We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我这边使用2卡的4090,实验数据是aishell1 带标点的数据。 环境如下: Package Version Editable project location
accelerate 0.28.0 aiohappyeyeballs 2.4.4 aiohttp 3.11.10 aiosignal 1.3.1 annotated-types 0.7.0 anyio 4.7.0 async-timeout 5.0.1 attrs 24.2.0 audioread 3.0.1 av 14.0.1 bitsandbytes 0.41.3 Brotli 1.0.9 certifi 2024.8.30 cffi 1.17.1 charset-normalizer 3.3.2 click 8.1.7 coloredlogs 15.0.1 ctranslate2 4.5.0 dataclasses 0.6 datasets 3.2.0 decorator 5.1.1 dill 0.3.8 evaluate 0.4.3 exceptiongroup 1.2.2 fastapi 0.115.6 faster-whisper 1.1.0 filelock 3.13.1 flatbuffers 24.3.25 frozenlist 1.5.0 fsspec 2024.9.0 gmpy2 2.1.2 h11 0.14.0 huggingface-hub 0.26.5 humanfriendly 10.0 idna 3.10 Jinja2 3.1.4 jiwer 3.0.5 joblib 1.4.2 lazy_loader 0.4 librosa 0.10.2.post1 llvmlite 0.43.0 MarkupSafe 3.0.2 mkl_fft 1.3.11 mkl_random 1.2.8 mkl-service 2.4.0 mpmath 1.3.0 msgpack 1.1.0 multidict 6.1.0 multiprocess 0.70.16 networkx 3.2.1 numba 0.60.0 numpy 2.0.1 nvidia-cublas-cu12 12.4.5.8 nvidia-cuda-cupti-cu12 12.4.127 nvidia-cuda-nvrtc-cu12 12.4.127 nvidia-cuda-runtime-cu12 12.4.127 nvidia-cudnn-cu12 9.1.0.70 nvidia-cufft-cu12 11.2.1.3 nvidia-curand-cu12 10.3.5.147 nvidia-cusolver-cu12 11.6.1.9 nvidia-cusparse-cu12 12.3.1.170 nvidia-nccl-cu12 2.21.5 nvidia-nvjitlink-cu12 12.4.127 nvidia-nvtx-cu12 12.4.127 onnxruntime 1.16.3 packaging 24.2 pandas 2.2.3 peft 0.7.0 # 我自己的路径,使用源码安装的 pillow 11.0.0 pip 24.2 platformdirs 4.3.6 pooch 1.8.2 propcache 0.2.1 protobuf 5.29.1 psutil 6.1.0 pyarrow 18.1.0 pycparser 2.22 pydantic 2.10.3 pydantic_core 2.27.1 pydub 0.25.1 PySocks 1.7.1 python-dateutil 2.9.0.post0 pytz 2024.2 PyYAML 6.0.2 RapidFuzz 3.10.1 regex 2024.11.6 requests 2.32.3 safetensors 0.4.5 scikit-learn 1.5.2 scipy 1.13.1 setuptools 75.1.0 six 1.17.0 sniffio 1.3.1 SoundCard 0.4.3 soundfile 0.12.1 soxr 0.5.0.post1 starlette 0.41.3 sympy 1.13.1 tensorboardX 2.6.2.2 threadpoolctl 3.5.0 tokenizers 0.21.0 torch 2.5.1 torchaudio 2.5.1 torchvision 0.20.1 tqdm 4.67.1 transformers 4.47.0 triton 3.1.0 typing_extensions 4.12.2 tzdata 2024.2 urllib3 2.2.3 uvicorn 0.32.1 wheel 0.44.0 xxhash 3.5.0 yarl 1.18.3 zhconv 1.4.3
实验结果如下 请问您这边可以提供一些建议吗?麻烦啦
The text was updated successfully, but these errors were encountered:
I have same issue Reckon its due to the discrepancy between the training (testing) data and the real data And the model overfit to the training data,
You need to start to think what kind of data (or augmentation) will better represent your real data?
Sorry, something went wrong.
check the format of training data(text) is utf-8?
No branches or pull requests
我这边使用2卡的4090,实验数据是aishell1 带标点的数据。
环境如下:
Package Version Editable project location
accelerate 0.28.0
aiohappyeyeballs 2.4.4
aiohttp 3.11.10
aiosignal 1.3.1
annotated-types 0.7.0
anyio 4.7.0
async-timeout 5.0.1
attrs 24.2.0
audioread 3.0.1
av 14.0.1
bitsandbytes 0.41.3
Brotli 1.0.9
certifi 2024.8.30
cffi 1.17.1
charset-normalizer 3.3.2
click 8.1.7
coloredlogs 15.0.1
ctranslate2 4.5.0
dataclasses 0.6
datasets 3.2.0
decorator 5.1.1
dill 0.3.8
evaluate 0.4.3
exceptiongroup 1.2.2
fastapi 0.115.6
faster-whisper 1.1.0
filelock 3.13.1
flatbuffers 24.3.25
frozenlist 1.5.0
fsspec 2024.9.0
gmpy2 2.1.2
h11 0.14.0
huggingface-hub 0.26.5
humanfriendly 10.0
idna 3.10
Jinja2 3.1.4
jiwer 3.0.5
joblib 1.4.2
lazy_loader 0.4
librosa 0.10.2.post1
llvmlite 0.43.0
MarkupSafe 3.0.2
mkl_fft 1.3.11
mkl_random 1.2.8
mkl-service 2.4.0
mpmath 1.3.0
msgpack 1.1.0
multidict 6.1.0
multiprocess 0.70.16
networkx 3.2.1
numba 0.60.0
numpy 2.0.1
nvidia-cublas-cu12 12.4.5.8
nvidia-cuda-cupti-cu12 12.4.127
nvidia-cuda-nvrtc-cu12 12.4.127
nvidia-cuda-runtime-cu12 12.4.127
nvidia-cudnn-cu12 9.1.0.70
nvidia-cufft-cu12 11.2.1.3
nvidia-curand-cu12 10.3.5.147
nvidia-cusolver-cu12 11.6.1.9
nvidia-cusparse-cu12 12.3.1.170
nvidia-nccl-cu12 2.21.5
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu12 12.4.127
onnxruntime 1.16.3
packaging 24.2
pandas 2.2.3
peft 0.7.0 # 我自己的路径,使用源码安装的
pillow 11.0.0
pip 24.2
platformdirs 4.3.6
pooch 1.8.2
propcache 0.2.1
protobuf 5.29.1
psutil 6.1.0
pyarrow 18.1.0
pycparser 2.22
pydantic 2.10.3
pydantic_core 2.27.1
pydub 0.25.1
PySocks 1.7.1
python-dateutil 2.9.0.post0
pytz 2024.2
PyYAML 6.0.2
RapidFuzz 3.10.1
regex 2024.11.6
requests 2.32.3
safetensors 0.4.5
scikit-learn 1.5.2
scipy 1.13.1
setuptools 75.1.0
six 1.17.0
sniffio 1.3.1
SoundCard 0.4.3
soundfile 0.12.1
soxr 0.5.0.post1
starlette 0.41.3
sympy 1.13.1
tensorboardX 2.6.2.2
threadpoolctl 3.5.0
tokenizers 0.21.0
torch 2.5.1
torchaudio 2.5.1
torchvision 0.20.1
tqdm 4.67.1
transformers 4.47.0
triton 3.1.0
typing_extensions 4.12.2
tzdata 2024.2
urllib3 2.2.3
uvicorn 0.32.1
wheel 0.44.0
xxhash 3.5.0
yarl 1.18.3
zhconv 1.4.3
实验结果如下
请问您这边可以提供一些建议吗?麻烦啦
The text was updated successfully, but these errors were encountered: