-
Notifications
You must be signed in to change notification settings - Fork 14
/
pulidflux.py
525 lines (433 loc) · 21.2 KB
/
pulidflux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import torch
from torch import nn, Tensor
from torchvision import transforms
from torchvision.transforms import functional
import os
import logging
import folder_paths
import comfy.utils
from comfy.ldm.flux.layers import timestep_embedding
from insightface.app import FaceAnalysis
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
import torch.nn.functional as F
from .eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from .encoders_flux import IDFormer, PerceiverAttentionCA
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface")
MODELS_DIR = os.path.join(folder_paths.models_dir, "pulid")
if "pulid" not in folder_paths.folder_names_and_paths:
current_paths = [MODELS_DIR]
else:
current_paths, _ = folder_paths.folder_names_and_paths["pulid"]
folder_paths.folder_names_and_paths["pulid"] = (current_paths, folder_paths.supported_pt_extensions)
from .online_train2 import online_train
class PulidFluxModel(nn.Module):
def __init__(self):
super().__init__()
self.double_interval = 2
self.single_interval = 4
# Init encoder
self.pulid_encoder = IDFormer()
# Init attention
num_ca = 19 // self.double_interval + 38 // self.single_interval
if 19 % self.double_interval != 0:
num_ca += 1
if 38 % self.single_interval != 0:
num_ca += 1
self.pulid_ca = nn.ModuleList([
PerceiverAttentionCA() for _ in range(num_ca)
])
def from_pretrained(self, path: str):
state_dict = comfy.utils.load_torch_file(path, safe_load=True)
state_dict_dict = {}
for k, v in state_dict.items():
module = k.split('.')[0]
state_dict_dict.setdefault(module, {})
new_k = k[len(module) + 1:]
state_dict_dict[module][new_k] = v
for module in state_dict_dict:
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
del state_dict
del state_dict_dict
def get_embeds(self, face_embed, clip_embeds):
return self.pulid_encoder(face_embed, clip_embeds)
def forward_orig(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor = None,
control=None,
transformer_options={}
) -> Tensor:
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
ca_idx = 0
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(
img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"])
return out
out = blocks_replace[("double_block", i)](
{"img": img, "txt": txt, "vec": vec, "pe": pe}, {"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
# PuLID attention
if self.pulid_data:
if i % self.pulid_double_interval == 0:
# Will calculate influence of all pulid nodes at once
for _, node_data in self.pulid_data.items():
condition_start = node_data['sigma_start'] >= timesteps
condition_end = timesteps >= node_data['sigma_end']
condition = torch.logical_and(
condition_start, condition_end).all()
if condition:
img = img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], img)
ca_idx += 1
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
img = block(img, vec=vec, pe=pe)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
# PuLID attention
if self.pulid_data:
real_img, txt = img[:, txt.shape[1]:, ...], img[:, :txt.shape[1], ...]
if i % self.pulid_single_interval == 0:
# Will calculate influence of all nodes at once
for _, node_data in self.pulid_data.items():
condition_start = node_data['sigma_start'] >= timesteps
condition_end = timesteps >= node_data['sigma_end']
# Combine conditions and reduce to a single boolean
condition = torch.logical_and(condition_start, condition_end).all()
if condition:
real_img = real_img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], real_img)
ca_idx += 1
img = torch.cat((txt, real_img), 1)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def tensor_to_image(tensor):
image = tensor.mul(255).clamp(0, 255).byte().cpu()
image = image[..., [2, 1, 0]].numpy()
return image
def image_to_tensor(image):
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1)
tensor = tensor[..., [2, 1, 0]]
return tensor
def resize_with_pad(img, target_size): # image: 1, h, w, 3
img = img.permute(0, 3, 1, 2)
H, W = target_size
h, w = img.shape[2], img.shape[3]
scale_h = H / h
scale_w = W / w
scale = min(scale_h, scale_w)
new_h = int(min(h * scale,H))
new_w = int(min(w * scale,W))
new_size = (new_h, new_w)
img = F.interpolate(img, size=new_size, mode='bicubic', align_corners=False)
pad_top = (H - new_h) // 2
pad_bottom = (H - new_h) - pad_top
pad_left = (W - new_w) // 2
pad_right = (W - new_w) - pad_left
img = F.pad(img, pad=(pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
return img.permute(0, 2, 3, 1)
def to_gray(img):
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
x = x.repeat(1, 3, 1, 1)
return x
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Nodes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class PulidFluxModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": {"pulid_file": (folder_paths.get_filename_list("pulid"), )}}
RETURN_TYPES = ("PULIDFLUX",)
FUNCTION = "load_model"
CATEGORY = "pulid"
def load_model(self, pulid_file):
model_path = folder_paths.get_full_path("pulid", pulid_file)
# Also initialize the model, takes longer to load but then it doesn't have to be done every time you change parameters in the apply node
model = PulidFluxModel()
logging.info("Loading PuLID-Flux model.")
model.from_pretrained(path=model_path)
return (model,)
class PulidFluxInsightFaceLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"provider": (["CPU", "CUDA", "ROCM"], ),
},
}
RETURN_TYPES = ("FACEANALYSIS",)
FUNCTION = "load_insightface"
CATEGORY = "pulid"
def load_insightface(self, provider):
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # alternative to buffalo_l
model.prepare(ctx_id=0, det_size=(640, 640))
return (model,)
class PulidFluxEvaClipLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {},
}
RETURN_TYPES = ("EVA_CLIP",)
FUNCTION = "load_eva_clip"
CATEGORY = "pulid"
def load_eva_clip(self):
from .eva_clip.factory import create_model_and_transforms
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
model = model.visual
eva_transform_mean = getattr(model, 'image_mean', OPENAI_DATASET_MEAN)
eva_transform_std = getattr(model, 'image_std', OPENAI_DATASET_STD)
if not isinstance(eva_transform_mean, (list, tuple)):
model["image_mean"] = (eva_transform_mean,) * 3
if not isinstance(eva_transform_std, (list, tuple)):
model["image_std"] = (eva_transform_std,) * 3
return (model,)
class ApplyPulidFlux:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"pulid_flux": ("PULIDFLUX", ),
"eva_clip": ("EVA_CLIP", ),
"face_analysis": ("FACEANALYSIS", ),
"image": ("IMAGE", ),
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 5.0, "step": 0.05 }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"fusion": (["mean","concat","max","norm_id","max_token","auto_weight","train_weight"],),
"fusion_weight_max": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 20.0, "step": 0.1 }),
"fusion_weight_min": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 20.0, "step": 0.1 }),
"train_step": ("INT", {"default": 1000, "min": 0, "max": 20000, "step": 1 }),
"use_gray": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
},
"optional": {
"attn_mask": ("MASK", ),
"prior_image": ("IMAGE",), # for train weight, as the target
},
"hidden": {
"unique_id": "UNIQUE_ID"
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_pulid_flux"
CATEGORY = "pulid"
def __init__(self):
self.pulid_data_dict = None
def apply_pulid_flux(self, model, pulid_flux, eva_clip, face_analysis, image, weight, start_at, end_at, prior_image=None,fusion="mean", fusion_weight_max=1.0, fusion_weight_min=0.0, train_step=1000, use_gray=True, attn_mask=None, unique_id=None):
device = comfy.model_management.get_torch_device()
# Why should I care what args say, when the unet model has a different dtype?!
# Am I missing something?!
#dtype = comfy.model_management.unet_dtype()
dtype = model.model.diffusion_model.dtype
# For 8bit use bfloat16 (because ufunc_add_CUDA is not implemented)
if dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
dtype = torch.bfloat16
eva_clip.to(device, dtype=dtype)
pulid_flux.to(device, dtype=dtype)
# TODO: Add masking support!
if attn_mask is not None:
if attn_mask.dim() > 3:
attn_mask = attn_mask.squeeze(-1)
elif attn_mask.dim() < 3:
attn_mask = attn_mask.unsqueeze(0)
attn_mask = attn_mask.to(device, dtype=dtype)
if prior_image is not None:
prior_image = resize_with_pad(prior_image.to(image.device, dtype=image.dtype), target_size=(image.shape[1], image.shape[2]))
image=torch.cat((prior_image,image),dim=0)
image = tensor_to_image(image)
face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=device,
)
face_helper.face_parse = None
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
cond = []
# Analyse multiple images at multiple sizes and combine largest area embeddings
for i in range(image.shape[0]):
# get insightface embeddings
iface_embeds = None
for size in [(size, size) for size in range(640, 256, -64)]:
face_analysis.det_model.input_size = size
face_info = face_analysis.get(image[i])
if face_info:
# Only use the maximum face
# Removed the reverse=True from original code because we need the largest area not the smallest one!
# Sorts the list in ascending order (smallest to largest),
# then selects the last element, which is the largest face
face_info = sorted(face_info, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
iface_embeds = torch.from_numpy(face_info.embedding).unsqueeze(0).to(device, dtype=dtype)
break
else:
# No face detected, skip this image
logging.warning(f'Warning: No face detected in image {str(i)}')
continue
# get eva_clip embeddings
face_helper.clean_all()
face_helper.read_image(image[i])
face_helper.get_face_landmarks_5(only_center_face=True)
face_helper.align_warp_face()
if len(face_helper.cropped_faces) == 0:
# No face detected, skip this image
continue
# Get aligned face image
align_face = face_helper.cropped_faces[0]
# Convert bgr face image to tensor
align_face = image_to_tensor(align_face).unsqueeze(0).permute(0, 3, 1, 2).to(device)
parsing_out = face_helper.face_parse(functional.normalize(align_face, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(align_face)
# Only keep the face features
if use_gray:
_align_face = to_gray(align_face)
else:
_align_face = align_face
face_features_image = torch.where(bg, white_image, _align_face)
# Transform img before sending to eva_clip
# Apparently MPS only supports NEAREST interpolation?
face_features_image = functional.resize(face_features_image, eva_clip.image_size, transforms.InterpolationMode.BICUBIC if 'cuda' in device.type else transforms.InterpolationMode.NEAREST).to(device, dtype=dtype)
face_features_image = functional.normalize(face_features_image, eva_clip.image_mean, eva_clip.image_std)
# eva_clip
id_cond_vit, id_vit_hidden = eva_clip(face_features_image, return_all_features=False, return_hidden=True, shuffle=False)
id_cond_vit = id_cond_vit.to(device, dtype=dtype)
for idx in range(len(id_vit_hidden)):
id_vit_hidden[idx] = id_vit_hidden[idx].to(device, dtype=dtype)
id_cond_vit = torch.div(id_cond_vit, torch.norm(id_cond_vit, 2, 1, True))
# Combine embeddings
id_cond = torch.cat([iface_embeds, id_cond_vit], dim=-1)
# Pulid_encoder
cond.append(pulid_flux.get_embeds(id_cond, id_vit_hidden))
if not cond:
# No faces detected, return the original model
logging.warning("PuLID warning: No faces detected in any of the given images, returning unmodified model.")
return (model,)
# fusion embeddings
if fusion == "mean":
cond = torch.cat(cond).to(device, dtype=dtype) # N,32,2048
if cond.shape[0] > 1:
cond = torch.mean(cond, dim=0, keepdim=True)
elif fusion == "concat":
cond = torch.cat(cond, dim=1).to(device, dtype=dtype)
elif fusion == "max":
cond = torch.cat(cond).to(device, dtype=dtype)
if cond.shape[0] > 1:
cond = torch.max(cond, dim=0, keepdim=True)[0]
elif fusion == "norm_id":
cond = torch.cat(cond).to(device, dtype=dtype)
if cond.shape[0] > 1:
norm=torch.norm(cond,dim=(1,2))
norm=norm/torch.sum(norm)
cond=torch.einsum("wij,w->ij",cond,norm).unsqueeze(0)
elif fusion == "max_token":
cond = torch.cat(cond).to(device, dtype=dtype)
if cond.shape[0] > 1:
norm=torch.norm(cond,dim=2)
_,idx=torch.max(norm,dim=0)
cond=torch.stack([cond[j,i] for i,j in enumerate(idx)]).unsqueeze(0)
elif fusion == "auto_weight": # 🤔
cond = torch.cat(cond).to(device, dtype=dtype)
if cond.shape[0] > 1:
norm=torch.norm(cond,dim=2)
order=torch.argsort(norm,descending=False,dim=0)
regular_weight=torch.linspace(fusion_weight_min,fusion_weight_max,norm.shape[0]).to(device, dtype=dtype)
_cond=[]
for i in range(cond.shape[1]):
o=order[:,i]
_cond.append(torch.einsum('ij,i->j',cond[:,i,:],regular_weight[o]))
cond=torch.stack(_cond,dim=0).unsqueeze(0)
elif fusion == "train_weight":
cond = torch.cat(cond).to(device, dtype=dtype)
if cond.shape[0] > 1:
if train_step > 0:
with torch.inference_mode(False):
cond = online_train(cond, device=cond.device, step=train_step)
else:
cond = torch.mean(cond, dim=0, keepdim=True)
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
# Patch the Flux model (original diffusion_model)
# Nah, I don't care for the official ModelPatcher because it's undocumented!
# I want the end result now, and I don’t mind if I break other custom nodes in the process. 😄
flux_model = model.model.diffusion_model
# Let's see if we already patched the underlying flux model, if not apply patch
if not hasattr(flux_model, "pulid_ca"):
# Add perceiver attention, variables and current node data (weight, embedding, sigma_start, sigma_end)
# The pulid_data is stored in Dict by unique node index,
# so we can chain multiple ApplyPulidFlux nodes!
flux_model.pulid_ca = pulid_flux.pulid_ca
flux_model.pulid_double_interval = pulid_flux.double_interval
flux_model.pulid_single_interval = pulid_flux.single_interval
flux_model.pulid_data = {}
# Replace model forward_orig with our own
new_method = forward_orig.__get__(flux_model, flux_model.__class__)
setattr(flux_model, 'forward_orig', new_method)
# Patch is already in place, add data (weight, embedding, sigma_start, sigma_end) under unique node index
flux_model.pulid_data[unique_id] = {
'weight': weight,
'embedding': cond,
'sigma_start': sigma_start,
'sigma_end': sigma_end,
}
# Keep a reference for destructor (if node is deleted the data will be deleted as well)
self.pulid_data_dict = {'data': flux_model.pulid_data, 'unique_id': unique_id}
return (model,)
def __del__(self):
# Destroy the data for this node
if self.pulid_data_dict:
del self.pulid_data_dict['data'][self.pulid_data_dict['unique_id']]
del self.pulid_data_dict
NODE_CLASS_MAPPINGS = {
"PulidFluxModelLoader": PulidFluxModelLoader,
"PulidFluxInsightFaceLoader": PulidFluxInsightFaceLoader,
"PulidFluxEvaClipLoader": PulidFluxEvaClipLoader,
"ApplyPulidFlux": ApplyPulidFlux,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PulidFluxModelLoader": "Load PuLID Flux Model",
"PulidFluxInsightFaceLoader": "Load InsightFace (PuLID Flux)",
"PulidFluxEvaClipLoader": "Load Eva Clip (PuLID Flux)",
"ApplyPulidFlux": "Apply PuLID Flux",
}