-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_gan.py
199 lines (165 loc) · 6.96 KB
/
eval_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from __future__ import print_function
import argparse
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from dbpn_v1 import Net as DBPNLL
from dbpn import Net as DBPN
from data import get_eval_set
from functools import reduce
from scipy.misc import imsave
import scipy.io as sio
import time
import cv2
import utils
import pdb
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--upscale_factor', type=int, default=4, help="super resolution upscale factor")
parser.add_argument('--testBatchSize', type=int, default=1, help='testing batch size')
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--self_ensemble', type=bool, default=False)
parser.add_argument('--chop_forward', type=bool, default=False)
parser.add_argument('--threads', type=int, default=1, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--gpus', default=1, type=int, help='number of gpu')
parser.add_argument('--input_dir', type=str, default='Input')
parser.add_argument('--output', default='Results/', help='Location to save checkpoint models')
parser.add_argument('--test_dataset', type=str, default='PIRM_Self-Val_set')
parser.add_argument('--model_type', type=str, default='DBPNLL')
parser.add_argument('--model', default='models/PIRM2018_region2.pth', help='sr pretrained base model')
opt = parser.parse_args()
gpus_list=range(opt.gpus)
print(opt)
cuda = opt.gpu_mode
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading datasets')
test_set = get_eval_set(os.path.join(opt.input_dir,opt.test_dataset), opt.upscale_factor)
testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False)
print('===> Building model')
if opt.model_type == 'DBPNLL':
model = DBPNLL(num_channels=3, base_filter=64, feat = 256, num_stages=10, scale_factor=opt.upscale_factor)
#elif opt.model_type == 'DBPN-RES-MR64-3':
# model = DBPNITER(num_channels=3, base_filter=64, feat = 256, num_stages=3, scale_factor=opt.upscale_factor)
else:
model = DBPN(num_channels=3, base_filter=64, feat = 256, num_stages=7, scale_factor=opt.upscale_factor)
if cuda:
model = torch.nn.DataParallel(model, device_ids=gpus_list)
model.load_state_dict(torch.load(opt.model, map_location=lambda storage, loc: storage))
print('Pre-trained SR model is loaded.')
if cuda:
model = model.cuda(gpus_list[0])
def eval():
model.eval()
for batch in testing_data_loader:
input, name = batch[0], batch[2]
input[0] = utils.norm(input[0],vgg=True)
with torch.no_grad():
input = Variable(input)
if cuda:
input = input.cuda(gpus_list[0])
t0 = time.time()
if opt.chop_forward:
with torch.no_grad():
prediction = chop_forward(input, model, opt.upscale_factor)
else:
if opt.self_ensemble:
with torch.no_grad():
prediction = x8_forward(input, model)
else:
with torch.no_grad():
prediction = model(input)
t1 = time.time()
print("===> Processing: %s || Timer: %.4f sec." % (name[0], (t1 - t0)))
prediction = utils.denorm(prediction.data[0].cpu(),vgg=True)
save_img(prediction, name[0])
def save_img(img, img_name):
save_img = img.squeeze().clamp(0, 1).numpy().transpose(1,2,0)
# save img
save_dir=os.path.join(opt.output,opt.test_dataset)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_fn = save_dir +'/'+ img_name
cv2.imwrite(save_fn, cv2.cvtColor(save_img*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0])
def x8_forward(img, model, precision='single'):
def _transform(v, op):
if precision != 'single': v = v.float()
v2np = v.data.cpu().numpy()
if op == 'vflip':
tfnp = v2np[:, :, :, ::-1].copy()
elif op == 'hflip':
tfnp = v2np[:, :, ::-1, :].copy()
elif op == 'transpose':
tfnp = v2np.transpose((0, 1, 3, 2)).copy()
ret = torch.Tensor(tfnp).cuda()
if precision == 'half':
ret = ret.half()
elif precision == 'double':
ret = ret.double()
with torch.no_grad():
ret = Variable(ret)
return ret
inputlist = [img]
for tf in 'vflip', 'hflip', 'transpose':
inputlist.extend([_transform(t, tf) for t in inputlist])
outputlist = [model(aug) for aug in inputlist]
for i in range(len(outputlist)):
if i > 3:
outputlist[i] = _transform(outputlist[i], 'transpose')
if i % 4 > 1:
outputlist[i] = _transform(outputlist[i], 'hflip')
if (i % 4) % 2 == 1:
outputlist[i] = _transform(outputlist[i], 'vflip')
output = reduce((lambda x, y: x + y), outputlist) / len(outputlist)
return output
def chop_forward(x, model, scale, shave=16, min_size=10000, nGPUs=opt.gpus):
b, c, h, w = x.size()
h_half, w_half = h // 2, w // 2
h_size, w_size = h_half + shave, w_half + shave
inputlist = [
x[:, :, 0:h_size, 0:w_size],
x[:, :, 0:h_size, (w - w_size):w],
x[:, :, (h - h_size):h, 0:w_size],
x[:, :, (h - h_size):h, (w - w_size):w]]
if w_size * h_size < min_size:
outputlist = []
for i in range(0, 4, nGPUs):
with torch.no_grad():
input_batch = torch.cat(inputlist[i:(i + nGPUs)], dim=0)
if opt.self_ensemble:
with torch.no_grad():
output_batch = x8_forward(input_batch, model)
else:
with torch.no_grad():
output_batch = model(input_batch)
outputlist.extend(output_batch.chunk(nGPUs, dim=0))
else:
outputlist = [
chop_forward(patch, model, scale, shave, min_size, nGPUs) \
for patch in inputlist]
h, w = scale * h, scale * w
h_half, w_half = scale * h_half, scale * w_half
h_size, w_size = scale * h_size, scale * w_size
shave *= scale
with torch.no_grad():
output = Variable(x.data.new(b, c, h, w))
output[:, :, 0:h_half, 0:w_half] \
= outputlist[0][:, :, 0:h_half, 0:w_half]
output[:, :, 0:h_half, w_half:w] \
= outputlist[1][:, :, 0:h_half, (w_size - w + w_half):w_size]
output[:, :, h_half:h, 0:w_half] \
= outputlist[2][:, :, (h_size - h + h_half):h_size, 0:w_half]
output[:, :, h_half:h, w_half:w] \
= outputlist[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size]
return output
##Eval Start!!!!
eval()