Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

whisper v3微调过程中出现乱码的情况 #13

Open
Kevinarcsin001 opened this issue Dec 21, 2024 · 2 comments
Open

whisper v3微调过程中出现乱码的情况 #13

Kevinarcsin001 opened this issue Dec 21, 2024 · 2 comments

Comments

@Kevinarcsin001
Copy link

我这边使用2卡的4090,实验数据是aishell1 带标点的数据。
环境如下:
Package Version Editable project location


accelerate 0.28.0
aiohappyeyeballs 2.4.4
aiohttp 3.11.10
aiosignal 1.3.1
annotated-types 0.7.0
anyio 4.7.0
async-timeout 5.0.1
attrs 24.2.0
audioread 3.0.1
av 14.0.1
bitsandbytes 0.41.3
Brotli 1.0.9
certifi 2024.8.30
cffi 1.17.1
charset-normalizer 3.3.2
click 8.1.7
coloredlogs 15.0.1
ctranslate2 4.5.0
dataclasses 0.6
datasets 3.2.0
decorator 5.1.1
dill 0.3.8
evaluate 0.4.3
exceptiongroup 1.2.2
fastapi 0.115.6
faster-whisper 1.1.0
filelock 3.13.1
flatbuffers 24.3.25
frozenlist 1.5.0
fsspec 2024.9.0
gmpy2 2.1.2
h11 0.14.0
huggingface-hub 0.26.5
humanfriendly 10.0
idna 3.10
Jinja2 3.1.4
jiwer 3.0.5
joblib 1.4.2
lazy_loader 0.4
librosa 0.10.2.post1
llvmlite 0.43.0
MarkupSafe 3.0.2
mkl_fft 1.3.11
mkl_random 1.2.8
mkl-service 2.4.0
mpmath 1.3.0
msgpack 1.1.0
multidict 6.1.0
multiprocess 0.70.16
networkx 3.2.1
numba 0.60.0
numpy 2.0.1
nvidia-cublas-cu12 12.4.5.8
nvidia-cuda-cupti-cu12 12.4.127
nvidia-cuda-nvrtc-cu12 12.4.127
nvidia-cuda-runtime-cu12 12.4.127
nvidia-cudnn-cu12 9.1.0.70
nvidia-cufft-cu12 11.2.1.3
nvidia-curand-cu12 10.3.5.147
nvidia-cusolver-cu12 11.6.1.9
nvidia-cusparse-cu12 12.3.1.170
nvidia-nccl-cu12 2.21.5
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu12 12.4.127
onnxruntime 1.16.3
packaging 24.2
pandas 2.2.3
peft 0.7.0 # 我自己的路径,使用源码安装的
pillow 11.0.0
pip 24.2
platformdirs 4.3.6
pooch 1.8.2
propcache 0.2.1
protobuf 5.29.1
psutil 6.1.0
pyarrow 18.1.0
pycparser 2.22
pydantic 2.10.3
pydantic_core 2.27.1
pydub 0.25.1
PySocks 1.7.1
python-dateutil 2.9.0.post0
pytz 2024.2
PyYAML 6.0.2
RapidFuzz 3.10.1
regex 2024.11.6
requests 2.32.3
safetensors 0.4.5
scikit-learn 1.5.2
scipy 1.13.1
setuptools 75.1.0
six 1.17.0
sniffio 1.3.1
SoundCard 0.4.3
soundfile 0.12.1
soxr 0.5.0.post1
starlette 0.41.3
sympy 1.13.1
tensorboardX 2.6.2.2
threadpoolctl 3.5.0
tokenizers 0.21.0
torch 2.5.1
torchaudio 2.5.1
torchvision 0.20.1
tqdm 4.67.1
transformers 4.47.0
triton 3.1.0
typing_extensions 4.12.2
tzdata 2024.2
urllib3 2.2.3
uvicorn 0.32.1
wheel 0.44.0
xxhash 3.5.0
yarl 1.18.3
zhconv 1.4.3

实验结果如下
1734767161822
请问您这边可以提供一些建议吗?麻烦啦

@gody7334
Copy link

I have same issue
Reckon its due to the discrepancy between the training (testing) data and the real data
And the model overfit to the training data,

You need to start to think what kind of data (or augmentation) will better represent your real data?

@shuaijiang
Copy link
Owner

check the format of training data(text) is utf-8?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants