-
Notifications
You must be signed in to change notification settings - Fork 29
/
fixpF0VexMltpBG4.m
409 lines (346 loc) · 10.7 KB
/
fixpF0VexMltpBG4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
function [f0v,vrv,dfv,nf,aav]=fixpF0VexMltpBG4(x,fs,f0floor,nvc,nvo,mu,imgi,shiftm,smp,minm,pc,nc)
% Fixed point analysis to extract F0
% [f0v,vrv,dfv,nf]=fixpF0VexMltpBG4(x,fs,f0floor,nvc,nvo,mu,imgi,shiftm,smp,minm,pc,nc)
% x : input signal
% fs : sampling frequency (Hz)
% f0floor : lowest frequency for F0 search
% nvc : total number of filter channels
% nvo : number of channels per octave
% mu : temporal stretching factor
% imgi : image display indicator (1: display image, default)
% shiftm : frame shift in ms
% smp : smoothing length relative to fc (ratio)
% minm : minimum smoothing length (ms)
% pc : exponent to represent nonlinear summation
% nc : number of harmonic component to use (1,2,3)
% Designed and coded by Hideki Kawahara
% 28/March/1999
% 04/April/1999 revised to multi component version
% 07/April/1999 bi-reciprocal smoothing for multi component compensation
% 01/May/1999 first derivative of Amplitude is taken into account
% 17/Dec./2000 display bug fix
% 19/Sep./2002 bug fix (mu information was discarded.)
% 07/Dec./2002 waitbar was added
% 30/April/2005 modification for Matlab v7.0 compatibility
% 10/Aug./2005 modified by Takahashi on waitbar
% 10/Sept./2005 mofidied by Kawahara on waitbar
% 11/Sept./2005 fixed waitbar problem
%f0floor=40;
%nvo=12;
%nvc=52;
%mu=1.1;
x=cleaninglownoise(x,fs,f0floor);
fxx=f0floor*2.0.^((0:nvc-1)/nvo)';
fxh=max(fxx);
dn=max(1,floor(fs/(fxh*6.3)));
if nc>2
pm3=multanalytFineCSPB(decimate(x,dn),fs/dn,f0floor,nvc,nvo,mu,3,imgi); % error crrect 2002.9.19 (mu was fixed 1.1)
pif3=zwvlt2ifq(pm3,fs/dn);
[nn,mm]=size(pif3);
pif3=pif3(:,1:3:mm);
pm3=pm3(:,1:3:mm);
end;
if nc>1
pm2=multanalytFineCSPB(decimate(x,dn),fs/dn,f0floor,nvc,nvo,mu,2,imgi);% error crrect 2002.9.19(mu was fixed 1.1)
pif2=zwvlt2ifq(pm2,fs/dn);
[nn,mm]=size(pif2);
pif2=pif2(:,1:3:mm);
pm2=pm2(:,1:3:mm);
end;
pm1=multanalytFineCSPB(decimate(x,dn*3),fs/(dn*3),f0floor,nvc,nvo,mu,1,imgi);% error crrect 2002.9.19(mu was fixed 1.1)
%%%% safe guard added on 15/Jan./2003
mxpm1=max(max(abs(pm1)));
eeps=mxpm1/10000000;
pm1(pm1==0)=pm1(pm1==0)+eeps;
%%%% safe guard end
pif1=zwvlt2ifq(pm1,fs/(dn*3));
%keyboard;
[nn,mm1]=size(pif1);
mm=mm1;
if nc>1
[nn,mm2]=size(pif2);
mm=min(mm1,mm2);
end;
if nc>2
[nn,mm3]=size(pif3);
mm=min([mm1 mm2 mm3]);
end;
if nc == 2
for ii=1:mm
pif2(:,ii)=(pif1(:,ii).*(abs(pm1(:,ii))).^pc ...
+pif2(:,ii)/2.*(abs(pm2(:,ii))).^pc )...
./((abs(pm1(:,ii))).^pc+(abs(pm2(:,ii))).^pc);
end;
end;
if nc == 3
for ii=1:mm
pif2(:,ii)=(pif1(:,ii).*(abs(pm1(:,ii))).^pc ...
+pif2(:,ii)/2.*(abs(pm2(:,ii))).^pc ...
+pif3(:,ii)/3.*(abs(pm3(:,ii))).^pc )...
./((abs(pm1(:,ii))).^pc+(abs(pm2(:,ii))).^pc+(abs(pm3(:,ii))).^pc);
end;
end;
if nc == 1
pif2=pif1;
end;
%pif2=zwvlt2ifq(pm,fs/dn)*2*pi;
pif2=pif2*2*pi;
dn=dn*3;
[slp,pbl]=zifq2gpm2(pif2,f0floor,nvo);
[nn,mm]=size(pif2);
dpif=[pif2(:,2:mm)-pif2(:,1:mm-1)]*fs/dn;
dpif(:,mm)=dpif(:,mm-1);
[dslp,dpbl]=zifq2gpm2(dpif,f0floor,nvo);
damp=[abs(pm1(:,2:mm))-abs(pm1(:,1:mm-1))]*fs/dn;
damp(:,mm)=damp(:,mm-1);
damp=damp./abs(pm1);
%[c1,c2]=znormwght(1000);
fxx=f0floor*2.0.^((0:nn-1)/nvo)'*2*pi;
mmp=0*dslp;
[c1,c2b]=znrmlcf2(1);
if imgi==1; hpg=waitbar(0,'P/N map calculation'); end; % 07/Dec./2002 by H.K.%10/Aug./2005
for ii=1:nn
% [c1,c2]=znrmlcf2(fxx(ii)/2/pi); % This is OK, but the next Eq is much faster.
c2=c2b*(fxx(ii)/2/pi)^2;
cff=damp(ii,:)/fxx(ii)*2*pi*0;
mmp(ii,:)=(dslp(ii,:)./(1+cff.^2)/sqrt(c2)).^2+(slp(ii,:)./sqrt(1+cff.^2)/sqrt(c1)).^2;
if imgi==1; waitbar(ii/nn); end; %,hpg); % 07/Dec./2002 by H.K.%10/Aug./2005
end;
if imgi==1; close(hpg); end;%10/Aug./2005
if smp~=0
smap=zsmoothmapB(mmp,fs/dn,f0floor,nvo,smp,minm,0.4);
else
smap=mmp;
end;
fixpp=zeros(round(nn/3),mm);
fixvv=fixpp+100000000;
fixdf=fixpp+100000000;
fixav=fixpp+1000000000;
nf=zeros(1,mm);
if imgi==1; hpg=waitbar(0,'Fixed pints calculation'); end; % 07/Dec./2002 by H.K.%10/Aug./2005
for ii=1:mm
[ff,vv,df,aa]=zfixpfreq3(fxx,pif2(:,ii),smap(:,ii),dpif(:,ii)/2/pi,pm1(:,ii));
kk=length(ff);
fixpp(1:kk,ii)=ff;
fixvv(1:kk,ii)=vv;
fixdf(1:kk,ii)=df;
fixav(1:kk,ii)=aa;
nf(ii)=kk;
if imgi==1 & rem(ii,10)==0; waitbar(ii/mm); end;% 07/Dec./2002 by H.K.%10/Aug./2005
end;
if imgi==1; close(hpg); end; % 07/Dec./2002 by H.K.%10/Aug./2005
fixpp(fixpp==0)=fixpp(fixpp==0)+1000000;
%keyboard
%[vvm,ivv]=min(fixvv);
%
%for ii=1:mm
% ff00(ii)=fixpp(ivv(ii),ii);
% esgm(ii)=fixvv(ivv(ii),ii);
%end;
np=max(nf);
f0v=fixpp(1:np,round(1:shiftm/dn*fs/1000:mm))/2/pi;
vrv=fixvv(1:np,round(1:shiftm/dn*fs/1000:mm));
dfv=fixdf(1:np,round(1:shiftm/dn*fs/1000:mm));
aav=fixav(1:np,round(1:shiftm/dn*fs/1000:mm));
nf=nf(round(1:shiftm/dn*fs/1000:mm));
if imgi==1
okid=cnmap(fixpp,smap,fs,dn,nvo,f0floor,shiftm);
end;
%ff00=ff00(round(1:shiftm/dn*fs/1000:mm));
%esgm=sqrt(esgm(round(1:shiftm/dn*fs/1000:mm)));
%keyboard;
return;
%------------------------------------------------------------------
function okid=cnmap(fixpp,smap,fs,dn,nvo,f0floor,shiftm)
% This function had a bug in map axis.
% 17/Dec./2000 bug fix by Hideki Kawahara.
dt=dn/fs;
[nn,mm]=size(smap);
aa=figure;
set(aa,'PaperPosition',[0.3 0.25 8 10.9]);
set(aa,'Position',[30 130 520 680]);
subplot(211);
imagesc([0 (mm-1)*dt*1000],[1 nn],20*log10(smap(:,round(1:shiftm/dn*fs/1000:mm))));axis('xy')
hold on;
tx=((1:shiftm/dn*fs/1000:mm)-1)*dt*1000;
plot(tx,(nvo*log(fixpp(:,round(1:shiftm/dn*fs/1000:mm))/f0floor/2/pi)/log(2)+0.5)','ko');
plot(tx,(nvo*log(fixpp(:,round(1:shiftm/dn*fs/1000:mm))/f0floor/2/pi)/log(2)+0.5)','w.');
hold off
xlabel('time (ms)');
ylabel('channel #');
colormap(jet);
okid=1;
return;
%------------------------------------------------------------------
function pm=zmultanalytFineCSPm(x,fs,f0floor,nvc,nvo,mu,mlt);
% Dual waveleta analysis using cardinal spline manipulation
% pm=multanalytFineCSP(x,fs,f0floor,nvc,nvo);
% Input parameters
%
% x : input signal (2kHz sampling rate is sufficient.)
% fs : sampling frequency (Hz)
% f0floor : lower bound for pitch search (60Hz suggested)
% nvc : number of total voices for wavelet analysis
% nvo : number of voices in an octave
% mu : temporal stretch factor
% Outpur parameters
% pm : wavelet transform using iso-metric Gabor function
%
% If you have any questions, mailto:[email protected]
%
% Copyright (c) ATR Human Information Processing Research Labs. 1996
% Invented and coded by Hideki Kawahara
% 30/Oct./1996
t0=1/f0floor;
lmx=round(6*t0*fs*mu);
wl=2^ceil(log(lmx)/log(2));
x=x(:)';
nx=length(x);
tx=[x,zeros(1,wl)];
gent=((1:wl)-wl/2)/fs;
%nvc=18;
wd=zeros(nvc,wl);
wd2=zeros(nvc,wl);
ym=zeros(nvc,nx);
pm=zeros(nvc,nx);
mpv=1;
%mu=1.0;
for ii=1:nvc
t=gent*mpv;
t=t(abs(t)<3.5*mu*t0);
wbias=round((length(t)-1)/2);
wd1=exp(-pi*(t/t0/mu).^2);%.*exp(i*2*pi*t/t0);
wd2=max(0,1-abs(t/t0/mu));
wd2=wd2(wd2>0);
wwd=conv(wd2,wd1);
wwd=wwd(abs(wwd)>0.0001);
wbias=round((length(wwd)-1)/2);
wwd=wwd.*exp(i*2*pi*mlt*t(round((1:length(wwd))-wbias+length(t)/2))/t0);
pmtmp1=fftfilt(wwd,tx);
pm(ii,:)=pmtmp1(wbias+1:wbias+nx)*sqrt(mpv);
mpv=mpv*(2.0^(1/nvo));
% keyboard;
end;
%[nn,mm]=size(pm);
%pm=pm(:,1:mlt:mm);
%----------------------------------------------------------------
function pif=zwvlt2ifq(pm,fs)
% Wavelet to instantaneous frequency map
% fqv=wvlt2ifq(pm,fs)
% Coded by Hideki Kawahara
% 02/March/1999
[nn,mm]=size(pm);
pm=pm./(abs(pm));
pif=abs(pm(:,:)-[pm(:,1),pm(:,1:mm-1)]);
pif=fs/pi*asin(pif/2);
pif(:,1)=pif(:,2);
%----------------------------------------------------------------
function [slp,pbl]=zifq2gpm2(pif,f0floor,nvo)
% Instantaneous frequency 2 geometric parameters
% [slp,pbl]=ifq2gpm(pif,f0floor,nvo)
% slp : first order coefficient
% pbl : second order coefficient
% Coded by Hideki Kawahara
% 02/March/1999
[nn,mm]=size(pif);
fx=f0floor*2.0.^([0:nn-1]/nvo)*2*pi;
c=2.0^(1/nvo);
g=[1/c/c 1/c 1;1 1 1;c*c c 1];
h=inv(g);
%slp=pif(1:nn-2,:)*h(1,1)+pif(2:nn-1,:)*h(1,2)+pif(3:nn,:)*h(1,3);
slp=((pif(2:nn-1,:)-pif(1:nn-2,:))/(1-1/c) ...
+(pif(3:nn,:)-pif(2:nn-1,:))/(c-1))/2;
slp=[slp(1,:);slp;slp(nn-2,:)];
pbl=pif(1:nn-2,:)*h(2,1)+pif(2:nn-1,:)*h(2,2)+pif(3:nn,:)*h(2,3);
pbl=[pbl(1,:);pbl;pbl(nn-2,:)];
for ii=1:nn
slp(ii,:)=slp(ii,:)/fx(ii);
pbl(ii,:)=pbl(ii,:)/fx(ii);
end;
%------------------------------------------
%function [c1,c2]=znormwght(n)
%zz=0:1/n:3;
%hh=[diff(zGcBs(zz,0)) 0]*n;
%c1=sum((zz.*hh).^2)/n;
%c2=sum((2*pi*zz.^2.*hh).^2)/n;
%-------------------------------------------
function p=zGcBs(x,k)
tt=x+0.0000001;
p=tt.^k.*exp(-pi*tt.^2).*(sin(pi*tt+0.0001)./(pi*tt+0.0001)).^2;
%--------------------------------------------
function smap=zsmoothmapB(map,fs,f0floor,nvo,mu,mlim,pex)
[nvc,mm]=size(map);
%mu=0.4;
t0=1/f0floor;
lmx=round(6*t0*fs*mu);
wl=2^ceil(log(lmx)/log(2));
gent=((1:wl)-wl/2)/fs;
smap=map;
mpv=1;
zt=0*gent;
iiv=1:mm;
for ii=1:nvc
t=gent*mpv; %t0*mu/mpv*1000
t=t(abs(t)<3.5*mu*t0);
wbias=round((length(t)-1)/2);
wd1=exp(-pi*(t/(t0*(1-pex))/mu).^2);
wd2=exp(-pi*(t/(t0*(1+pex))/mu).^2);
wd1=wd1/sum(wd1);
wd2=wd2/sum(wd2);
tm=fftfilt(wd1,[map(ii,:) zt]);
tm=fftfilt(wd2,[1.0./tm(iiv+wbias) zt]);
smap(ii,:)=1.0./tm(iiv+wbias);
if t0*mu/mpv*1000 > mlim
mpv=mpv*(2.0^(1/nvo));
end;
end;
%--------------------------------------------
function [ff,vv,df]=zfixpfreq2(fxx,pif2,mmp,dfv)
nn=length(fxx);
iix=(1:nn)';
cd1=pif2-fxx;
cd2=[diff(cd1);cd1(nn)-cd1(nn-1)];
cdd1=[cd1(2:nn);cd1(nn)];
fp=(cd1.*cdd1<0).*(cd2<0);
ixx=iix(fp>0);
ff=pif2(ixx)+(pif2(ixx+1)-pif2(ixx)).*cd1(ixx)./(cd1(ixx)-cdd1(ixx));
%vv=mmp(ixx);
vv=mmp(ixx)+(mmp(ixx+1)-mmp(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));
df=dfv(ixx)+(dfv(ixx+1)-dfv(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));
%--------------------------------------------
function [ff,vv,df,aa]=zfixpfreq3(fxx,pif2,mmp,dfv,pm)
aav=abs(pm);
nn=length(fxx);
iix=(1:nn)';
cd1=pif2-fxx;
cd2=[diff(cd1);cd1(nn)-cd1(nn-1)];
cdd1=[cd1(2:nn);cd1(nn)];
fp=(cd1.*cdd1<0).*(cd2<0);
ixx=iix(fp>0);
ff=pif2(ixx)+(pif2(ixx+1)-pif2(ixx)).*cd1(ixx)./(cd1(ixx)-cdd1(ixx));
%vv=mmp(ixx);
vv=mmp(ixx)+(mmp(ixx+1)-mmp(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));
df=dfv(ixx)+(dfv(ixx+1)-dfv(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));
aa=aav(ixx)+(aav(ixx+1)-aav(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));
%--------------------------------------------
function [c1,c2]=znrmlcf2(f)
n=100;
x=0:1/n:3;
g=zGcBs(x,0);
dg=[diff(g) 0]*n;
dgs=dg/2/pi/f;
xx=2*pi*f*x;
c1=sum((xx.*dgs).^2)/n*2;
c2=sum((xx.^2.*dgs).^2)/n*2;
%--------------------------------------------
function x=cleaninglownoise(x,fs,f0floor);
flm=50;
flp=round(fs*flm/1000);
nn=length(x);
wlp=fir1(flp*2,f0floor/(fs/2));
wlp(flp+1)=wlp(flp+1)-1;
wlp=-wlp;
tx=[x(:)' zeros(1,2*length(wlp))];
ttx=fftfilt(wlp,tx);
x=ttx((1:nn)+flp);
return;