-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_afem.html
106 lines (99 loc) · 77.1 KB
/
plot_afem.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2022b"><title>Untitled</title><style type="text/css">.rtcContent { padding: 30px; } .CodeBlock { background-color: #F5F5F5; margin: 10px 0 10px 0; }
.S0 { border-left: 1px solid rgb(191, 191, 191); border-right: 1px solid rgb(191, 191, 191); border-top: 1px solid rgb(191, 191, 191); border-bottom: 0px none rgb(33, 33, 33); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S1 { border-left: 1px solid rgb(191, 191, 191); border-right: 1px solid rgb(191, 191, 191); border-top: 0px none rgb(33, 33, 33); border-bottom: 0px none rgb(33, 33, 33); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S2 { border-left: 1px solid rgb(191, 191, 191); border-right: 1px solid rgb(191, 191, 191); border-top: 0px none rgb(33, 33, 33); border-bottom: 1px solid rgb(191, 191, 191); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S3 { color: rgb(33, 33, 33); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.variableValue { width: 100% !important; }
.embeddedOutputsMatrixElement,.eoOutputWrapper .matrixElement { min-height: 18px; box-sizing: border-box;}
.embeddedOutputsMatrixElement .matrixElement,.eoOutputWrapper .matrixElement,.rtcDataTipElement .matrixElement { position: relative;}
.matrixElement .variableValue,.rtcDataTipElement .matrixElement .variableValue { white-space: pre; display: inline-block; vertical-align: top; overflow: hidden;}
.embeddedOutputsMatrixElement.inlineElement {}
.embeddedOutputsMatrixElement.inlineElement .topHeaderWrapper { display: none;}
.embeddedOutputsMatrixElement.inlineElement .veTable .body { padding-top: 0 !important; max-height: 100px;}
.inlineElement .matrixElement { max-height: 300px;}
.embeddedOutputsMatrixElement.rightPaneElement {}
.rightPaneElement .matrixElement,.rtcDataTipElement .matrixElement { overflow: hidden; padding-left: 9px;}
.rightPaneElement .matrixElement { margin-bottom: -1px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer,.eoOutputWrapper .matrixElement .valueContainer,.rtcDataTipElement .matrixElement .valueContainer { white-space: nowrap; margin-bottom: 3px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis.hide,.embeddedOutputsMatrixElement .matrixElement .verticalEllipsis.hide,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis.hide,.eoOutputWrapper .matrixElement .verticalEllipsis.hide,.rtcDataTipElement .matrixElement .valueContainer .horizontalEllipsis.hide,.rtcDataTipElement .matrixElement .verticalEllipsis.hide { display: none;}
.embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .verticalEllipsis, .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .horizontalEllipsis { display:none;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis { margin-bottom: -3px;}
.eoOutputWrapper .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer { cursor: default !important;}
.embeddedOutputsVariableElement { white-space: pre-wrap; word-wrap: break-word; min-height: 18px; max-height: 250px; overflow: auto;}
.variableElement {}
.embeddedOutputsVariableElement.inlineElement {}
.inlineElement .variableElement {}
.embeddedOutputsVariableElement.rightPaneElement { min-height: 16px;}
.rightPaneElement .variableElement { padding-top: 2px; padding-left: 9px;}
.outputsOnRight .embeddedOutputsVariableElement.rightPaneElement .eoOutputContent { /* Remove extra space allocated for navigation border */ margin-top: 0; margin-bottom: 0;}
.variableNameElement { margin-bottom: 3px; display: inline-block;}
/* * Ellipses as base64 for HTML export. */.matrixElement .horizontalEllipsis,.rtcDataTipElement .matrixElement .horizontalEllipsis { display: inline-block; margin-top: 3px; /* base64 encoded version of images-liveeditor/HEllipsis.png */ width: 30px; height: 12px; background-repeat: no-repeat; background-image: url("");}
.matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis { margin-left: 35px; /* base64 encoded version of images-liveeditor/VEllipsis.png */ width: 12px; height: 30px; background-repeat: no-repeat; background-image: url("");}
.S4 { border-left: 1px solid rgb(191, 191, 191); border-right: 1px solid rgb(191, 191, 191); border-top: 1px solid rgb(191, 191, 191); border-bottom: 1px solid rgb(191, 191, 191); border-radius: 0px; padding: 6px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S5 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left; }</style></head><body><div class = rtcContent><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre"><span >clear</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >clc</span></span></div></div><div class="inlineWrapper"><div class = 'S1'> </div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre"><span >A = [2/3 1/3 0; 1/3 4/3 1/3; 0 1/3 2/3]*(pi/4)</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="E58D632E" data-scroll-top="null" data-scroll-left="null" prevent-scroll="true" data-testid="output_0" style="width: 1272px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;" data-width="1242"><div class="matrixElement veSpecifier eoOutputContent" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1242px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">A = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">3×3</span></div></div><div class="valueContainer" data-layout="{"columnWidth":66,"totalColumns":3,"totalRows":3,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 200px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"> 0.5236 0.2618 0
0.2618 1.0472 0.2618
0 0.2618 0.5236
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S4'><span style="white-space: pre"><span >B = [(-2+pi)/pi; 4/pi; (-2+pi)/pi]</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="2564FE72" data-scroll-top="null" data-scroll-left="null" prevent-scroll="true" data-testid="output_1" style="width: 1272px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;" data-width="1242"><div class="matrixElement veSpecifier eoOutputContent" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1242px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">B = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">3×1</span></div></div><div class="valueContainer" data-layout="{"columnWidth":66,"totalColumns":1,"totalRows":3,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 68px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"> 0.3634
1.2732
0.3634
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S4'><span style="white-space: pre"><span >sol = A\B</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="4578AC8E" data-scroll-top="null" data-scroll-left="null" prevent-scroll="true" data-testid="output_2" style="width: 1272px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;" data-width="1242"><div class="matrixElement veSpecifier eoOutputContent" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1242px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">sol = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">3×1</span></div></div><div class="valueContainer" data-layout="{"columnWidth":66,"totalColumns":1,"totalRows":3,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 68px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"> 0.1148
1.1585
0.1148
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div></div><div class = 'S5'><span>Plot</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% plot 1</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >x=0:0.01:pi;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >plot(x,sin(x),</span><span style="color: rgb(167, 9, 245);">'DisplayName'</span><span >,</span><span style="color: rgb(167, 9, 245);">'sin(x)'</span><span >,LineWidth=1.5)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >hold </span><span style="color: rgb(167, 9, 245);">on</span></span></div></div><div class="inlineWrapper"><div class = 'S1'> </div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% % plot 2</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% a = pi/2</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% y = x - x.^3/factorial(3) + x.^5/factorial(5) - x.^7/factorial(7) + x.^9/factorial(9);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% y = sin(a) + (cos(a)).*(x-a) + (-sin(a)).*((x-a).^2)/factorial(2);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% plot(x,y,'--','DisplayName','Taylor series (a=\pi/2) - 3 terms',LineWidth=1.5)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% % plot 3</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% y = [];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% for i=x</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% if i<pi/2</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% y = [y; ((pi/2-i)/(pi/2))*0+((2*i)/(pi))*1];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% y = [y; ((pi-i)/(pi/2))*1+((pi/2-i)/(-pi/2))*0];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% plot(x,y,'--','DisplayName','Linear piecewise interpolation',LineWidth=1.5)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% % plot 4</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% y = (((0-x).*(pi-x))/((0-pi/2)*(pi-pi/2)))*1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% plot(x,y,'--','DisplayName','Quadratic lagrange interpolation',LineWidth=1.5)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'> </div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% plot 5</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >y = [];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >i=x</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >i<pi/2</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span > y = [y; ((pi/2-i)/(pi/2))*sol(1)+((2*i)/(pi))*sol(2)];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span > y = [y; ((pi-i)/(pi/2))*sol(2)+((pi/2-i)/(-pi/2))*sol(3)];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >plot(x,y,</span><span style="color: rgb(167, 9, 245);">'DisplayName'</span><span >,</span><span style="color: rgb(167, 9, 245);">'L2 projection - linear'</span><span >,LineWidth=1.5)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'> </div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% plot 6</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >y = -0.050465 + 1.31224.*x - 0.417697.*x.^2;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >plot(x,y,</span><span style="color: rgb(167, 9, 245);">'DisplayName'</span><span >,</span><span style="color: rgb(167, 9, 245);">'L2 projection - quadratic'</span><span >,LineWidth=1.5)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'> </div></div><div class="inlineWrapper"><div class = 'S1'> </div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >xlim([0,pi])</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >ylim([0,2])</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >daspect([1 1 1])</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >legend</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre"><span >set(gcf,</span><span style="color: rgb(167, 9, 245);">'units'</span><span >,</span><span style="color: rgb(167, 9, 245);">'pixels'</span><span >,</span><span style="color: rgb(167, 9, 245);">'position'</span><span >,[100 100 1000 700]);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre"><span >set(gca,</span><span style="color: rgb(167, 9, 245);">'FontSize'</span><span >,15);</span></span></div><div class = 'S3'><img src="" style="height: auto;"></div></div></div>
<br>
<!--
##### SOURCE BEGIN #####
clear
clc
A = [2/3 1/3 0; 1/3 4/3 1/3; 0 1/3 2/3]*(pi/4)
B = [(-2+pi)/pi; 4/pi; (-2+pi)/pi]
sol = A\B
%%
% Plot
% plot 1
x=0:0.01:pi;
plot(x,sin(x),'DisplayName','sin(x)',LineWidth=1.5)
hold on
% % plot 2
% a = pi/2
% y = x - x.^3/factorial(3) + x.^5/factorial(5) - x.^7/factorial(7) + x.^9/factorial(9);
% y = sin(a) + (cos(a)).*(x-a) + (-sin(a)).*((x-a).^2)/factorial(2);
% plot(x,y,'REPLACE_WITH_DASH_DASH','DisplayName','Taylor series (a=\pi/2) - 3 terms',LineWidth=1.5)
%
% % plot 3
% y = [];
% for i=x
% if i<pi/2
% y = [y; ((pi/2-i)/(pi/2))*0+((2*i)/(pi))*1];
% else
% y = [y; ((pi-i)/(pi/2))*1+((pi/2-i)/(-pi/2))*0];
% end
% end
% plot(x,y,'REPLACE_WITH_DASH_DASH','DisplayName','Linear piecewise interpolation',LineWidth=1.5)
%
% % plot 4
% y = (((0-x).*(pi-x))/((0-pi/2)*(pi-pi/2)))*1;
% plot(x,y,'REPLACE_WITH_DASH_DASH','DisplayName','Quadratic lagrange interpolation',LineWidth=1.5)
% plot 5
y = [];
for i=x
if i<pi/2
y = [y; ((pi/2-i)/(pi/2))*sol(1)+((2*i)/(pi))*sol(2)];
else
y = [y; ((pi-i)/(pi/2))*sol(2)+((pi/2-i)/(-pi/2))*sol(3)];
end
end
plot(x,y,'DisplayName','L2 projection - linear',LineWidth=1.5)
% plot 6
y = -0.050465 + 1.31224.*x - 0.417697.*x.^2;
plot(x,y,'DisplayName','L2 projection - quadratic',LineWidth=1.5)
xlim([0,pi])
ylim([0,2])
daspect([1 1 1])
legend
set(gcf,'units','pixels','position',[100 100 1000 700]);
set(gca,'FontSize',15);
##### SOURCE END #####
-->
</div></body></html>