(data=np.ones(len(diff_indexs)),index=diff_indexs,name='rate')
rate=rate.append(rate_padding)
offered=offered.reset_index()
total=total.reset_index()
gap=gap.reset_index()
rate=rate.reset_index()
new_df=pd.merge(total,gap,on=['date','district_id','time_slice'],how="left")
new_df=pd.merge(new_df,offered,on=['date','district_id','time_slice'],how="left")
new_df=pd.merge(new_df,rate,on=['date','district_id','time_slice'],how="left")
header=pd.merge(header,new_df,left_on=["date","district_id","time_slice_minus_1"],right_on=["date","district_id","time_slice"],how="left",suffixes=('', '_minus1'))
header=pd.merge(header,new_df,left_on=["date","district_id","time_slice_minus_2"],right_on=["date","district_id","time_slice"],how="left",suffixes=('', '_minus2'))
header=pd.merge(header,new_df,left_on=["date","district_id","time_slice_minus_3"],right_on=["date","district_id","time_slice"],how="left",suffixes=('', '_minus3'))
#重命名,删除多余列
header.rename(columns={'total':'total_minus1'}, inplace=True)
header.rename(columns={'offered':'offered_minus1'}, inplace=True)
header.rename(columns={'rate':'rate_minus1'}, inplace=True)
header.drop('time_slice_minus1',axis=1,inplace=True)
header.drop('time_slice_minus2',axis=1,inplace=True)
header.drop('time_slice_minus3',axis=1,inplace=True)
list_of_orders.append(header)
ret=pd.concat(list_of_orders,axis=0)
return ret
def parse_poi(path):
'''
输入:poi文件的路径
输出:Dataframe,每一行某个地区的基础设施的种类与数量
'''
lines=open(path).readlines()
classes=set()
print path
for line in lines:
l=line.split(' ')
for i in range(1,len(l)):
record=l[i]
cls=record.split(":")[0]
cls2=cls.split("#")
fir=cls2[0]
classes.add(fir)
for j in range(1,len(cls2)):
fir=fir+"#"+cls2[j]
classes.add(fir)
temp=list(classes)
temp.sort()
cols=['district_id']+temp
loc_dict=dict(zip(temp,range(1,len(temp)+1)))
data_=np.zeros([len(lines),len(cols)])
row_num=0
for line in lines:
l=line.split(' ')
dis_id=dist_dict[l[0]]
data_[row_num,0]=dis_id
for i in range(1,len(l)):
record=l[i]
cls=record.split(":")[0]
nums_=record.split(":")[1]
cls2=cls.split("#")
fir=cls2[0]
data_[row_num,loc_dict[fir]]=(int(data_[row_num,loc_dict[fir]])+int(nums_))
for j in range(1,len(cls2)):
fir=fir+"#"+cls2[j]
data_[row_num,loc_dict[fir]]=(int(data_[row_num,loc_dict[fir]])+int(nums_))
row_num=row_num+1
ret=pd.DataFrame(data=data_,columns=cols)
return ret
def parse_test_order(path,padding=True):#暂时强制使用padding,所以padding参数无效
to_predict_lines=[line.strip() for line in open(path+os.sep+"read_me_2.txt").readlines()[1:]]
district_ids=range(1,67)
combinations=list(itertools.product(to_predict_lines,district_ids))
list_of_dates=[]
list_of_time_slices=[]
list_of_districts=[]
for r in combinations:
list_of_districts.append(r[1])
dates_list=r[0].split('-')
list_of_time_slices.append(int(dates_list[3]))
list_of_dates.append(dates_list[0]+'-'+dates_list[1]+'-'+dates_list[2])
header=pd.concat([pd.Series(list_of_dates,name="date"),pd.Series(list_of_districts,name="district_id"),pd.Series(list_of_time_slices,name="time_slice")],axis=1)
header['time_slice_minus_1']=header.time_slice-1#10min之前
header['time_slice_minus_2']=header.time_slice-2#20min之前
header['time_slice_minus_3']=header.time_slice-3#30min之前
files=os.listdir(path+os.sep+'order_data')
list_of_orders=[]
for _file in files:
print _file
df=pd.read_csv(path+os.sep+"order_data"+os.sep+_file,sep='\t+',names=['order_id','driver_id','passenger_id','start_district_hash','dest_district_hash','Price','Time'])
df['time_slice']=df.Time.map(lambda x:get_time_slice(x))
df['date']=df.Time.map(lambda x:get_date(x))
df['district_id']=df.start_district_hash.replace(dist_dict)
df.dest_district_hash=df.dest_district_hash.replace(dist_dict)
total=df.groupby(['date','district_id','time_slice']).size()
total=total.rename("total")
'''使用total-offered来获取gap更好(更方便后去gap=0的情况)
df_gap=df[df.driver_id.isnull()]
gap=df_gap.groupby(['date','district_id','time_slice']).size()
gap=gap.rename("gap")
'''
df_offered=df[df.driver_id.notnull()]
offered=df_offered.groupby(['date','district_id','time_slice']).size()
offered=offered.rename("offered")
#将total中有但在offered中没有的纪录补0
offered_diff_index=total.index.difference(offered.index)
padded_offered=pd.Series(data=np.zeros(len(offered_diff_index)),index=offered_diff_index,name="offered")
offered=offered.append(padded_offered)
#计算供应率
rate=offered.divide(total)
rate=rate.rename("rate")
#计算gap
gap=total-offered
gap=gap.rename("gap")
#if padding: #如果gap存在,那么其前面30min中有数据缺失的话,全补为0
#get combination of all time_slice and district
districts=range(1,67)
time_slices=range(1,145)
today=[df.date.loc[0]]
all_combinations=list(itertools.product(today,districts,time_slices))
all_indexs = pd.MultiIndex.from_tuples(all_combinations, names=['date', 'district_id','time_slice'])
diff_indexs=all_indexs.difference(total.index)
padding=pd.Series(data=np.zeros(len(diff_indexs)),index=diff_indexs,name="total")
total=total.append(padding)
padding=padding.rename("gap")
gap=gap.append(padding)
padding=padding.rename("offered")
offered=offered.append(padding)
rate_padding=pd.Series(data=np.ones(len(diff_indexs)),index=diff_indexs,name='rate')
rate=rate.append(rate_padding)
offered=offered.reset_index()
total=total.reset_index()
gap=gap.reset_index()
rate=rate.reset_index()
#else:
new_df=pd.merge(total,gap,on=['date','district_id','time_slice'],how="left")
new_df=pd.merge(new_df,offered,on=['date','district_id','time_slice'],how="left")
new_df=pd.merge(new_df,rate,on=['date','district_id','time_slice'],how="left")
list_of_orders.append(new_df)
order_df=pd.concat(list_of_orders,axis=0)
header=pd.merge(header,order_df,left_on=["date","district_id","time_slice_minus_1"],right_on=["date","district_id","time_slice"],how="left",suffixes=('', '_minus1'))
header=pd.merge(header,order_df,left_on=["date","district_id","time_slice_minus_2"],right_on=["date","district_id","time_slice"],how="left",suffixes=('', '_minus2'))
header=pd.merge(header,order_df,left_on=["date","district_id","time_slice_minus_3"],right_on=["date","district_id","time_slice"],how="left",suffixes=('', '_minus3'))
#重命名,删除多余列
header.rename(columns={'total':'total_minus1'}, inplace=True)
header.rename(columns={'offered':'offered_minus1'}, inplace=True)
header.rename(columns={'rate':'rate_minus1'}, inplace=True)
header.rename(columns={'gap':'gap_minus1'}, inplace=True)
header.drop('time_slice_minus1',axis=1,inplace=True)
header.drop('time_slice_minus2',axis=1,inplace=True)
header.drop('time_slice_minus3',axis=1,inplace=True)
return header
def merger_infos(order_df,weather_df=None,traffic_df=None,poi_df=None):
new_df=order_df
if weather_df is not None:
new_df=pd.merge(new_df,weather_df,left_on=["date","time_slice_minus_1"],right_on=["date","time_slice"],how="left",suffixes=("","_minus1"))
new_df=pd.merge(new_df,weather_df,left_on=["date","time_slice_minus_2"],right_on=["date","time_slice"],how="left",suffixes=("","_minus2"))
new_df=pd.merge(new_df,weather_df,left_on=["date","time_slice_minus_3"],right_on=["date","time_slice"],how="left",suffixes=("","_minus3"))
new_df.drop('time_slice_minus1',axis=1,inplace=True)
new_df.drop('time_slice_minus2',axis=1,inplace=True)
new_df.drop('time_slice_minus3',axis=1,inplace=True)
if traffic_df is not None:
new_df=pd.merge(new_df,traffic_df,left_on=["date","district_id","time_slice_minus_1"],right_on=["date","district_id","time_slice"],how="left",suffixes=("","_minus1"))
new_df=pd.merge(new_df,traffic_df,left_on=["date","district_id","time_slice_minus_2"],right_on=["date","district_id","time_slice"],how="left",suffixes=("","_minus2"))
new_df=pd.merge(new_df,traffic_df,left_on=["date","district_id","time_slice_minus_3"],right_on=["date","district_id","time_slice"],how="left",suffixes=("","_minus3"))
new_df.drop('time_slice_minus1',axis=1,inplace=True)
new_df.drop('time_slice_minus2',axis=1,inplace=True)
new_df.drop('time_slice_minus3',axis=1,inplace=True)
if poi_df is not None:
new_df=pd.merge(new_df,poi_df,on="district_id")
new_df["weekofday"]=new_df.date.map(lambda x:get_weekofday(x))
new_df.drop('time_slice_minus_1',axis=1,inplace=True)
new_df.drop('time_slice_minus_2',axis=1,inplace=True)
new_df.drop('time_slice_minus_3',axis=1,inplace=True)
return new_df
def preprocess(train_path,test_path,save_path=None):
test_order_df=parse_test_order(test_path)
test_weather_df=parse_weather(test_path+os.sep+"weather_data",padding=True)
test_traffic_df=parse_traffic(test_path+os.sep+"traffic_data")
test_poi_df=parse_poi(test_path+os.sep+"poi_data"+os.sep+"poi_data")
#train_order_df=parse_train_order(train_path+os.sep+"order_data")
#train_weather_df=parse_weather(train_path+os.sep+"weather_data",padding=True)
#train_traffic_df=parse_traffic(train_path+os.sep+"traffic_data")
#train_poi_df=parse_poi(train_path+os.sep+"poi_data"+os.sep+"poi_data")
#train_df=merger_infos(train_order_df,train_weather_df,train_traffic_df,train_poi_df)
test_df=merger_infos(test_order_df,test_weather_df,test_traffic_df,test_poi_df)
if save_path!=None:
#train_df.to_csv(save_path+os.sep+"train.csv",index=False)
test_df.to_csv(save_path+os.sep+"test.csv",index=False)
else:
#train_df.to_csv("train.csv",index=False)
test_df.to_csv("test.csv",index=False)
#weather='E:/Data/cityData/season_1/training_data/weather_data/weather_data_2016-01-01'
#df=pd.read_csv(weather,sep='\t+',names=['Time','Weather','temperature','PM2.5'])
home="/home/wsf/data/cityData/new_data/season_2"
train_path=home+os.sep+"training_data"
test_path=home+os.sep+"test_set_2"
df_dict=pd.read_csv(train_path+os.sep+"cluster_map"+os.sep+"cluster_map",names=["district_hash","district_id"],sep='\t+')
dist_dict=dict(zip(df_dict.district_hash.tolist(),map(int,df_dict.district_id.tolist())))
preprocess(train_path,test_path,save_path=home)