From 755e2652a651ae2e43bb2f9d28281a2540a3bbac Mon Sep 17 00:00:00 2001 From: "joya.chen" Date: Fri, 16 Aug 2024 02:54:43 +0800 Subject: [PATCH] fixed COIN eval, need to tune hyperparameters in new env --- data/coin/benchmarks.py | 71 +++++++++++++++++++-------------- data/coin/coin.py | 9 ++--- data/coin/download_videos.py | 44 ++++++++++++++++++++ data/preprocess/README.md | 8 ++-- data/preprocess/encode.py | 1 + data/preprocess/ffmpeg.py | 6 +-- data/stream.py | 2 +- data/utils.py | 6 +-- engine/trainer_with_gen2eval.py | 2 +- evaluate.py | 2 +- scripts/coin/live1+.sh | 7 ++-- scripts/coin/live1+_evaluate.sh | 6 +-- test/dataloader.py | 10 +---- 13 files changed, 111 insertions(+), 63 deletions(-) create mode 100644 data/coin/download_videos.py mode change 100644 => 100755 scripts/coin/live1+.sh mode change 100644 => 100755 scripts/coin/live1+_evaluate.sh diff --git a/data/coin/benchmarks.py b/data/coin/benchmarks.py index 3670bdf..f98630d 100644 --- a/data/coin/benchmarks.py +++ b/data/coin/benchmarks.py @@ -1,4 +1,4 @@ -import Levenshtein as lev +import Levenshtein import numpy as np from transformers import PreTrainedTokenizer, EvalPrediction @@ -11,16 +11,18 @@ class COINBenchmark(COIN, StreamMixIn): @staticmethod def fuzzy_match(text, choices): - scores = [-lev.distance(text, choice) for choice in choices] - return scores.index(max(scores)) + return min([(Levenshtein.distance(text, choice), choice) for choice in choices])[1] def compute_metrics(self, eval_predictions: EvalPrediction, tokenizer: PreTrainedTokenizer, **kwargs): batch_pred_tensor, sample_idxs = eval_predictions.predictions, eval_predictions.label_ids - batch_pred_tensor = batch_pred_tensor.clip(min=0) + batch_pred_tensor[batch_pred_tensor < 0] = tokenizer.bos_token_id # not use clamp(min=0), since 0 is ! in Llama-3 tokenizer and may affect matching predictions = tokenizer.batch_decode(batch_pred_tensor, skip_special_tokens=True, clean_up_tokenization_spaces=True) - predictions = np.array([self.fuzzy_match(text, self.mapping_categories) for text in predictions]) - accuracy = (predictions == np.array(self.answers)).mean() - return dict(accuracy=accuracy) + correct = 0 + for prediction, label in zip(predictions, self.labels[sample_idxs]): # should be self.labels[sample_idx] to get the correct order + prediction = prediction.lower().rstrip('.') + if prediction == label or self.fuzzy_match(prediction, self.categories) == label: + correct += 1 + return dict(accuracy=correct / len(predictions) * 100) # * 100 def __getitem__(self, index): anno = self.annos[index] @@ -36,14 +38,14 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): super().__init__(split=split, frame_fps=frame_fps, is_training=is_training, **kwargs) self.is_training = is_training self.frame_fps = frame_fps - self.annos = [] - self.answers, self.mapping_categories = [], self.steps_categories + self.annos, self.labels = [], [] for anno in self._annos: video_uid = anno['video_uid'] duration = self.metadata[video_uid]['duration'] steps = anno['steps'] for i in range(len(steps)): response = steps[i]['text'].capitalize() + '.' + self.labels.append(steps[i]['text'].lower()) start_time = ceil_time_by_fps(steps[i]['start'], frame_fps, min_time=0, max_time=duration) end_time = ceil_time_by_fps(steps[i]['end'], frame_fps, min_time=0, max_time=duration) start_frame = int(start_time * frame_fps) @@ -57,7 +59,8 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): 'conversation': conversation, 'load_ranges': {self.metadata[video_uid]['path']: range(start_frame, end_frame)} }) - self.answers.append(self.mapping_categories.index(response)) + self.labels = np.array(self.labels) # for fast indexing + self.categories = self.step_categories def build_coin_step_train(**kwargs): return COINStep(split='train', **kwargs) @@ -74,14 +77,14 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): super().__init__(split=split, frame_fps=frame_fps, is_training=is_training, **kwargs) self.is_training = is_training self.frame_fps = frame_fps - self.annos = [] - self.answers, self.mapping_categories = [], self.steps_categories + self.annos, self.labels = [], [] for anno in self._annos: video_uid = anno['video_uid'] duration = self.metadata[video_uid]['duration'] steps = anno['steps'] for i in range(len(steps) - 1): response = steps[i+1]['text'].capitalize() + '.' + self.labels.append(steps[i+1]['text'].lower()) start_time = ceil_time_by_fps(steps[i]['start'], frame_fps, min_time=0, max_time=duration) end_time = ceil_time_by_fps(steps[i]['end'], frame_fps, min_time=0, max_time=duration) start_frame = int(start_time * frame_fps) @@ -95,7 +98,8 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): 'conversation': conversation, 'load_ranges': {self.metadata[video_uid]['path']: range(start_frame, end_frame)} }) - self.answers.append(self.mapping_categories.index(response)) + self.labels = np.array(self.labels) # for fast indexing + self.categories = self.step_categories def build_coin_next_train(**kwargs): return COINNext(split='train', **kwargs) @@ -112,12 +116,12 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): super().__init__(split=split, frame_fps=frame_fps, is_training=is_training, **kwargs) self.is_training = is_training self.frame_fps = frame_fps - self.annos = [] - self.answers, self.mapping_categories = [], self.tasks_categories + self.annos, self.labels = [], [] for anno in self._annos: video_uid = anno['video_uid'] duration = self.metadata[video_uid]['duration'] response = anno['task'].capitalize() + '.' + self.labels.append(anno['task'].lower()) start_time = ceil_time_by_fps(anno['start'], frame_fps, min_time=0, max_time=duration) end_time = ceil_time_by_fps(anno['end'], frame_fps, min_time=0, max_time=duration) start_frame = int(start_time * frame_fps) @@ -131,7 +135,8 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): 'conversation': conversation, 'load_ranges': {self.metadata[video_uid]['path']: range(start_frame, end_frame)} }) - self.answers.append(self.mapping_categories.index(response)) + self.labels = np.array(self.labels) # for fast indexing + self.categories = self.task_categories def build_coin_task_train(**kwargs): return COINTask(split='train', **kwargs) @@ -149,8 +154,7 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): super().__init__(split=split, frame_fps=frame_fps, is_training=is_training, **kwargs) self.is_training = is_training self.frame_fps = frame_fps - self.annos = [] - self.answers, self.mapping_categories = [], self.steps_categories + self.annos, self.labels = [], [] for anno in self._annos: video_uid = anno['video_uid'] duration = self.metadata[video_uid]['duration'] @@ -168,30 +172,34 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): {"role": "stream", 'num_frames': end_frame - start_frame, 'learn': True} ] response = next_steps[0]['text'].capitalize() + '.' + self.labels.append(np.array([next_steps[0]['text'].lower()])) else: conversation = [ COINProcedure.user_message(num_next_steps), {"role": "stream", 'num_frames': end_frame - start_frame, 'learn': True} ] response = '\n'.join(f"{i+1}. {s['text'].capitalize()}." for i, s in enumerate(next_steps)) + self.labels.append(np.array([s['text'].lower() for s in next_steps])) conversation.append({"role": "assistant", "content": response, 'learn': True}) self.annos.append({ 'conversation': conversation, 'load_ranges': {self.metadata[video_uid]['path']: range(start_frame, end_frame)} }) - self.answers.append([self.mapping_categories.index(step['text'].capitalize() + '.') for step in next_steps]) + self.categories = self.step_categories def compute_metrics(self, eval_predictions: EvalPrediction, tokenizer: PreTrainedTokenizer, **kwargs): batch_pred_tensor, sample_idxs = eval_predictions.predictions, eval_predictions.label_ids - batch_pred_tensor = batch_pred_tensor.clip(min=0) - batch_pred_text = tokenizer.batch_decode(batch_pred_tensor, skip_special_tokens=True, clean_up_tokenization_spaces=True) - predictions = [] - for pred_text in batch_pred_text: - pred_steps = pred_text.split('\n') - predictions.append([self.fuzzy_match(step, self.mapping_categories) for step in pred_steps]) - total_num_steps = len(sum(self.answers, [])) - correct_num_steps = sum([sum(1 for p, a in zip(prediction, answer) if p == a) for prediction, answer in zip(predictions, self.answers)]) - return {'accuracy': correct_num_steps / total_num_steps} + batch_pred_tensor[batch_pred_tensor < 0] = tokenizer.bos_token_id + predictions = tokenizer.batch_decode(batch_pred_tensor, skip_special_tokens=True, clean_up_tokenization_spaces=True) + correct, total = 0, 0 + labels = [self.labels[i] for i in sample_idxs] + for prediction_steps, label_steps in zip(predictions, labels): + for prediction_step, label_step in zip(prediction_steps.split('\n'), label_steps): + prediction_step = prediction_step.split('. ')[-1] + if prediction_step == label_step or self.fuzzy_match(prediction_step, self.categories) == label_step: + correct += 1 + total += 1 + return {'accuracy': correct / total * 100} def build_coin_procedure_train(**kwargs): return COINProcedure(split='train', **kwargs) @@ -213,8 +221,7 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): super().__init__(split=split, frame_fps=frame_fps, is_training=is_training, **kwargs) self.is_training = is_training self.frame_fps = frame_fps - self.annos = [] - self.answers, self.mapping_categories = [], self.steps_categories + self.annos, self.labels = [], [] for anno in self._annos: video_uid = anno['video_uid'] duration = self.metadata[video_uid]['duration'] @@ -232,18 +239,20 @@ def __init__(self, *, split: str, frame_fps: int, is_training: bool, **kwargs): {"role": "stream", 'num_frames': end_frame - start_frame, 'learn': True} ] response = next_steps[0]['text'].capitalize() + '.' + self.labels.append([next_steps[0]['text'].lower()]) else: conversation = [ COINTaskProcedure.get_query_multi(anno['task'], num_next_steps), {"role": "stream", 'num_frames': end_frame - start_frame, 'learn': True} ] response = '\n'.join(f"{i+1}. {s['text'].capitalize()}." for i, s in enumerate(next_steps)) + self.labels.append([s['text'].lower() for s in next_steps]) conversation.append({"role": "assistant", "content": response, 'learn': True}) self.annos.append({ 'conversation': conversation, 'load_ranges': {self.metadata[video_uid]['path']: range(start_frame, end_frame)} }) - self.answers.append([self.mapping_categories.index(step['text'].capitalize() + '.') for step in next_steps]) + self.categories = self.step_categories def compute_metrics(self, *args, **kwargs): return COINProcedure.compute_metrics(self, *args, **kwargs) diff --git a/data/coin/coin.py b/data/coin/coin.py index 8c177d5..a0062dc 100644 --- a/data/coin/coin.py +++ b/data/coin/coin.py @@ -22,13 +22,10 @@ def __init__(self, split: str, vision_pretrained: str, embed_mark: str, frame_fp text=COIN._clean_step(step['label']), ) for step in anno['annotation']], } for video_uid, anno in annos.items() if (split in anno['subset'].lower()) and (video_uid in self.metadata)] - self.tasks_categories = list(set([v['task'].capitalize() + '.' for v in self._annos])) - self.steps_categories = list(set([step['text'].capitalize() + '.' for steps in self._annos for step in steps['steps']])) + self.task_categories = list(set([v['task'].lower() for v in self._annos])) + self.step_categories = list(set([step['text'].lower() for steps in self._annos for step in steps['steps']])) self.annos: list[dict] - def __len__(self): - return len(self.annos) - def get_metadata(self, ): metadata_path = f'{self.embed_dir}_metadata.json' if os.path.exists(metadata_path): @@ -70,4 +67,4 @@ def _clean_task(text): return result.strip() def __len__(self): - return len(self.annos) + return len(self.annos) \ No newline at end of file diff --git a/data/coin/download_videos.py b/data/coin/download_videos.py new file mode 100644 index 0000000..3dd1091 --- /dev/null +++ b/data/coin/download_videos.py @@ -0,0 +1,44 @@ +import json, os, argparse, subprocess, random, torchvision +import concurrent.futures +try: + torchvision.set_video_backend('video_reader') +except: + import av # otherwise, check if av is installed + +def download_video(video_id, video_url, output_dir, ffmpeg_location=None): + output_path = os.path.join(output_dir, f'{video_id}.mp4') + if os.path.exists(output_path): + try: + ffmpeg_cmd = ["ffmpeg", "-v", "error", "-i", output_path, "-f", "null", "-"] + if ffmpeg_location: + ffmpeg_cmd[0] = os.path.join(ffmpeg_location, "ffmpeg") + subprocess.run(ffmpeg_cmd, check=True) + print(f'{output_path} has been downloaded and verified...') + return + except: + print(f'{output_path} may be broken. Downloading it again...') + os.remove(output_path) + cmd = ["yt-dlp", "--username", "oauth2", "--password", "", "-f", "mp4", "-o", output_path, video_url] + if ffmpeg_location: + cmd.extend(["--ffmpeg-location", ffmpeg_location]) + subprocess.run(cmd, check=True) + +def main(output_dir, json_path, num_workers, ffmpeg_location): + annotations = json.load(open(json_path, 'r'))['database'] + annotations = list(annotations.items()) + random.shuffle(annotations) + with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: + futures = [executor.submit(download_video, video_id, annotation['video_url'], output_dir, ffmpeg_location) for video_id, annotation in annotations] + concurrent.futures.wait(futures) + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='Download videos in parallel using yt-dlp') + parser.add_argument('--output_dir', type=str, default='datasets/coin/videos', help='Directory to save downloaded videos') + parser.add_argument('--json_path', type=str, default='datasets/coin/coin.json', help='Path to the JSON file containing video data') + parser.add_argument('--ffmpeg', type=str, default=None) + parser.add_argument('--num_workers', type=int, default=16, help='Number of parallel downloads') + + args = parser.parse_args() + + os.makedirs(args.output_dir, exist_ok=True) + main(args.output_dir, args.json_path, args.num_workers, args.ffmpeg) \ No newline at end of file diff --git a/data/preprocess/README.md b/data/preprocess/README.md index 3274cd8..4841924 100644 --- a/data/preprocess/README.md +++ b/data/preprocess/README.md @@ -3,19 +3,21 @@ #### Sample video frames to 2 FPS and max resolution 384 (with zero padding) ``` -python -m data.preprocess.ffmpeg --num_gpus 8 --frame_fps 2 --frame_resolution 384 --video_dir datasets/ego4d/v2/full_scale +python -m data.preprocess.ffmpeg --num_gpus 8 --frame_fps 2 --frame_resolution 384 --num_tasks 16 --video_dir datasets/ego4d/v2/full_scale ``` - Please run the script in ```videollm-online/``` root folder. - The results will be saved in a new folder with '{fps}fps_{resolution}' suffix. For example, ```datasets/ego4d/v2/full_scale -> datasets/ego4d/v2/full_scale_2fps_384```. -- If you are on a cluster, you can set ```--num_nodes ... --slurm_partition ...``` to use them. The more nodes and GPUs, the faster preprocessing. +- Increase ```--num_tasks``` according to the CPU cores. 1/10 number of CPU cores is recommended. + +- If you are on a cluster, you can set ```--num_nodes ... --slurm_partition ...``` to use them. The more nodes, the faster preprocessing. #### Encode sampled 2fps_384 video frames ``` -python -m data.preprocess.encode --num_gpus 8 --video_dir datasets/ego4d/v2/full_scale_2fps_384 --vision_pretrained google/siglip-large-patch16-384 +python -m data.preprocess.encode --num_gpus 8 --vision_pretrained google/siglip-large-patch16-384 --video_dir datasets/ego4d/v2/full_scale_2fps_384 ``` - Please run the script in ```videollm-online/``` root folder. diff --git a/data/preprocess/encode.py b/data/preprocess/encode.py index facb8e0..f9de33f 100644 --- a/data/preprocess/encode.py +++ b/data/preprocess/encode.py @@ -36,3 +36,4 @@ class LiveOnePlusEncodingArguments(LiveOnePlusTrainingArguments): timeout_min=600, ) job = executor.submit(task) + job.results() \ No newline at end of file diff --git a/data/preprocess/ffmpeg.py b/data/preprocess/ffmpeg.py index cc73f9b..a8f2c63 100644 --- a/data/preprocess/ffmpeg.py +++ b/data/preprocess/ffmpeg.py @@ -8,7 +8,7 @@ @dataclass class LiveOnePlusEncodingArguments(LiveOnePlusTrainingArguments): num_nodes: int = 1 - num_gpus: int = 8 + num_tasks: int = 16 video_dir: str = 'datasets/ego4d/v2/full_scale' slurm_partition: str = None @@ -17,9 +17,8 @@ class LiveOnePlusEncodingArguments(LiveOnePlusTrainingArguments): executor = submitit.AutoExecutor(folder=f"outputs/preprocess/", cluster='local' if args.num_nodes == 1 else 'slurm') task = partial(distributed_ffmpeg, src_root=args.video_dir, resolution=args.frame_resolution, fps=args.frame_fps) executor.update_parameters( - tasks_per_node=args.num_gpus, + tasks_per_node=args.num_tasks, nodes=args.num_nodes, - gpus_per_node=args.num_gpus, slurm_partition=args.slurm_partition, cpus_per_task=10, mem_gb=240, @@ -27,3 +26,4 @@ class LiveOnePlusEncodingArguments(LiveOnePlusTrainingArguments): timeout_min=600, ) job = executor.submit(task) + job.results() \ No newline at end of file diff --git a/data/stream.py b/data/stream.py index bad17a7..fc41b7d 100644 --- a/data/stream.py +++ b/data/stream.py @@ -88,7 +88,7 @@ def __getitem__(self, *, conversation: list[dict], load_ranges: dict[str, range] frames = load_ranges elif load_ranges is not None: conversation, load_ranges = self.max_frames_clip(conversation, load_ranges, self.max_num_frames) - frames = torch.cat([torch.load(path)[ranger] for path, ranger in load_ranges.items()]) + frames = torch.cat([torch.load(path, weights_only=True)[ranger] for path, ranger in load_ranges.items()]) else: frames = torch.tensor([]) # 2. prepare texts diff --git a/data/utils.py b/data/utils.py index 0ec900d..f96d5eb 100644 --- a/data/utils.py +++ b/data/utils.py @@ -65,7 +65,7 @@ def ffmpeg_once(src_path: str, dst_path: str, *, fps: int = None, resolution: in command += [dst_path] subprocess.run(command, check=True) -def distributed_ffmpeg(*, src_root: str, fps: int = None, resolution: int = None, pad: str = '#000000', mode='bicubic', **kwargs): +def distributed_ffmpeg(*, src_root: str, fps: int = None, resolution: int = None, pad: str = '#000000', mode='bicubic'): import submitit env = submitit.JobEnvironment() src_root = src_root.rstrip('/') @@ -81,14 +81,14 @@ def distributed_ffmpeg(*, src_root: str, fps: int = None, resolution: int = None if i % env.num_tasks != env.global_rank: continue dst_path = src_path.replace(src_root, dst_root) - ffmpeg_once(src_path, dst_path, fps=fps, resolution=resolution, pad=pad) + ffmpeg_once(src_path, dst_path, fps=fps, resolution=resolution, pad=pad, mode=mode) def distributed_encode(*, src_root: str, vision_pretrained: str, vision_encode: callable, batch_size: int, embed_mark: str, save_bf16: bool = False, **kwargs): env = submitit.JobEnvironment() src_root = src_root.rstrip('/') model = AutoModel.from_pretrained(vision_pretrained, device_map=f'cuda:{env.local_rank}').vision_model model.eval() - dst_root = f"{src_root}_{embed_mark}_{vision_pretrained.replace('/', '--')}" + dst_root = f"{src_root}_{embed_mark.split('_')[-1]}_{vision_pretrained.replace('/', '--')}" os.makedirs(dst_root, exist_ok=True) for i, file in tqdm.tqdm(enumerate(os.listdir(src_root)), desc=f'{src_root} -> {dst_root}'): if i % env.num_tasks != env.global_rank: diff --git a/engine/trainer_with_gen2eval.py b/engine/trainer_with_gen2eval.py index 2bcbb64..bdaf7a4 100644 --- a/engine/trainer_with_gen2eval.py +++ b/engine/trainer_with_gen2eval.py @@ -18,4 +18,4 @@ def prediction_step( evaluation_kwargs = inputs.pop('evaluation_kwargs') evaluator = evaluation_kwargs.pop('evaluator') output_ids = getattr(model, evaluator)(**inputs, **evaluation_kwargs, pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id) - return (None, output_ids.reshape(1, -1), sample_idxs) + return (None, output_ids.reshape(1, -1), sample_idxs) \ No newline at end of file diff --git a/evaluate.py b/evaluate.py index b1ccb79..da89c5b 100644 --- a/evaluate.py +++ b/evaluate.py @@ -27,7 +27,7 @@ def evaluate(): metric_key_prefix=f"eval_{eval_dataset_name}", ) metrics.update(dataset_metrics) - print(metrics) + print(metrics) if __name__ == "__main__": evaluate() diff --git a/scripts/coin/live1+.sh b/scripts/coin/live1+.sh old mode 100644 new mode 100755 index 7369ff1..4d255f9 --- a/scripts/coin/live1+.sh +++ b/scripts/coin/live1+.sh @@ -1,4 +1,4 @@ -deepspeed train.py --deepspeed configs/deepspeed/zero1.json \ +torchrun --nproc_per_node=8 --standalone train.py --deepspeed configs/deepspeed/zero1.json \ --live_version live1+ \ --train_datasets coin_step_train coin_next_train coin_task_train coin_procedure_train coin_taskprocedure_train \ --eval_datasets coin_step_test coin_next_test coin_task_test coin_procedure_test coin_taskprocedure_test \ @@ -9,8 +9,9 @@ deepspeed train.py --deepspeed configs/deepspeed/zero1.json \ --gradient_checkpointing True \ --eval_strategy no \ --prediction_loss_only False \ - --save_strategy no \ - --learning_rate 0.0002 \ + --save_strategy epoch \ + --save_steps 1 \ + --learning_rate 0.0001 \ --optim adamw_torch \ --lr_scheduler_type cosine \ --warmup_ratio 0.05 \ diff --git a/scripts/coin/live1+_evaluate.sh b/scripts/coin/live1+_evaluate.sh old mode 100644 new mode 100755 index 1cd1bee..a5954b4 --- a/scripts/coin/live1+_evaluate.sh +++ b/scripts/coin/live1+_evaluate.sh @@ -1,4 +1,4 @@ -deepspeed evaluate.py \ +torchrun --nproc_per_node=8 --standalone evaluate.py \ --live_version live1+ \ --eval_datasets coin_step_test coin_next_test coin_task_test coin_procedure_test coin_taskprocedure_test \ --per_device_train_batch_size 1 \ @@ -8,5 +8,5 @@ deepspeed evaluate.py \ --bf16 True \ --tf32 True \ --report_to tensorboard \ - --output_dir outputs/coin_benchmarks/live1+ \ - --resume_from_checkpoint /path/your/lora_ckpt_folder + --output_dir outputs/coin_benchmarks/live1+/ \ + --resume_from_checkpoint outputs/coin_benchmarks/live1+/ diff --git a/test/dataloader.py b/test/dataloader.py index 6290064..60ca6b1 100644 --- a/test/dataloader.py +++ b/test/dataloader.py @@ -31,19 +31,13 @@ if eval_dataset_dict: for dataset_name, dataset in eval_dataset_dict.items(): - max_length = 0 - all_length = 0 dl = DataLoader(dataset, batch_size=1, collate_fn=collator_fn, shuffle=False, num_workers=16, drop_last=False) dummy_predictions, label_ids = [], [] for i, batch in enumerate(tqdm.tqdm(dl, desc=f'debug run for evaluation')): length = (batch.labels != -100).sum() - max_length = max(max_length, length) - all_length += length - print(tokenizer.decode(batch.input_ids[0])) - # dummy_predictions.append(torch.rand(len(batch.choices))) + # print(tokenizer.decode(batch.input_ids[0])) + dummy_predictions.append(torch.tensor(tokenizer('\n'.join(dataset.labels[batch.sample_idxs[0]])).input_ids[1:])) label_ids.append(batch.sample_idxs) - print('avg_length', all_length / len(train_dataset)) - print('max_length', max_length) print(compute_metrics_dict[dataset_name]( transformers.EvalPrediction( predictions=torch.nn.utils.rnn.pad_sequence(dummy_predictions, batch_first=True, padding_value=-100).numpy(),